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Abstract.

multproc carries out multiple-test procedures, taking as input a list of p-values
and an uncorrected critical p-value, and calculating a corrected overall critical p-
value for rejection of null hypotheses. These procedures define a confidence region
for a set-valued parameter, namely the set of null hypotheses that are true. They
aim to control either the family-wise error rate (FWER) or the false discovery
rate (FDR) at a level no greater than the uncorrected critical p-value. smileplot

calls multproc and then creates a smile plot, with data points corresponding to
estimated parameters, the p-values (on a reverse log scale) on the y-axis, and the
parameter estimates (or another variable) on the x-axis. There are y-axis reference
lines at the uncorrected and corrected overall critical p-values. The reference line
for the corrected overall critical p-value, known as the parapet line, is an informal
“upper confidence limit” for the set of null hypotheses that are true and defines a
boundary between data mining and data dredging. A smile plot summarizes a set
of multiple analyses just as a Cochrane forest plot summarizes a meta-analysis.

Keywords: st0035, smile plot, multiple-test procedure, closed testing procedure,
data mining, family-wise error rate, false discovery rate, Bonferroni, Šidák, Holm,
Holland, Copenhaver, Hochberg, Rom, Simes, Benjamini, Yekutieli, Krieger, Liu

1 Introduction

A p-value is defined (informally) as the probability of observing a sample difference
at least as large as the one in our sample, assuming that the population difference is
zero. However, if we take a large number of samples or calculate a large number of
confidence intervals for different parameters using the same sample, the probability of
not observing at least one “significant” difference tends to fall, even if all null hypotheses
are true and all population differences are zero. A skeptical public will inevitably ask
whether a reported difference is “significant” when considered as one out of a large
number of parameters estimated.

Common responses to this problem use the Bonferroni or Šidák inequalities. If
P1, . . . , Pm are observed p-values, and α is a critical p-value, the Bonferroni inequality
states that

Pr {min (Pj : 1 ≤ j ≤ m ) ≤ α/m} ≤ α

c© 2003 Stata Corporation st0035
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The Šidák inequality (Šidák 1967) is less conservative and applies whenever the events of
Type I error for different tests are mutually nonnegatively correlated, which is the case
if the Pj are derived from two-tailed tests based on normally distributed test statistics.
The Šidák inequality states that

Pr
{

min (Pj : 1 ≤ j ≤ m ) ≤ 1 − (1 − α)1/m
}

≤ α

Most statistically minded scientists view p-values as a means to the end of defining con-
fidence intervals or other confidence regions. If there are m parameters θ = (θ1, . . . , θm),
we may derive 100(1−α/m)% confidence intervals (thanks to the Bonferroni inequality)
or 100(1− α)1/m% confidence intervals (thanks to the Šidák inequality) for each of the
θi, and the Cartesian product of these confidence intervals is a conservative rectangular
confidence region for θ. In other words, we are 100(1 − α)% confident that all the
θi are inside their respective confidence limits. The method of rectangular confidence
regions is summarized in Miller (1966) and Šidák (1967). It is not easy to calculate
100(1−α/m)% or 100(1−α)1/m% confidence intervals in official Stata, which requires
the level option of an estimation command to be an integer. A possible solution to
this problem is to use the parmest package (Newson 1999), which is downloadable from
SSC, and which now allows the calculation of multiple pairs of confidence limits with
possibly noninteger confidence levels.

Most scientists, most of the time, do not use corrected confidence intervals of this
kind. It is more common to use multiple-test procedures, which reject a subset of the
null hypotheses and enable us to be 100(1 − α)% confident that all, or some, of the
rejected null hypotheses are false. This is often more concise, and less conservative,
than giving a full list of corrected confidence limits. Also, confidence interval formulas
may be less reliable at confidence levels in excess of 99.5% than at confidence levels of
95%.

Multiple-test procedures, on their own, have the disadvantage that they give infor-
mation only about the statistical significance of results, as measured by the p-values, and
say nothing about their practical significance in affecting practical decisions, as mea-
sured by the parameter estimates. Also, the results are not often expressed graphically.
It would be useful to have a plot that summarized a set of multiple analyses just as a
Cochrane forest plot summarizes a meta-analysis, giving quantitative information, at a
glance, about the statistical and practical significance of the estimated parameters. To
create such a plot, we developed the smileplot package, which carries out multiple-test
procedures and, optionally, plots the p-values on a reverse log scale against the corre-
sponding parameter estimates, with a reference line (the parapet line) separating the
rejected p-values from the acceptable p-values. The parapet line is so named because,
informally, null hypotheses that raise their heads above it are shot down.
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2 The smileplot package

2.1 Syntax

multproc
[
if exp

] [
in range

] [
, puncor(# | scalarname | varname)

pcor(# | scalarname | varname) method(method name) pvalue(varname)

rank(newvarname) gpuncor(newvarname) critical(newvarname)

gpcor(newvarname) nhcred(newvarname) reject(newvarname) float fast
]

smileplot
[
if exp

] [
in range

] [
, estimate(varname) logbase(#)

maxylabs(#) xlog nline(#) ptsymbol(symbolstyle) ptlabel(varname)

scatteropts(scatter options) refopts(added line options 1)

nrefopts(added line options 2) urefopts(added line options 3)

crefopts(added line options 4) plot(plot) by(varlist
[
,suboptions

]
)

multproc options twoway options
]

method name may be one of a selection of method names (see below).

by . . .: may be used with multproc and smileplot; see [R] by.

2.2 Description

multproc takes, as input, a dataset with one observation for each of a set of mul-
tiple statistical tests, including a variable containing p-values for these tests and an
uncorrected overall critical p-value specified by the user, and carries out a multiple-
test procedure. This procedure calculates a corrected overall critical p-value, which has
the feature that an individual null hypothesis is considered to be acceptable only if its
corresponding p-value is greater than the corrected overall critical p-value. smileplot

takes, as input, a dataset with one observation for each of a set of estimated parameters
and data on their estimates and p-values. smileplot calls multproc to carry out a
multiple-test procedure and then creates a smile plot, with data points corresponding
to estimated parameters, the p-values (on a reverse log scale) on the y-axis, and the
parameter estimates (or another variable) on the x-axis. There are y-axis reference lines
at the uncorrected and corrected overall critical p-values. The y-axis reference line at
the corrected overall critical p-value is known as the parapet line, and data points on
or above it correspond to rejected null hypotheses. There may be an x-axis reference
line at the value of a parameter under a null hypothesis (defaulting to one if the x-axis
is logged, or to zero otherwise). The user can therefore see, at a glance, both the sta-
tistical significance and the practical significance of each parameter estimate. Datasets
suitable for input to multproc and smileplot may be created (directly or indirectly) by
statsby or postfile (in official Stata) or by the parmest package previously mentioned
(downloadable from SSC).
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smileplot changed markedly in style in the transition from Stata 7 to Stata 8. Users
who prefer to use the Stata 7 version can still do so by using the program smileplot7,
which is distributed as part of the smileplot package.

2.3 Options for multproc and smileplot

puncor(# | scalarname | varname) specifies the uncorrected overall critical p-value for
statistical significance. This option may be specified as a number, as a scalar, or as a
variable (in which case the variable is expected to contain only one nonmissing value
in the sample, or one nonmissing value in each by-group if by varlist: is used). If
absent, this option is set to 1-$S level/100, where $S level is the value of the
currently set default confidence level (see [R] level).

pcor(# | scalarname | varname) specifies the corrected overall critical p-value for sta-
tistical significance. This option may be specified either as a number, or as a scalar,
or as a variable (in which case the variable is expected to contain only one nonmiss-
ing value in the sample, or one nonmissing value in each by-group if by varlist: is
used). If absent, this option is set by the method specified in the method() option
(see below).

method(method name) specifies the multiple-test procedure method to be used for de-
riving the corrected p-value threshold from the uncorrected p-value threshold. This
option is ignored and set to userspecified if the pcor() option is specified and is in
the range 0 ≤ pcor() ≤ 1. Otherwise, if method() is absent, it is set to bonferroni.

pvalue(varname) is the name of the variable containing the p-values. If this option is
absent, multproc looks for a variable named p (as created by parmby or parmest).
multproc carries out a multiple-test procedure on all observations selected by the
if or in qualifiers, which also have nonmissing values for the variable containing the
p-values.

rank(newvarname) is the name of a new variable to be generated that contains, in each
observation, the rank of the corresponding p-value, from the lowest to the highest.
Tied p-values are ranked according to their position in the input dataset. If by

varlist: is specified, then the ranks are defined within the by-group.

gpuncor(newvarname) is the name of a new variable to be generated, containing,
in each observation, the uncorrected overall critical p-value, as specified by the
puncor() option or by the standard default if the puncor() option is not speci-
fied. This new variable will have the same value for all observations in the sample of
observations used by multproc or smileplot. If by varlist: is specified, the value
of this new variable will be the same in all observations within each by-group but
may be different for observations in different by-groups if the puncor() option is
specified as a variable with different values in different by-groups.

critical(newvarname) is the name of a new variable to be generated that contains, in
each observation, an individual critical p-value corresponding to the original p-value
in the variable specified by pvalue(). The values of the individual critical p-values
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are defined by a nondecreasing function (specified by the method() option) of the
ranks of the corresponding original p-values (generated by the rank() option). The
corrected overall critical p-value is selected from the individual critical p-values in a
way specified by the method() option, depending on whether the method specified
is a one-step method, a step-down method, or a step-up method.

gpcor(newvarname) is the name of a new variable to be generated that contains, in
each observation, the corrected overall critical p-value, as specified by the pcor()

option or by the method() option if the pcor() option is not specified. If by varlist:

is specified, the value of this new variable will be the same in all observations within
each by-group but may be different for observations in different by-groups.

nhcred(newvarname) is the name of a new variable to be generated that contains, in
each observation, an indicator of the credibility of the corresponding null hypothesis
under the method specified by the method() option. This indicator is 1 if the null
hypothesis is acceptable and 0 otherwise. A null hypothesis is said to be acceptable
if its p-value is greater than the corrected overall p-value threshold. The set of
observations with a value of 1 corresponds to a set of acceptable null hypotheses.
The exact interpretation of the set of acceptable null hypotheses depends on whether
the method specified controls the family-wise error rate (FWER) or the false discovery
rate (FDR).

reject(newvarname) is the name of a new variable to be generated that contains, for
each observation, an indicator of the rejection of the corresponding null hypothesis
under the method specified by the method() option. This indicator is 1 if the
null hypothesis is rejected, and 0 otherwise. The new variable generated by the
reject() option is therefore the negation of the new variable generated by the
nhcred() option.

float specifies that the generated p-value variables specified by gpcor(), critical(),
and gpuncor() (if requested) will be created as float variables. If float is absent,
these generated variables are created as double variables. Whether or not float is
specified, all generated variables are stored to the lowest precision possible without
loss of information.

fast is an option for programmers. It specifies that multproc and smileplot will not
take any action to restore the original data if the user presses Break.

2.4 Options for smileplot only

estimate(varname) specifies the name of the variable to be plotted on the x-axis,
which usually contains the parameter estimates. If this option is absent, smileplot
looks for a variable named estimate (as created by parmby or parmest). smileplot
carries out a multiple-test procedure by calling multproc for observations with non-
missing values for the variables specified by the estimate() and pvalue() options,
using the if or in qualifiers if these are supplied by the user. Note that the variable
specified by estimate() may contain values that are not parameter estimates. For
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instance, the observations may correspond to genes in a genome scan, the p-values
may be derived from tests for associations of those genes with a disease, and the
x-axis variable specified by estimate() may contain the positions of those genes on
a chromosome map.

logbase(#) specifies a log base used to define the y-axis labels. This log base is a factor
by which each y-axis label is divided to arrive at the next y-axis label, where the
y-axis labels are ordered from the highest p-value to the lowest p-value. If absent,
this option is set to 10, so the y-axis labels are set to nonpositive powers of 10. If
this rule defines too many y-axis labels, the y-axis labels are set to be every kth
member of the logarithmic series, where k is the minimum positive integer such that
the number of y-axis labels defined in this way is not too large.

maxylabs(#) specifies the maximum number of y-axis labels allowed. If this option is
not specified, it is set to 25, so as to be similar to the Stata 7 version of smileplot,
which can be used with smileplot7. maxylabs() is used with logbase() to decide
the default sequence of labels on the left y-axis. These are chosen to be spaced ex-
ponentially, separated by a factor equal to the smallest possible power of logbase()
such that the number of labels is no more than maxylabs(). This is usually a
sensible default, but it can be overridden by the twoway options.

xlog specifies that the x-axis must have a log scale. It is typically used if the parameters
estimated are odds ratios or geometric mean ratios. It affects the default value of the
nline() option (see below). It may be overridden by specifications in an xscale()

option in the twoway options.

nline(#) specifies the position, on the x-axis, of the reference line indicating the value
of the estimated parameters under the null hypothesis. If unspecified, this option
is set to 1 if xlog is specified and to 0 otherwise. This option allows the user to
plot odds ratios and geometric mean ratios on a linear scale instead of the more
usual log scale. If nline() is set to a missing value by specifying nline(.), the
null reference line is suppressed. This is useful for creating “smile plots” in which
the x-axis variable specified by the estimate() option contains values other than
parameter estimates, such as positions of genes on a chromosome map.

ptsymbol(symbolstyle) specifies a graph symbol for the data points of the smile plot
(see [G] symbolstyle). If absent, it is set to Th (hollow triangles).

ptlabel(varname) specifies a variable to be used to label the data points. If this option
is absent, there are no data point labels, only unlabeled data points.

scatteropts(scatter options) specifies a sequence of options for the twoway scatter

plot type. These options may include msymbol() and mlabel() options, which
override the ptsymbol() and ptlabel() options, respectively, and other options
specifying nondefault attributes for the symbols or labels, such as size and color.
(See [G] graph twoway scatter.) The user can specify any of these options except
for xaxis() or yaxis() because smileplot automatically sets the first x-axis to be
the x-axis of the smile plot (specified by the estimate() option) and the first and
second y-axes to be the left and right y-axes used by the smile plot (corresponding
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to the pvalue() option). The second y-axis is used to display the values of the
uncorrected and corrected overall critical p-values.

refopts(added line options 1) specifies a list of added line suboptions, as allowed for
the xline() or yline() options (see [G] added line options). These suboptions
control the style of the x-axis and y-axis reference lines of the smile plot, correspond-
ing to the null hypothesis, the uncorrected overall critical p-value, and the corrected
overall critical p-value, respectively. The suboptions apply to all 3 of these reference
lines, except if overridden by the nrefopts(), urefopts() or crefopts() options
(see below). If refopts() is absent, the lines styles depend on the scheme.

nrefopts(added line options 2) specifies a list of added line suboptions, which control
the style of the x-axis reference line of the smile plot, corresponding to the null
hypothesis.

urefopts(added line options 3) specifies a list of added line suboptions, which control
the style of the y-axis reference line of the smile plot indicating the uncorrected
overall critical p-value.

crefopts(added line options 4) specifies a list of added line suboptions, which control
the style of the y-axis reference line of the smile plot indicating the corrected overall
critical p-value.

plot(plot) provides a way to add other plots to the generated graph.
See [G] plot option.

by(varlist
[
,suboptions

]
) is a graph twoway option and works as in [G] by option,

creating one subplot for each by-group, arranged in an array as specified by the
user. The corrected overall critical p-value, indicated by a line at the same level on
all the subplots, is calculated from all the p-values from all the by-groups pooled
together, not for the subset of p-values in each by-group individually. (This is in
contrast to the use of by varlist:, which causes corrected individual and overall
critical p-values to be calculated only from the subset of p-values in each by-group.)

multproc options is a set of options recognized by the multproc command.

twoway options is a set of options recognized by the graph twoway command;
see [G] twoway options.

2.5 Saved Results

multproc and smileplot save the following results in r():

Scalars
r(puncor) Uncorrected critical p-value r(pcor) Corrected critical p-value
r(npvalues) Number of p-values r(nreject) Number of p-values rejected

Macros
r(method) The method() option
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3 Methods and Formulas

We assume that there is a sequence of m distinct parameters, θ1, . . . , θm, estimated

using estimates θ̂1, . . . , θ̂m and having the values θ
(0)
1 , . . . , θ

(0)
m under their respective

null hypotheses. Typically, θ
(0)
i is 0 for difference parameters such as linear regression

coefficients, or 1 for ratio parameters such as relative risks. P1, . . . , Pm denote the
observed p-values for testing the m null hypotheses. Each Pi has the property that, if
0 ≤ α ≤ 1,

Pr
(

Pi ≤ α
∣∣ θi = θ

(0)
i

)
≤ α

R1, . . . , Rm denote the ranks (in ascending order) of P1, . . . , Pm, and Q1, . . . , Qm denote
the p-values in ascending order, so that, for each i, QRi

= Pi. multproc aims to
define a “credible (or acceptable) subset” of indices C ⊆ {1 . . . m}, such that the null

hypotheses {θi = θ
(0)
i : i ∈ C} are acceptable, and the complementary set of null

hypotheses {θi = θ
(0)
i : i /∈ C} are rejected. This is done by defining an uncorrected

p-value threshold punc, calculating a corrected p-value threshold, pcor, from punc and
Q1, . . . , Qm and defining the acceptable subset, C, to be the subset of indices i such
that Pi > pcor. The output variable generated by the nhcred() option has values of 1
for indices in C and 0 for indices not in C. Conversely, the output variable generated
by the reject() option has values of 0 for indices in C and 1 for indices not in C.

smileplot calls multproc and then plots the θ̂i (or another variable) on the x-axis
against the corresponding Pi on the y-axis on a reverse log scale, so that the higher a
data point is, the more statistically significant it is. The y-axis reference lines correspond
to punc and pcor, and the x-axis reference line corresponds to an assumed common value

of θ
(0)
i for all i, set by the nline() option. The smile plot is so named because, if the

standard errors of the various θ̂i are similar, the data points lie around a smile-shaped
line. The higher the corners of the smile, the more reason the investigators have to be
happy.

The method for calculating the corrected p-value threshold, pcor, is specified by the
method() option. The methods available are listed in Table 1, and may be classified in
three ways:

• By the form of the algorithm used to calculate the corrected p-value, pcor. The
three forms (or step types) are one-step, step-down, and step-up.

• By the interpretation of the uncorrected overall critical p-value, punc. This may
be an upper bound for the family-wise error rate (FWER) or for the false discovery
rate (FDR).

• By the correlation assumed between the Pi. A method may assume independence,
nonnegative correlation, or arbitrary correlation.

The remaining subsections of this section explain the three modes of classification
and present the formulas.
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Table 1: Multiple-test procedures specified by the method() option of multproc.

method() Step type FWER/FDR Correlation assumed

userspecified One-step User-specified User-specified
bonferroni One-step FWER Arbitrary
sidak One-step FWER Non-negative
holm Step-down FWER Arbitrary
holland Step-down FWER Non-negative
liu1 Step-down FDR Non-negative
liu2 Step-down FDR Arbitrary
hochberg Step-up FWER Independence
rom Step-up FWER Independence
simes Step-up FDR Non-negative
yekutieli Step-up FDR Arbitrary
krieger Step-up FDR Independence

3.1 Formulas for one-step, step-down, and step-up methods

Each method works by specifying a nondecreasing sequence of individual critical p-
values c1, . . . , cm, corresponding to the ordered p-values Q1, . . . , Qm. These ci can be
output by the critical() option. Once these ci have been specified, a method selects
an overall corrected critical p-value, pcor, from the ci in one of three ways:

• One-step: The ci are all equal to a common value, pcor, defined by a rule not
dependent on i.

• Step-down: pcor is set to the minimum ci, such that Qi > ci, if such a ci exists,
and to the maximum critical p-value cm otherwise.

• Step-up: pcor is set to the maximum ci, such that Qi ≤ ci, if such a ci exists, and
to the minimum critical p-value c1 otherwise.

Therefore, a one-step procedure subjects all the Qi to the same “significance hurdle”;
a step-down procedure subjects the Qi in ascending order to increasingly easy “hurdles”
until the first one fails; and a step-up procedure subjects the Qi in descending order to
increasingly difficult “hurdles” until the first one succeeds. Different methods of each
of the three step types differ by the methods for specifying the ci. The rules, together
with references justifying them, are as follows:
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One-step methods

1. userspecified.
ci = pcor

where pcor is specified by the user as the pcor() option.

2. bonferroni.
ci = pcor = punc/m

3. sidak (Šidák 1967).
ci = pcor = 1 − (1 − punc)

1/m

Step-down methods

1. holm (Holm 1979).
ci = punc/(m − i + 1)

2. holland (Holland and Copenhaver 1987).

ci = 1 − (1 − punc)
1/(m−i+1)

Note that the Holland–Copenhaver procedure used by multproc is the simplified
version of the procedure in the original reference, which also specifies a more
complicated version of the procedure, using logical dependencies between the null
hypotheses.

3. liu1 (Benjamini and Liu 1999a; Sarkar 2002).

ci = 1 −

{
1 − min

(
1 ,

m

m − i + 1
punc

)}1/(m−i+1)

4. liu2 (Benjamini and Liu 1999b).

ci = min

{
1 ,

m

(m − i + 1)2
punc

}

Note that the two Benjamini–Liu methods can, in principle, yield corrected p-
values up to and including 1, and therefore p-values greater than the uncorrected
p-value.

Step-up methods

1. hochberg (Hochberg 1988).

ci = punc/(m − i + 1)

Note that the ci are the same as those for the step-down Holm procedure.
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2. rom (Rom 1990).

The ci are defined by “backwards recursion”, starting with cm and defining the
other ci in terms of the ck for k > i:

ci =

{
punc, if i = m

(m − i + 1)−1
{∑m−i

j=1 cj
m −

∑m−i
j=2

(
m−i+1

j

)
cj
i+j−1

}
if i < m

3. simes (Simes 1986; Benjamini and Hochberg 1995; Benjamini and Yekutieli 2001,
first method).

ci =
i

m
punc

4. yekutieli (Benjamini and Yekutieli 2001, second method).

ci =
i

m
∑m

j=1 j−1
punc

5. krieger (Benjamini, Krieger, and Yekutieli 2001).

ci =
i

m̂0

punc

(punc + 1)

where m̂0 is the number of acceptable null hypotheses calculated by substituting
punc/(punc + 1) for punc in the simes method. The krieger method is therefore a
two-stage method, where the first stage involves using a modified simes method
to calculate m̂0 as an estimate of the number of true null hypotheses, and the
second stage involves using a further-modified simes method to calculate the ci.

3.2 FWER-controlling and FDR-controlling procedures

Traditionally, when scientists carry out multiple tests and wish to define an “upper
bound” to the set of null hypotheses that are true, they control the family-wise error
rate (FWER), defined as the probability that at least one true null hypothesis is rejected.
If the uncorrected p-value threshold is punc, the corrected p-value threshold pcor is chosen

so that, if a subset of null hypotheses θi = θ
(0)
i is true, the probability of at least one of

the corresponding observed Pi being equal to or less than pcor is no greater than punc.
In practice, procedures controlling the FWER usually err on the side of conservatism, so
that the true FWER is less than punc. In general, a FWER-controlling procedure defines
a conservative 100(1− punc)% confidence region for a set-valued parameter, namely the
set of null hypotheses that are true. This confidence region is a set of subsets of null
hypotheses. Usually (but not always), this confidence region is the power set of a set of
credible or acceptable null hypotheses. In this case, we are 100(1−punc)% confident that
the set of true null hypotheses is some subset (possibly empty) of the acceptable set. The
FWER-controlling procedures implemented in multproc all generate confidence regions
that are power sets of an acceptable set, which can be specified by the new variable
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generated by the nhcred() option. Whether or not the confidence region is a power set,
it usually has the hereditary property, which is to say that, if a subset of null hypotheses
is in the confidence region, any subset of that subset is also in the confidence region.
Multiple-test procedures generating confidence regions with the hereditary property
are closed testing procedures, as discussed in Marcus, Peritz, and Gabriel (1976) and
Wright (1992). A more recent textbook on traditional 20th century approaches to
multiple comparisons is Hsu (1996).

Multiple-test procedures controlling the FWER have the disadvantage that they are
often very conservative, leading to low power to detect real differences. Worse still, the
power is lost progressively and tends to 0 for detection of true population differences
of any given size, as the number of estimated parameters increases. If we use a FWER-
controlling procedure on two disjoint sets of measured parameters and then use the same
FWER-controlling procedure on the union of the two sets, the critical corrected p-value
for the union will nearly always be lower than the critical p-values for either of the two
component sets. This is because the corrected critical p-value is approximately inversely
proportional to the number of measured parameters, or exactly inversely proportional in
the case of the Bonferroni procedure. It follows that, with FWER-controlling procedures,
it is possible to combine several apparently productive data mining expeditions to form
a single apparently unproductive data mining expedition.

Benjamini and Hochberg (1995) proposed to remedy this difficulty by using less con-
servative multiple-test procedures, which control the false discovery rate (FDR) instead
of the FWER. FDR-controlling procedures have the advantage of detecting more differ-
ences as “significant”, at the price of being 100(1− punc)% confident that some of these
differences are real, instead of being 100(1−punc)% confident that all of these differences
are real. If we denote by R the number of null hypotheses rejected by a multiple-test
procedure, denote by V the number of these rejected null hypotheses which are in fact
true, and define

Q =

{
V/R, if R > 0,
0, if R = 0,

(1)

the FDR is defined as the expectation E(Q). If all the null hypotheses are true, the
FDR is the FWER. At the other extreme, if the number of measured parameters θi is
large and a large proportion of them are appreciably different from the null-hypothesis

values θ
(0)
i , the probability that R = 0 will be very small, and 1 − FDR will approximate

to the expectation of the positive predictive power. (The positive predictive power is
here defined as the proportion of rejected null hypotheses that are in fact false, equal to
1−Q if R �= 0.) If we use multproc with a FDR-controlling procedure such as the simes
method, the FDR will be no more than the value punc given by the puncor() option.
FDR-controlling procedures are (rightly or wrongly) a fashionable area of statistics at
present, and new methods are being developed all the time. A good place to follow recent
developments is Yoav Benjamini’s web site at http://www.math.tau.ac.il/˜ybenja/.
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The quantity Q has the attractive property that, if we combine two disjoint sets of
measured parameters into one combined set, the value of Q for the combined set will be
a mean of the values of Q for the component sets, weighted by the values of R for the
component sets, provided that the component R-values are both positive. Therefore, if
we use 1−Q as a measure of productivity of a data mining expedition (in terms of true
discoveries per false discovery), a union of multiple productive data mining expeditions
will be a single large productive data mining expedition.

The interpretation of the FDR is still controversial. However, one possible interpre-
tation, in terms of confidence levels, is as follows. If 0 < γ ≤ 1, we have the inequality

Pr(Q ≥ γ) ≤ E(Q)/γ = FDR/γ

and therefore
Pr(Q < γ) = 1 − Pr(Q ≥ γ) ≥ 1 − FDR/γ

Therefore, if FDR≤ punc, we can be 100(1 − punc/γ)% confident that Q will be strictly
less than γ. In other words, if we control the FDR at punc = βγ, we can be 100(1 −
β)% confident that over 100(1 − γ)% of any rejected null hypotheses will be false. In
particular, if we choose γ = 1, we can be 100(1 − punc)% confident that Q < 1, or
in other words, that, if any null hypotheses are rejected, then at least some of these
rejected null hypotheses will be false. For instance, if we set punc = 0.05, we can choose
γ = 1 and β = 0.05 and be 95% confident that at least some of any detected differences
will be real, or choose γ = 0.5 and β = 0.1 and be 90% confident that over half of
any detected differences will be real. Alternatively, if we set β = 0.05, γ = 0.05 and
punc = 0.05 × 0.05 = 0.0025, we can be 95% confident that over 95% of any detected
differences will be real.

The FDR, like the FWER, can be used for generating confidence regions for a set-
valued parameter, namely the set of null hypotheses that are true. Given a set of
rejected null hypotheses, a confidence region for the set of true null hypotheses can be
defined as follows. If we choose γ = 1, the confidence region is the set of all subsets
of null hypotheses that do not contain the rejected set as a nonempty subset. If we
choose any other γ, the confidence region is the set of all subsets of null hypotheses
that do not contain at least 100γ percent of the rejected set as a non-empty subset.
These confidence regions are not power sets but have the hereditary property, so FDR-
controlling procedures are closed testing procedures. In particular, the empty set is
always in the confidence region because it is impossible to prove a null hypothesis.

FDR-controlling procedures typically have more power to detect real differences than
FWER-controlling procedures with the same value of punc, especially if the number, m, of
measured parameters is large. The price of this increased power is that FDR-controlling
procedures typically have a larger proportion of false discoveries than FWER-controlling
procedures with the same value of punc. This is because, instead of aiming for the
perfectionist goal of no false discoveries, a FDR-controlling procedure aims to control the
number of false discoveries to an acceptable proportion of the number of true discoveries.
It is not usually clear which of the discoveries are false, or even how many of the
discoveries are false, because the FDR is the expectation of Q, not a deterministic value
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of Q. If the number of measured parameters is extremely large, if a fairly large number
of null hypotheses is expected to be rejected, and if the joint sampling distribution of the
p-values is not highly correlated, some kind of consistency law might apply to R and Q,
making Q very close to the FDR. In this case, we could therefore be 100% confident that
at least 100(1−punc)% of detected differences are real, rather than being 100(1−punc)%
confident that at least some of the differences are real. This ideal situation might be
expected to hold if the set of multiple parameters measured is the total statistical output
of a productive scientist over the scientist’s career, or even the total statistical output of
a community of scientists over a year. However, a typical scientific report might feature
only a few tens or hundreds of measured parameters, of which the number of detected
differences might be in single figures, or low double figures. In this case, the proportion
of these detected differences that are false will not necessarily be bounded above by the
FDR, even if we use an FDR-controlling procedure.

A further caution about the interpretation of the FDR arises from the fact that R may
be 0. Zaykin, Young, and Westfall (2000) raised this caution in response to Weller et al.
(1998), who advocated the use of FDR-controlling procedures in genomic analyses. By
(1), the value of Q is 0 by definition if no null hypotheses are rejected. The FDR can
therefore be expressed as

FDR = Pr(R = 0)E(Q|R = 0) + Pr(R > 0)E(Q|R > 0) = Pr(R > 0)E(Q|R > 0),

where 1−E(Q|R > 0) is the conditional mean of the positive predictive power, given that
some null hypotheses are rejected. It follows that the conditional mean proportion of
false discoveries, given that there are any discoveries at all, is greater than the advertised
FDR by a factor of 1/Pr(R > 0). This is not much of a problem if this factor is very close
to 1, as it will be if the number of measured parameters is large and a sizable proportion
of the differences measured have a high probability of being detected. However, if
the number of differences detected by a FDR-controlling procedure is only 1 or 2, the
conditional mean proportion of those that are spurious might be appreciably more than
the advertised FDR.

For all the above reasons, the interpretation of results from FDR-controlling proce-
dures remains controversial. However, new FDR-controlling procedures continue to be
developed and tested, with the result that this area of statistics is in a state of flux. For-
tunately, multproc incorporates a wide choice of procedures, and new ones can easily
be added as required. We might expect FDR-controlling procedures to be most useful in
large-scale data mining expeditions where the prior probability that R = 0 is very low.
It is worth mentioning that Sterne, Davey Smith, and Cox (2001) recently calculated
that the positive predictive power of published discoveries in the field of epidemiology
might plausibly be as low as 0.53, corresponding to an FDR as high as 0.47. (This
positive predictive power was derived using Bayes’ theorem, assuming a probability of
90% that a tested null hypothesis is true, a typical study power of 50%, and a confi-
dence level of 95%.) This suggests that, in epidemiological papers with large tables of
results, the rate of “false alarms” might possibly be lowered if it became customary to
use multiple-test procedures controlling the FDR at a lower level than 0.47.
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3.3 Correlation between multiple p-values

The choice of a multiple-test procedure is also affected by assumptions about the joint
sampling distribution of the individual p-values Pi, at least for those Pi that test true
null hypotheses. Typically, negatively correlated p-values require a more conservative
procedure than independent p-values, which in turn require a more conservative proce-
dure than positively correlated p-values. This is because the likelihood of at least one
of several p-values falling below a critical level is greater if they tend to fall below a
critical level in different samples than if they fall below a critical level independently,
and greater if they fall below a critical level independently than if they tend to fall be-
low a critical level in the same samples. Therefore, other things being equal, procedures
allowing arbitrary correlation are more conservative than procedures assuming indepen-
dence or nonnegative correlation. These points are discussed rigorously by Šidák (1967)
and Benjamini and Yekutieli (2001).

Methods assuming independence are appropriate if the p-values are calculated from
independent sets of data. Methods assuming nonnegative correlation are appropriate if
the p-values are from two-tailed tests using test statistics with a joint multivariate nor-
mal distribution or a joint multivariate t-distribution. Therefore, if it is appropriate to
calculate confidence intervals and p-values using Stata estimation commands (which use
standard errors calculated from an estimated dispersion matrix), then it is appropriate
to use methods which assume nonnegative correlation. Methods allowing arbitrary cor-
relation are appropriate if it is possible for different p-values to be negatively correlated
when the null hypotheses are true, so that different tests tend to produce spuriously
significant results in different samples. This might happen if the data points are pa-
tients with or without a disease, the sample size is small, and the multiple p-values are
from multiple Fisher’s exact tests for association between the disease and membership
of multiple mutually exclusive categories (such as genotypes). It might also happen if
the p-values are from one-tailed tests.

4 Examples

4.1 Oily fish consumption and fatty acids in red blood cells

The Avon Longitudinal Study of Parents and Children (ALSPAC) is a multi-purpose birth
cohort study based at Bristol University, England, involving over 14,000 pregnancies
in the Avon area of England in the early 1990s, the children from which have been
followed through childhood. For further information, refer to the study website at
http://www.alspac.bris.ac.uk. At 32 weeks gestation, mothers were asked to complete
a food frequency questionnaire (FFQ), asking about current consumption levels of a wide
range of foods. Blood samples were taken from the mothers one or more times during
pregnancy, and from the umbilical cord at birth, and the fatty acid composition of the
cell membranes of the red blood cells (RBCs) was analyzed by measuring amounts of 40
fatty acids as a percentage of total cell membrane fatty acid.



124 Multiple-test procedures and smile plots

One FFQ question asked about current consumption of oily fish (such as, pilchards,
sardines, mackerel, tuna, herring, trout, or salmon) on an ordinal categorical scale
(never/rarely, once every two weeks, 1–3 times per week or over 3 times per week). Cor-
relations between oily fish consumption and RBC fatty acid percentages were assessed
using Somers’ D (clustered by pregnancy), which is discussed in detail in Newson (2002)
and calculated using the somersd package (downloadable from SSC). Somers’ D is here
the difference between the probability that a randomly chosen blood sample from a
higher-consuming group has a higher level of the specified fatty acid than a randomly
chosen blood sample from the lower-consuming group and the probability that a ran-
domly chosen blood sample from the lower-consuming group has a higher level of the
specified fatty acid than a randomly chosen blood sample from the higher-consuming
group. Therefore, Somers’ D measures ordinal correlation on a scale from −1 to 1.
4,720 mothers had data on both fish consumption and maternal blood fatty acids, con-
tributing a total of 7,159 maternal blood samples, whereas 1,733 mothers had data on
both fish consumption and cord blood fatty acids, contributing a total of 1,753 cord
blood samples. The Somers’ D estimates and their p-values were output, using the
parmest package (mentioned earlier and downloadable from SSC), to a Stata dataset
with one observation per measured Somers’ D parameter. This dataset contained a
variable somd, containing Somers’ D estimates; a variable p, containing the correspond-
ing p-values; and a variable fa, containing an identifying label for the particular fatty
acid involved. These variables were then plotted using smileplot. For maternal blood,
the Stata output is below, and the results are shown as Figure 1.

. * Smile plot *

. smileplot,pvalue(p) estimate(somd) ptlabel(fa) method(holland) /*
> */ scatteropts(mlabpos(12) mlabsize(small)) refopts(lpattern(shortdash)) /*
> */ xtitle("Somers’ D for trend with oily fish group") /*
> */ ytitle("Uncorrected P-value") ylabel(,nogrid) /*
> */ xsize(4) ysize(2.392) saving(ofishgp_m_1.gph,replace)

Method: holland
Uncorrected overall critical P-value: .05
Number of P-values: 40
Corrected overall critical P-value: .00183023
Number of rejected P-values: 12
(file ofishgp_m_1.gph saved)

The options pvalue(), estimate(), and ptlabel() are set to the variables p, somd,
and fa, respectively. The method() option is set to holland, and puncor() defaults
to 0.05. The other options set are graph options. Using the Holland–Copenhaver-
corrected critical p-value of 0.00183023, we reject 12 of the 40 p-values. In Figure 1,
we see the p-values plotted against the corresponding Somers’ D estimates and labeled
with a fatty acid label. The letter “w” in the fatty acid label represents a Greek omega
(ω), so that, for instance, “205w3” and “226w3” represent the fatty acids 20:5 (ω-3) (or
eicosapentaenoic acid) and 22:6 (ω-3) (or decosahexaenoic acid), commonly derived from
fish oils, whereas “182w6” represents 18:2 (ω-6) (or α-linoleic acid), commonly derived
from vegetable oils. Typical Somers’ D values range from −0.1 to 0.1, so there is a lot of
overlap between the distributions of RBC membrane composition in frequent fish eaters
and in infrequent fish eaters. The x-axis reference line represents the value of 0 expected
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for Somers’ D under the null hypothesis of no association between fish consumption
and RBC fatty acid level. The lower and upper y-axis reference lines represent the
uncorrected and corrected critical p-values, respectively. The upper y-axis reference
line (or parapet line) represents an upper bound for the set of null hypotheses that
are true. We are (conservatively) 95% confident that the set of fatty acids unassociated
with oily fish consumption is some subset, possibly empty, of the set of fatty acids below
the parapet line. Therefore, it seems that, for whatever reason, a pregnant woman’s
fish consumption level is associated with the fatty acid composition of her own RBC

membranes, especially with their content of fish-derived fatty acids. The importance of
this association is discussed in Williams et al. (2001).
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Figure 1: Smile plot of Somers’ D for oily fish group and maternal RBC fatty acids.

Figure 2 shows the smile plot for associations between maternal fish consumption
and cord blood fatty acids. This time, typical Somers’ D values range from −0.05 to
0.05, and 2 out of the 40 fatty acids show a “nominally significant” negative association
with oily fish consumption (P ≤ 0.05). However, both are below the parapet line. This
suggests that these “significant” associations could easily be the 5 percent that we would
expect to be significant at the 5 percent level by chance, assuming all null hypotheses
to be true. There is therefore little evidence that a pregnant woman’s fish consumption
predicts the fatty acid composition of her baby’s RBC membranes.

Plotting the p-values on a reverse log scale implies that the higher a data point is,
the more significant it is, and draws attention to points above the parapet line by giving
them more than their share of space. It also gives the skeptical reader an idea of what
might or might not have been achieved by publication bias or by the notorious practice
of “salami science”, whereby scientists distribute a given quantity of results over as
many papers as possible. For instance, cynical readers might suspect that scientists
would submit the results for cord blood and maternal blood fatty acids as two separate
papers, rather than as one large paper, or even publish only the “significant” maternal
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blood results and discard the “nonsignificant” cord blood results. These practices, if
followed, will make the corrected critical p-value less conservative. However, splitting a
group of results into two equal subgroups will double the Bonferroni-corrected critical p-
value, whereas pooling two equal subgroups will halve the Bonferroni-corrected critical
p-value. Other multiple-test procedures that control family-wise error rate (FWER),
including the Holland–Copenhaver procedure used here, are slightly less conservative
than the Bonferroni correction, but similar scaling laws seem to apply to the individual
critical p-values ci as we halve or double the number of measured parameters. On a
reverse log scale, this implies that splitting (or pooling) a group of results will lower (or
raise) the parapet line by approximately 0.3 log10 units, where a log10 unit is the space
between two of the y-axis tick marks on Figures 1 and 2. Therefore, pooling the two
smile plots is only likely to lose one “significant” association (involving acid 18:3 (ω-3),
or α-linolenic acid).

On the other hand, the reverse log scale is not the only possible scale for plotting
p-values, and other scales may be better in some ways and worse in others. Possible
alternatives include power transformations and the lods transformation traditionally
used by geneticists (see Sham 1998). Readers interested in investigating alternative
transformations may find that a useful tool is Patrick Royston’s tgraph, which plots
data using specified monotonic transformations. See the original paper by Royston
(1996) for discussion, but use the later version of the code, which is downloadable from
SSC.
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Figure 2: Smile plot of Somers’ D for oily fish group and cord RBC fatty acids.
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4.2 Data mining using the by option
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Figure 3: 495 subset-specific unadjusted ORs for persistent wheezing.

In practice, scientists are often called upon to measure more than 40 associations at
a time. An example from the ALSPAC cohort involved assessing 33 FFQ-based candidate
risk factors for binomial and multinomial disease outcomes, using logistic regression.
The risk factors were either continuous factors, such as dietary selenium, in which case
the trend was measured by a per-doubling odds ratio, or ordinal categorical factors, such
as oily fish consumption, in which case the trend was measured by a per-category odds
ratio. The main analyses are to be published elsewhere. However, a subsidiary analysis
is presented here. The disease outcome was persistent wheezing, defined as wheezing
reported at ages 0–6 months and again at ages 30–42 months. Trends for the 33 risk
factors were measured in each of 15 subsets of children, defined by sex (male or female),
maternal atopic disease history, primiparity, maternal smoking, low birthweight and
prematurity (no or yes), and maternal overweight status (no, yes, or unknown). This
implies 33 × 15 = 495 subset-specific odds ratios. These odds ratios were calculated,
stored in a dataset with their confidence limits and p-values using the parmest package,
and then entered into smileplot, using the method(simes) and by(subset) options
and the default uncorrected p-value of 0.05. The resulting array of smile plots (for
unadjusted odds ratios) is presented as Figure 3 and is more informative if it is enlarged
and the data points are labeled by exposure.
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Figure 4: 495 subset-specific adjusted ORs for persistent wheezing.

The Simes procedure is an FDR-controlling procedure and rejected 33 null hypotheses
of the 495. We can therefore be 95% confident that some of these 33 odds ratios are
not due to chance, or 90% confident that most of them are not due to chance. None of
the null hypotheses were rejected by the Bonferroni or Holland–Copenhaver procedures.
The second smile plot from the left in the top row contains subset-specific odds ratios
less than 1 for boys, and a few of these odds ratios are above the parapet line of P =
0.003333. We, therefore, have reason to believe that some foods and nutrients consumed
during pregnancy by mothers are negatively associated with persistent wheezing in their
sons, even though the odds ratios are part of an enormous data mining expedition. (Note
that we are not claiming evidence of an “interaction”, however defined, and we are
definitely not claiming that the associations are restricted to subsets. We are claiming
only that some associations are present, at least in subsets.)

Unfortunately, as can be seen from the smile plots, the size of the odds ratios is
typically between 0.5 and 1.5. Such modest associations might not all be due to chance,
but they might be due to confounding. We recalculated the 495 odds ratios, adjusting
for a list of confounders, including maternal housing tenure and maternal education
as proxies for “socioeconomic status”. These adjusted odds ratios are smile-plotted
in Figure 4. The Simes parapet line is now higher at 0.000101 because the Simes
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procedure is a step-up procedure. The lowest p-values are typically higher, mostly
because adjusting for confounders has widened the confidence intervals. A minority
of p-values are between the uncorrected and corrected critical p-values, but drawing
attention to these might possibly be viewed as “data dredging”, rather than data mining.
The advantage of smile plots is that these points can be seen at a glance.

4.3 Psoriasis genetics

Genetics is a field in which multiple-test procedures are increasingly required because of
the unprecedented availability of so many genetic markers (Weller et al. 1998). Mallon
et al. (1998) carried out a small, unmatched case-control study, with 14 cases and 147
controls, to measure the association, in HIV-positive patients, between psoriasis and the
Cw-0602 gene. Using polymerase chain reaction (PCR), it was possible to distinguish
22 alleles (versions) of the Cw locus (gene). The authors estimated odds ratios between
each allele and psoriasis, using Fisher’s exact tests and the corresponding so-called
“exact” confidence intervals (see [ST] epitab or Mehta, Patel, and Gray 1985). The
authors predicted, a priori, that the Cw-0602 allele would be associated with psoriasis,
whereas the other 21 alleles would not. However, it might be unreasonable to expect a
skeptical public to believe this, so a Bonferroni correction was used.

We have re-analyzed the data using smileplot and multproc. The data were refor-
matted into a dataset with one observation for each of the 22 alleles, and with variables
label, or, and p exact, containing, respectively, the allele name, the odds ratio with
psoriasis, and the Fisher exact p-value. The small number of cases implied that the
log-odds ratios would be far from Normally distributed, and, indeed, some odds ratios
were zero. Although the alleles are not mutually exclusive (as each patient has one from
each parent), we would expect that, if all null hypotheses are true, the events of Type I
error for different alleles might be negatively associated. Therefore, it makes sense to
use the Holm procedure (to control the FWER) or, possibly, the Yekutieli procedure (to
control the FDR). The program output, in part, was as follows:

. smileplot,pv(p_exact) esti(or) ptl(tlabel) me(holm) nline(1) /*
> */ refopts(lpattern(shortdash)) scatteropts(mlabsize(medium) mlabpos(12)) /*
> */ xlab(0(1)12) ytitle("Fisher’s exact P-value") ylab(,nogrid) /*
> */ xsize(4) ysize(2.392) saving(smplot1.gph,replace)

Method: holm
Uncorrected overall critical P-value: .05
Number of P-values: 22
Corrected overall critical P-value: .00238095
Number of rejected P-values: 1
(file smplot1.gph saved)

. more

. multproc,pv(p_exact) me(bonferroni)

Method: bonferroni
Uncorrected overall critical P-value: .05
Number of P-values: 22
Corrected overall critical P-value: .00227273
Number of rejected P-values: 1
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Figure 5: Odds ratios for association of 22 Cw alleles with psoriasis.

The smile plot is given as Figure 5 and was made using the Holm procedure. Note
that the ptlabel() option has been set to a new variable, tlabel, so that only the
data points with the two lowest p-values are labeled. The nline() option ensures that
the null-hypothesis line is at 1 rather than 0 (the default if xlog is not specified). After
creating the smile plot, the program called multproc, which produces similar output to
smileplot without the plot, to do a post hoc analysis using the bonferroni method.
Note that the holm parapet line is lower than the bonferroni parapet line would be
because the Holm procedure is a step-down procedure, and the parapet line is therefore
the lowest critical p-value ci such that Qi > ci, in this case c2. The data point with the
smallest p-value (allele Cw-0602) is clearly above the parapet. The data point with the
second-smallest p-value (allele Cw-0501) is clearly below the parapet.
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