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Abstract. The non-central χ
2 distribution can be used to calculate power for

tests detecting departure from a null hypothesis. Required sample size can also
be calculated because it is proportional to the non-centrality parameter for the
distribution. We demonstrate how these calculations can be carried out in Stata
using the example of calculating power and sample size for case–control studies
of gene–gene and gene–environment interactions. Do-files are available for these
calculations.
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1 Introduction

There is increasing interest in investigating gene–environment and gene–gene interac-
tions in the study of complex diseases (Brennan 2002). In a typical population-based
case–control study of sufficient size to study main effects, there is often low power to de-
tect interactions. Alternative study designs have therefore been considered to address
this issue. A program that can quickly compare several designs, with the flexibility
of being able to carry out these calculations in Stata, is therefore a useful tool for
researchers. Here, we describe the application of a method based on the asymptotic
distribution of the likelihood-ratio statistic to examine power for association studies.

Under certain assumptions, the distribution of the likelihood-ratio statistic is ap-
proximately a central χ2 distribution under the null hypothesis and a non-central χ2

distribution under the alternative hypothesis (Wilks 1938). An approximation to the
non-centrality parameter can be calculated as the likelihood-ratio statistic from the anal-
ysis of an exemplary dataset (Self et al. 1992). By an exemplary dataset, we mean one
in which the proportions of cases and controls in the different exposure categories take
their expected values under the alternative hypothesis. Required sample size is inversely
proportional to the non-centrality parameter. This method is detailed in Brown et al.
(1999) and illustrations of its use in case–control studies are given by Longmate (2001).
Because Stata has functions that estimate central and non-central χ2 distributions, the
implementation of these calculations in Stata is straightforward.

The steps required to calculate sample size for a gene–environment interaction (de-
parture from multiplicative joint effects of two binary (present/absent) risk factors) are
detailed below. The method can be generalized for any alternative hypothesis as long as
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48 Sample size calculations in case–control studies

an exemplary dataset can be defined. Similarly, although an unmatched study is shown
here, the method will work for matched analyses using clogit (with frequency weights)
rather than blogit as the method of analysis, as long as the expected proportions of
all possible matched case–control pairs under the alternative hypothesis can still be
specified.

2 Implementation

Step 1

Calculate the expected distribution of risk factors among cases and controls under the
alternative hypothesis. In the applications that we consider here, this requires knowledge
of the following parameters: the population frequencies of the two risk factors and their
main and interaction effects, the association of the two factors in the population and
disease frequency.

Step 2

Create a large exemplary dataset in Stata. Using a large sample size initially decreases
the variation in the non-centrality parameter that is due to the asymptotic approxima-
tion. The following variables are needed in the dataset: g (0/1 for absence/presence of
susceptibility genotype), e (0/1 for absence/presence of environmental risk factor), gei
(0/1, which takes the value 1 only in the presence of both risk factors), aff (number of
cases with particular exposure combination), and tot (total number of people in study
with given exposure combinations). When considering two binary risk factors, there are
four possible exposure combinations and hence four observations in the dataset.

The exemplary dataset used in this example is listed here. Risk factor frequencies
were calculated under the following assumptions: disease is rare (0.1%), the relative
risks for main and interaction effects equal two, and the risk factors are independent
in the source populations with susceptibility genotype frequency of 10% and exposure
frequency of 20%. The variable aff is the number of cases with each genotype/exposure
combination, and the variable tot is the number of cases plus the number of controls
with each combination. In this dataset, there are equal numbers (108) of cases and
controls. Because integers with more than 7 digits of accuracy are being considered
in such a large exemplary dataset, the data storage type is set to double, although in
practice this only has a very small effect on the power and sample-size calculations.

. version 7.0

. use implementation, clear

. set type double
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. list

g e gei aff tot

1. 0 0 0 51428572 123449163
2. 0 1 0 25714286 43706564
3. 1 0 0 11428571 19425140
4. 1 1 1 11428571 13419133

Step 3

Calculate the likelihood-ratio test statistic for the interaction term. This is the non-
centrality parameter of the likelihood-ratio test statistic under the alternative hypothesis

. blogit aff tot g e gei, or

Logit estimates Number of obs = 200000000
LR chi2(3) = 1.277e+07
Prob > chi2 = 0.0000

Log likelihood = -1.322e+08 Pseudo R2 = 0.0461

_outcome Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

g 2.00143 .0009924 1399.29 0.000 1.999486 2.003376
e 2.001431 .0007155 1940.94 0.000 2.000029 2.002833

gei 2.007185 .0019359 722.39 0.000 2.003394 2.010983

. lrtest, saving(0)

. blogit aff tot g e, or

Logit estimates Number of obs = 200000000
LR chi2(2) = 1.222e+07
Prob > chi2 = 0.0000

Log likelihood = -1.325e+08 Pseudo R2 = 0.0441

_outcome Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

g 2.452137 .0010217 2152.69 0.000 2.450135 2.45414
e 2.221957 .0007319 2423.86 0.000 2.220523 2.223392

. lrtest
Blogit: likelihood-ratio test chi2(1) = 552415.16

Prob > chi2 = 0.0000

. return list

scalars:
r(p) = 0

r(chi2) = 552415.1566385925
r(df) = 1
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Step 4

To calculate study power (%) for a given sample size (500 cases and 500 controls) and
significance level (0.05), use Stata’s nchi2 function.

. display (1-nchi2(r(df), r(chi2)*500/10^8, invchi2(r(df), (1-0.05))))*100
38.29922

The nchi2 function gives the cumulative distribution function of a non-central chi-
squared statistic. Here, the number of degrees of freedom is r(df) and the non-centrality
parameter is r(chi2), scaled by the factor 500/108 to account for the smaller sample
size. The final expression invchi2(r(df), (1-0.05)) is the appropriate percentile of
the central chi-squared distribution to achieve a 5% significance level (i.e., 3.84 in this
case).

Step 5

Alternatively, to calculate the required number of cases (assumed equal to the number
of controls) for a given study power (80%), use Stata’s npnchi2 function.

. display round(10^8*(npnchi2(r(df), invchi2(r(df), (1-0.05)),
> (1-(80 /100)))/ r(chi2)), 1)
1421

npnchi2 provides the non-centrality parameter such that the probability of the non-
central chi-squared statistic being less than the appropriate percentile (3.84 in this case)
is 0.2 (i.e., 1 − power). Stata’s round function is used to give a whole number for the
required sample size. In this example, df = 1, since the models only differ by one
parameter (the interaction parameter gei).

3 Applications

Programs that apply this method to carry out power and sample-size calculations for
gene–environment interactions and gene–gene interactions and sample input files for
each program are available from http://cruk.leeds.ac.uk/katie. These programs report
power, required sample size, and the interaction odds ratio that would be obtained
from the analysis of exemplary datasets. Population-based case–control studies typ-
ically have low power to detect interactions; thus, many different designs have been
proposed to potentially improve power. Matching strategies including flexible match-
ing (Sturmer and Brenner 2002) and counter-matching (Andrieu et al. 2001), plus some
extensions, are considered using gei matching. By using the siblings of cases as cases
and/or controls in studies of gene–environment or gene–gene interactions, there is the
potential to improve power when risk factors are rare (Andrieu and Goldstein 2000;
Siegmund and Langholz 2001; Witte et al. 1999). This is because risk factor frequen-
cies are expected to be higher, and therefore more informative, among the relatives
of cases. Recent research, however, has found that a matched sibling design was in-
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efficient in testing for gene–gene interactions (Gauderman 2002), and calculations are
provided for a range of sampling schemes involving the siblings of cases or popula-
tion based subjects for gene–gene (ggipower) and gene–environment (geipower) in-
teractions. Case–parent designs for interactions (Weinberg and Umbach 2000) are also
considered in tdt ggipower and tdt geipower. Non-family designs have also been pro-
posed as strategies to improve power; second primary calculates power and required
sample size for designs that sample people who have had more than one primary cancer
(Begg and Berwick 1997), and co power considers the case-only design (Piegorsch et al.
1994).

Because so many different designs have been proposed, using these programs gives
a simple way of making a large number of comparisons for different parameter ranges
and designs.

3.1 Syntax

. ggipower using input_file

. geipower using input_file

. tdt_ggipower using input_file

. tdt_geipower using input_file

. co_power using input_file

. second_primary using input_file

Risk factor frequencies, disease frequency, and the magnitudes of main and interac-
tion effects affect the power of all designs to detect interactions, whereas other param-
eters are more design-specific. For example, the power of some of the matching designs
depend on the specificity and sensitivity of surrogates for the risk factors, and the power
of family-based designs depend on the association of genetic and environmental risk fac-
tors within families. Specific details of variables that are needed for calculations for each
design are given in the help files and in the sample files that can be downloaded with
the programs. The format of the required input files are described in the help file for
each program; details for tdt ggipower are given below.

4 Example

The power of different designs to detect interactions depends on the risk factor fre-
quencies among cases and controls in the exemplary dataset. Although the power and
sample-size calculations themselves are simple to carry out in Stata, these programs
also carry out the calculations that are required to produce the exemplary datasets
for the different designs. An example of the use of these programs is given for power
and sample-size calculations for a case–parent design for gene–gene interactions. The
required input dataset for tdt ggipower contains values for the risk factor frequencies
and effects, and the required significance level, sample size and power; details are given
in Table 1. Other designs may require values for different parameters to be specified.
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Table 1

Variable Name Details

pg1 The population frequency of susceptibility genotype1

pg2 The population frequency of susceptibility genotype2

inh1 The mode of inheritance for susceptibility genotype1

inh2 The mode of inheritance for susceptibility genotype2

rrg1 The relative risk of disease in people exposed to suscepti-
bility genotype1 but not to susceptibility genotype2, com-
pared with those people exposed to neither factor

rrg2 The relative risk of disease in people exposed to suscepti-
bility genotype2 but not to susceptibility genotype1, com-
pared with those people exposed to neither factor

rrint The interaction relative risk (such that the relative risk of
disease in people exposed to both risk factors compared
with no risk factors is rrg1 × rrg2 × rrint)

pd The population disease frequency

ssize The sample size for which power calculations are required

power The power for which sample-size calculations are required

alpha 1 The required significance level for the interaction test

Because a person inherits one copy of every gene from their mother and one from
their father, for each genotype then, a case or control can have 0, 1, or 2 copies of
a ‘disease’ allele. The “mode of inheritance” variables in table 1 determine whether
a person needs to have only one (dominant inheritance) or two (recessive inheritance)
copies of the susceptibility allele for the genotype to be high-risk. This program also
assumes that genotypes 1 and 2 are independent. This means that whether susceptibility
genotype 1 is present or absent in an individual from the source population does not
depend on the presence or absence of susceptibility genotype 2. In genetic terminology,
this means that the two genes must be “unlinked”.

Typical output from using the program is given below.

(Continued on next page)
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. tdt_ggipower using tdtggi_parameters

parameter file: tdtggi_parameters
observations: 1

-------------------------------------------------------------------------------
PARAMETERS
-------------------------------------------------------------------------------

Power to detect interaction (%), interaction odds ratios and required sample
sizes have been calculated from an exemplary dataset for the following
population risk factor frequencies and effects:

susceptibility genotype 1 frequency (pg1): .1
susceptibility genotype 2 frequency (pg2): .2
genetic risk factor 1 main effect (rrg1): 1
genetic risk factor 2 main effect (rrg2): 1
interaction relative risk (rrint): 3
disease prevalence (pd): .0001

-------------------------------------------------------------------------------
POWER
-------------------------------------------------------------------------------

Power to detect an interaction for a sample size of 500 cases
with a two-sided significance level (alpha=.05)

for a case-parent design with 500 cases
power (%) both genetic risk factors dominant inheritance: 89.69
power (%) both genetic risk factors recessive inheritance: 93.81
power (%) g1 dominant, g2 recessive: 91.9

-------------------------------------------------------------------------------
INTERACTION ODDS RATIOS
-------------------------------------------------------------------------------

The interaction odds ratio calculated from the exemplary dataset:

dominant inheritance: 3
recessive inheritance: 3
g1 dominant, g2 recessive inheritance: 3

-------------------------------------------------------------------------------
REQUIRED SAMPLE SIZE
-------------------------------------------------------------------------------

for a power of 80% and a two-sided significance level (alpha=.05) the
required number of cases (with two parental controls per case)

dominant inheritance 378
recessive inheritance 320
g1 dominant, g2 recessive inheritance: 348

-------------------------------------------------------------------------------
NOTES
-------------------------------------------------------------------------------

The power, required sample sizes, and calculated interaction odds ratio for the
case-parent design have been saved into file tdtggi parameters. Type d
for details of the output variables

New variables are created and results are written into the original dataset. If more
than one set of parameters are considered in the input, for example, to look at required
sample size over a range of risk factor frequencies, then results are saved in the original
dataset, rather than being output to the results window.
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It can be seen from this output that for a case–parent design, if both genotypes under
study had a dominant mode of inheritance, then 378 case–parent trios would be needed.
Required sample sizes under different modes of inheritance can be compared. The
interaction odds ratio section of the output shows that there is no bias in the estimate
of the interaction relative risk (shown in the parameter section of the output). This
section is more important for designs such as the unmatched family designs considered
in ggipower and geipower or the case-only design, where the estimated interaction
odds ratio also depends on the level of population association of the two risk factors
and may therefore lead to an increased false positive rate for this design (Albert et al.
2001). Power for a given sample size is also reported. The power, sample size, and
estimated interaction odds ratios output from each program or design are in similar
formats.

5 Discussion

The simplicity of power and sample size calculations carried out using Stata’s nchi2

and npnchi2 functions are extremely useful, because they allow the power of many
different designs over ranges of population parameters to be easily considered. Risk
factor frequencies and the magnitudes of the main and interaction effects all have effects
on the efficiencies and relative efficiencies of these designs, so it is also helpful to be able
to easily compare power and sample size over different ranges. These methods are
applied here to studies of interactions, which is an area in which debate about the most
efficient design is very relevant. However, they are generally applicable to calculations
for any likelihood-ratio test for an alternative hypothesis for which an exemplary dataset
(expected risk factor frequencies) can be defined. The methods are thus simplest to
apply to binary or categorical risk factors. To consider continuous risk factors the
exemplary dataset would require the distribution of the risk factor to be defined and a
random variable to be generated, and so in this situation, a simulation approach may
be more appropriate. In order to check the accuracy of the large sample approximation
method for power calculations, simulations were carried out using Stata, and the results
of the two methods are compared. The same risk factor frequencies among cases and
controls calculated for the exemplary dataset were used in the simulations. A wide
range of parameters for each of the designs was considered. In all situations considered,
the two methods reported similar power indicating the reliability of this large sample
approximation. These methods and programs present a way in which the effect of a large
number of case–control study designs and parameters on efficiency can be compared and
provide a useful tool at the planning stage of any study.
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