|

7/ “““\\\ A ECO" SEARCH

% // RESEARCH IN AGRICULTURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

The Stata Journal (2002)
2, Number 4, pp. 411-427

Speaking Stata: On getting functions to do the
work

Nicholas J. Cox
University of Durham, UK
n.j.cox@durham.ac.uk

Abstract. Functions in Stata take two main forms, built-in functions that are
part of the executable and egen functions written in Stata’s own language. These
are surveyed, giving a variety of tips and tricks, and noting the large number
of user-written egen functions available for download from the Internet. Two
substantial examples, the calculation of percentile ranks and plotting positions,
and the calculation of measures summarizing properties of the other members of
a group, provide detailed illustrations of egen in action.

Keywords: pr0007, functions, egen, strings, percentile ranks, plotting positions,
family data

1 Functions in Stata

The rationale for writing this column is not that the documentation for Stata is poor.
In fact, the documentation for Stata is excellent, and I say that out of much more than
politeness to Stata Corporation, our publisher. Enormous thought and effort has gone
into producing and maintaining very full and detailed manuals. But in one way that
is part of the problem faced by users, especially—but not only—mnew users. I have a
couple of shelves of successive Stata manuals, starting with the manual for version 2,
a single volume published in 1988. A decade or so ago, you could put the manual in
your bag, read it at your leisure, and get a very good feeling for the whole program
and its possibilities. Once that was acquired, you could build on it by learning about
new features release by release. But now, when we have several volumes running to
thousands of pages, it would require much more determination (and above all time) to
do the same.

Naturally, almost no one need read everything, and you may know well that you can
survive without survival, or that your survey can happily omit survey. Stata Corporation
is committed to the idea that the official software is a unified whole, rather than a base
together with detachable extra modules, but users are entitled to pick and choose. And
equally naturally, much thought has been given by Stata Corporation and others to
providing good solutions to this need to get to grips with Stata easily and effectively.
They include the User’s Guide as one synoptic overview, various texts and multimedia
resources, courses and other materials on the Internet, and indeed this column.

One aim of these columns is to bring together material whose documentation is
scattered over several sections of the manual, as with by wvarlist: (Cox 2002b) or the
divide between numeric and string variables (Cox 2002c¢). Clearly, every organizing

© 2002 Stata Corporation pr0007

412 Speaking Stata

scheme splits some material that on another scheme belongs together. Another aim is
to play up material that to my taste is understated in the manuals; thus, while foreach
and forvalues are written up rather tersely in the Programming Manual, they deserve
to be in the repertoire of all serious Stata users, whether they do or do not also write
Stata programs (Cox 2002a). That is also the case with the subject of this column, the
functions available for use with Stata.

The functions in Stata fall into two main groups. Here I set on one side those
functions implemented as Stata commands, as many commands could fairly be described
as implementing a function mapping arguments to results, and concentrate on what
Stata’s own documentation labels as functions.

First, Stata functions in the strict sense are those that are part of the executable, and
they resemble in form functions as implemented in most comparable software, whether
specialist statistical, mathematical, or scientific languages or general programming lan-
guages. Most frequently, calls to functions appear as part of expressions defining new
variables or as part of conditions that evaluate to true or false. Thus, we might define
a new variable logx as the natural logarithm of another variable log(x) or 1n(x), or
we might test whether or not mod(age,5) ==

Second, and more idiosyncratic to Stata, are functions written in Stata’s own lan-
guage and driven by the egen command.

Here we look at these two groups in turn. Built-in functions are prominent in Stata,
and my task is mostly to emphasize some general points and to give a few detailed
tips. In contrast, egen is less prominent, and it seems common that users are relatively
unaware of its existence and its possibilities, so my discussion is designed to counteract
that.

2 Built-in functions

2.1 The general picture

Underlying all of Stata’s built-in functions is the mathematical idea of a function, imple-
mented as a mapping from arguments', which are enclosed in parentheses and separated
by commas, to results.

Occasionally, a function needs no arguments, as with uniform(). The parentheses
flag that it is indeed a Stata function, even if of an unusual kind, and they help reduce
the number of reserved names. If just the name uniform were allowed to indicate the
function, then that could no longer be a legal variable name.

Functions are documented fairly tersely at [U] 16.3 Functions and even more tersely
online under the help for functions. New functions are occasionally added between

IThe quaint term argument makes more sense when understood as a metaphorical reference to the
‘topic’ that the function will ‘deal with’. That is, the meaning of the word has shifted from a dispute to
the proof or evidence used in the dispute and then to the topic or theme being discussed. Schwartzman
(1994) gives interesting accounts of this and many other mathematical words.

N. J. Cox 413

releases; the online help in an updated Stata will show whether the function you need
is in the software you have.

One characteristic of many built-in functions is that for speed and for accuracy they
must be part of the code for the Stata executable (which is written in C). It would not
be sensible for code for (say) tail probabilities of distributions or the gamma, digamma,
and trigamma functions to be written in Stata’s own programming language.

Two general but very practical points that are sometimes overlooked deserve em-
phasis.

Stata can be used as a calculator by feeding an expression to display; see [R] dis-
play. This can be very useful not only for getting one-off results but especially for a
series of calculations that you want to document within a log. You do not need to read
a dataset into memory to be able to do this.

Another noteworthy detail is that functions can feed directly on the results of other
functions. This is often the way to calculate functions not provided as primitives in a
single step without needing to calculate intermediate values or generate intermediate
variables yourself. Let us look at some brief examples.

Lognormal random numbers can be obtained from the expression
exp(mean + sd * invnorm(uniform()))

Here mean and sd refer to the mean and standard deviation of the normal or Gaussian
distribution yielded (approximately) by taking the natural logarithm of this expression.
You would in practice replace mean and sd by numeric values, or the names of numeric
variables, or even expressions evaluating to the numbers required.

The beta function I'(a)T'(b)/T'(a + b) can be obtained from the expression
exp(lngamma(a) + lngamma(b) - lngamma(a + b))

Finally, the hypergeometric probabilities (})("~%)/([) are obtained from

m—k

comb(r,k) * comb(n-r,m-k) / comb(n,m)

where comb (r, k) is used to calculate the individual binomial coefficients?, namely (,’;) =
"Cp. The syntax of comb(,) is evidently constrained to fit on a single line, but echoes
the use of Z(r, k) by Argand around 1815 (Cajori 1929, p. 68) and the more recent use
of C(r, k) by Hamming (1973).

You might prefer, as a matter of taste, to split an operation involving several steps
into a series of simple changes that are easier to think through, to read and to debug.
The usually small price to pay for this may be the load of storing some extra values or
variables, at least temporarily.

2Why does something so fundamental have such an ugly and obscure name? Conway and Guy
(1996) use the excellent term choice number, which deserves wider currency.

414 Speaking Stata

2.2 Some especially useful functions

In many problems, you consciously want a function and merely have to look up the
syntax to be used. In some problems, however, you may not be aware that functions exist
to do what you want to do, so it is worth skimming the list and making a mental note
of anything close to your likely needs. In addition to various mathematical, statistical,
and string functions, be aware of specialized date functions, time-series functions, and
matrix functions, which I shall not survey here. What follows are a few highlights, with
associated tips and tricks. The selection is necessarily arbitrary.

Key string functions

A large fraction of basic problems with strings can be solved with one or more of
index(,), to find substrings, substr(,,) to return substrings, length(), returning
the length of strings, and trim(), to remove any leading or trailing spaces. The first
two are the most useful.

index (s1,s2) returns the position in sy in which ss is first found or zero if s; does
not contain s,. Here both s; and s; can be literal strings enclosed in " " or names
of string variables: if the latter, Stata looks at the values in each observation. The
principle is made clear by simple examples:

index("Stata","a") is 3, as the first "a" occurs as the third character after "St".

index("Stata","at") is 3, as the position returned is that of the first character
of s5.

index("Stata","q") is 0, as "q" occurs nowhere within "Stata".

In practice, the most common application is looking for occurrences of a literal string
within a string variable. Thus index(location, "NY") is positive whenever the string
variable location contains the literal string "NY", so we can imagine selections such as

if index(location, "NY") > O
or the complementary subset
if index(locatiomn, "NY") == 0

Whenever the fact of inclusion or exclusion is vital, and the precise location is
immaterial, there are some handy shortcuts, which over a long period of Stata use can
save you many keystrokes. The first selection can be abbreviated to

if index(location, "NY")
and the second to
if ~index(location, "NY")

We are invoking the rule that nonzero and zero arguments are regarded as indicating
logically true and false respectively, as was explained in detail in an earlier column (Cox
2002b). Note also the use of the logical not operator, here denoted by ~, although !
may also be used.

N. J. Cox 415

This idea can be extended. If we wanted to include also instances of "NJ", then we
select

if index(location, "NY") | index(location, "NJ")

as the logical operator or, denoted by |, returns true if any of its arguments are true.
Examples like this make the short-cut even more worthwhile.

substr (s,ni,ny) returns the substring of s starting at the nyth column for a length
of ny. If ny < 0, the starting position is interpreted as distance from the end of the
string. If no is numeric missing (.), the remaining portion of the string is returned.
Here, and indeed elsewhere, it helps to think of numeric missing as arbitrarily large. As
before, s may be a literal string or the name of a string variable, but is most commonly
the latter. If you knew that the first four characters of a variable should be cut, then
you want substr(strvar,5,.). If you knew that the last four characters of a variable
should be cut, then you want substr (strvar,1,length(strvar)-4).

Using functions in combination like this is very common, the main little problem be-
ing to get parentheses in the right places and balanced properly. It helps to remember
that, as in mathematics, Stata works from the inside outwards and thus evaluates the in-
nermost parenthesized expression first. An even more common example of combination
is to find something with index(,) and then extract what you want with substr(,,).
How would you tell Stata to extract the first word of a string? One definition is that it
ends just before the first space. Hence it is given by

substr (strvar,1,index (strvar," ")-1)

The first time you see expressions like this they can seem daunting, so let us spell
this out step by step. We look for the first space within the values of strvar, which is
at index(strvar," "), and the position before that is 1 less. As the first word starts at
position 1, the position of the last character is the same as the length of the first word.

This will work fine if and only if the first word (in the usual sense) does start at the
first character and it is followed by at least one space. If there are leading spaces, we
must instruct Stata to ignore them by specifying trim():

substr (trim(strvar),1,index (trim(strvar) ," ")-1)

In addition, if there is no space after the first word, then index (strvar," ") will
evaluate to 0 and the length of the substring to be extracted will evaluate to —1. That
is not illegal, but Stata returns an empty string when asked for a zero or negative length
of string. There are various ways to tackle this, including a three-step calculation:

. generate strl newvar = ""

. replace newwvar = substr(trim(strvar),1,index(trim(strvar)," ")-1)
. replace newvar = strvar if missing(newvar)

In this example, lie various lessons. Complications in problems can usually be tackled
by using various other functions from the toolkit provided, although this may entail
breaking down a problem into component problems. The alternative of a function to
match every distinct problem is not even an ideal, as in practice it would mean a

416 Speaking Stata

bloated Stata with far too many functions to be easy to use. As it happens, specific
egen functions have been written for many of the key problems to do with extracting
words.

cond(): two definitions in one

cond(x,a,b) gives one of two possible results depending on x: a if x evaluates to true
(not 0) and b if = evaluates to false (0). The results can be either both numeric or both
string. The gain here is entirely in concision, replacing two statements by one. Thus,
let us generate a string variable to be used as a graph symbol:

. generate strl symbol = cond(residual >= 0, "+", "-")

This could replace two statements, say

. generate strl symbol = "+" if residual >= 0
. replace symbol = "-" if residual < O

(You may have thought of another way to do it, as substr("-+", 1 + (residual >=

0, 1)

cond(,,) can be nested, thus yielding a multiple definition. My prejudice is that
the resulting statements can be very difficult to read, to understand and above all to
debug. I recommend, however, recasting most two-way branches in this manner.

max() and min()

max(z1,%2,...,Ty,) returns the maximum of x1, xs, ..., z,. Missing values are ignored.
If all arguments are missing, missing is returned. min() is similar. If typing lots of
commas to separate variables is irksome, it is likely that you should check out egen’s
rmin() and rmax() functions.

missing()

missing(x) returns 0 if z is not numeric or string missing; otherwise, it returns 1.
An advantage of missing() is that it works over all kinds of variables, so that you
will not be tripped up by a type mismatch error. Be sure to exploit the shortcuts if
missing(x) and if -missing(x). It is never necessary to say if missing(x) ==
or if missing(x) == 0. An example appeared earlier without comment, to make it
seem intuitive.

mod(): modulus or remainder

mod(z,y) computes the modulus of x with respect to y, that is, the remainder on
dividing x by y. Your watch or clock shows time modulo 12 hours or modulo 24 hours
(modulo conventions about representing times in the hours before 1 a.m. or 1 p.m.).

N. J. Cox 417

Most commonly, z and y are positive integers or variables containing positive integers®.
For example, the condition if mod(age,5) == 0 selects ages divisible by 5, such as 5,
10, 15, 20 and so forth (Conroy 2002). if mod(_n,2) selects every observation with
an odd observation number, and if !mod(_n,2) selects every observation with an even
observation number. Why? There are only two possible remainders when dividing
integers by 2, 1 if the number is odd and 0 if the number is even. Explicit comparison
by using == or ~= can often be avoided by relying, once more, on the principle that
nonzero is true and zero is false.

3 egen: a library of functions in Stata’s own language

3.1 The general picture

egen (see [R] egen) is a wrapper command for egen functions, which are written in
Stata’s own language following some fairly simple rules. They offer a way of adding user-
written functions to the language. The main limits are: first, egen functions produce
a single new variable; second, the manipulations must be suitable for programming as
interpreted code; third, egen functions cannot be used anywhere in which you might
use a built-in function. They can only appear within egen commands. In addition,
egen does not support weights, but that can be fudged by specifying weights through
an option.

Explaining how to write an egen program would take us outside the remit of this
column, which is dedicated to showing how far you can get in Stata without program-
ming, but suffice it to say that it is normally easy. Almost always, an existing program
for an egen function will serve as a template, and you may need only to make changes
amounting to a few lines.

It is helpful to know the following rule: egen function function is implemented as
_gfunction.ado. Thus, if you were to write a new egen function logit (), it should be
defined within _glogit.ado.

The manual entry for Stata 7 details 39 egen functions, but others exist outside
official Stata. A search using findit on 14 October 2002 identified 70 more, published
in the Stata Technical Bulletin or on the Internet, setting aside those now adopted
directly or indirectly in Stata, and a few others now obsolete. Several more may be
available by the time you read this. Some of these were stimulated by user questions,
especially on Statalist. More information on any listed here is available through findit
(McDowell 2001).

(Continued on next page)

3Some authors define the modulus for all real arguments. Knuth (1997, p. 39) defines mod y as
x—ylz/y] if y # 0 and z if y = 0, where | z] yields the greatest integer < z, the floor of z. Stata allows
all positive y but returns missing for y < 0.

418 Speaking Stata

Name Function Author

clsort sort a single variable P. van Kerm

cutjl modification of cut () J. M. Lauritsen

egenmore 47 various N. J. Cox, C. F. Baum,
S. Stillman, N. Winter

egenodd 7 various N. J. Cox (1999, 2000)

egen_ics 4 various J. Weesie

gtype genotype from alleles D. Clayton

htype haplotype from alleles D. Clayton

ms moving sum S. Driver

prod product P. Ryan (2001)

rmedf row median S. Kolenikov

rpos observations with > k positive values F. Wolfe

rprod row product P. Ryan (1999)

soundex soundex M. Blasnik

stdo1 standardize to range [071] S. Kolenikov

wtmean weighted mean D. Kantor

Most egen functions are for data management or for storing summary statistics
within variables, especially group summaries. Numeric and string results are both
produced, and various date and other time series functions also feature fairly strongly.
In a sense, the existence of egen is a concession to human frailty, as most functions could
be emulated in a few lines by anyone highly fluent in Stata’s constructs, especially those
expert in by wvarlist:, foreach and forvalues. At the same time, it can be very useful
to have encapsulations of commonly used code, especially when a problem seemingly
simple can be complicated by the failure of simplistic assumptions. We have already
seen an example, the first ‘word’ problem: egen, ends() head covers all the cases
discussed here, allowing a command statement to produce the new variable.

To close, and give a better flavor of how egen can be used, we will give two more
substantial examples.

3.2 How can | calculate percentile ranks or plotting positions?
The problem

Some kinds of data are often reported as percentile ranks. A test score may be reported
as a percentile rank of 95% if 95% of scores are less than or equal to that score. A
newborn baby’s weight may be reported in the same way.

The idea of a plotting position is essentially similar, except that conventionally
plotting positions are reported as proportions rather than percents. Their name stems
from their use in probability plots. Given a set of ordered values, proportions are
assigned recording the fraction of values at or below each value. These proportions
may then be used directly or indirectly in plots. For example, a quantile-quantile plot
for testing normality of distribution compares observed quantiles with quantiles for

N. J. Cox 419

a sample of the same size from a normal distribution, determined by evaluating the
quantile (inverse distribution) function for the normal at the plotting positions.

Official Stata has no functions for these calculations, although user-defined functions
may be found. They may, however, be performed easily using egen functions. The lack
of built-in functions has one advantage; it obliges users to select the precise procedure
to be used, given that several slightly different rules exist.

Note that the calculation of the empirical cumulative distribution, at least as im-
plemented in Stata, is a related but subtly different problem. In official Stata, this
calculation may be performed using cumul (see [R] cumul). cumul is most closely
geared to preparing a plot of cumulative probabilities (y-axis) versus observed values
(z-axis). When tied values occur, cumul will not assign the same cumulative probability
to each tied value. This is immaterial and indeed even desirable for graphical purposes:
vertical line segments will be produced whatever the convention about ties, and when
visible plot symbols are used, it is often helpful to get an impression of the frequency of
ties. In contrast, the focus here is mainly on problems in which identical values should
all be assigned the same proportion or percent.

Ranks

To assign ranks, we might sort on a variable (say mpg from the auto dataset) and then
use the observation number:

. sort mpg

. generate rank = _n

As sorting in Stata puts lowest values first, the lowest value, or more precisely, the
value sorted to the top of the dataset, would be assigned rank 1. This is also the most
common statistical convention. However, this code is too simple to work perfectly except
in the very simplest situation with no tied values and no missing values. For example,
looking at data for mpg, we see that the first two values after sorting are tied at 12, yet
these are assigned ranks 1 and 2 by the generate command above. In statistics it is
common to assign the same rank to each of several tied values such that the sum of the
ranks is preserved. Ranks 1 and 2 give a sum of 3 to be preserved, so each would become
rank 1.5 instead. We could carry out this reassignment for all tied values ourselves, but
it is convenient that it is encapsulated in egen, rank():

. egen rank = rank(mpg)

This function also takes care of any missing values. The sort command would sort
any (numeric) missing values to the end of the dataset, so that generate rank = n
would then assign them the highest ranks. In most circumstances, however, a missing
value should be matched by a missing rank, and this is what is done by rank(). If you
are curious to see how the reassignment for ties is done, have a look inside the code
with your favorite text editor (Stata’s own doedit would be fine). Typing

. which _grank

420 Speaking Stata

will tell you where the code is on your system. (Recall that the prefix _g is generic to
all egen functions.)

egen, rank() allows separate calculations of ranks for each of several groups defined
by a classifying variable:

. bysort foreign: egen rank = rank(mpg)

(For more on bysort or, more generally, on by, see the online help or my earlier column
(Cox 2002b).)

Yet another nuance is being able to rank in reverse. Suppose that we preferred
to assign the highest (and best) value of mpg rank 1. To do this, we exploit the fact
that egen, rank() feeds on an expression (denoted ezp in the egen syntax diagram),
which can be more complicated than a single variable name, so we can work with (in
particular) negated values. Thus

. egen rank = rank(-mpg)

would reverse the ranks for us. Finally, before leaving ranks as such, note that egen,
rank() also has field, track, and unique options. The name track was suggested by
track events such as running in which not only does the lowest time win, but two values
that tie for first would also both be ranked first equal. (In sports, no one talks about
rank 1.5.) Similarly, the name field was suggested by field events such as jumping or
throwing in which the greatest distance or height wins, and there is a corresponding
rule for ties. unique arbitrarily assigns unique ranks to each of several tied values and
is of less concern here.

Plotting positions

Coming now to the heart of the matter, consider a magnificent sample of seven values,
here ordered for convenience:

00.57722 1 1.61803 2.71828 3.14159 10

Evidently, the median, the middle of the ordered values, is 1.61803 and should be
assigned a percentile rank of 50%, or a plotting position of 0.5, as the value halfway
through the distribution. The ranks corresponding to these values are clearly, with the
default Stata (and statistical) convention of lowest first, 1 234 5 6 7. Using ¢ and n to
denote rank and number of values, a fraction of i/n would produce plotting positions
for this sample of 1/7 ...7/7, but 4/7 for the middle value. Nor does such a rule treat
the tails symmetrically. Similarly, a rule of (i — 1)/n would produce plotting positions
0/7 ...6/7, but 3/7 for the middle value, and does not treat the tails symmetrically
either. From this, one obvious compromise is to split the difference at (i — 0.5)/n. This
rule goes back at least as far as 1914, when it was introduced into statistical hydrology
by Allen Hazen (1869-1930), an American civil engineer in private practice, otherwise
best known for his work on urban water supplies.

There is a small amount of literature on choice of plotting positions, focusing vari-
ously on their use for estimation of parameters or on testing of hypotheses given specific

N. J. Cox 421

distributions. Many of the positions commonly recommended are members of a family
(t—a)/(n—2a+1). Thus, a = 0.5 yields Hazen’s rule; a = 0.375 is a rule suggested by
Gunnar Blom (b. 1920), especially for normal probability plots; a = 0 is a rule advocated
by Waloddi Weibull (1887-1979) and Emil J. Gumbel (1891-1966). All of these rules
yield 0.5 for the single middle value when the sample size is odd. Note that Hazen’s
rule is wired into the official Stata command quantile, while the Weibull-Gumbel rule
is wired into the official Stata commands pnorm, gnorm, pchi, and gchi. For further
discussion, see Barnett (1975), Cunnane (1978), or Harter (1984).

Another rule, which, for example, is often used in spreadsheet software, is a = 1,
that is, (i —1)/(n—1). This also yields 0.5 for the single middle value when sample size
is odd and treats the tails symmetrically. However, the results of 0 and 1 for sample
extremes may not be universally suitable. In particular, for probability plots for the
normal and other distributions on the whole of the real line quantile functions (inverse
distribution functions) do not have finite values for arguments of 0 and 1; thus, sample
extremes are not plottable with this rule. This rule in practice is often used with the
track rule for ties.

Obtaining results in Stata

The choice of precise rule, from the possibilities mentioned or from any others that may
appeal, is up to the user. All that remains is to calculate the sample size n. In the
simplest circumstance, this is just the built-in _N. To take proper account of missing
values, and to be able to work with multiple groups, it is better to use egen, count()
to count the number(s) of nonmissing values.

Suppose that we want Hazen plotting positions for varname:
. egen n = count(varname)

. egen i = rank(warname)

. generate hazen = (i - 0.5) / n
Or, we want Weibull plotting positions, but separately by byvar:
. bysort byvar: egen n = count(varname)

. by byvar: egen i = rank(varname)

. generate weibull = i / (n + 1)

Or, we want spreadsheet-style percent rank:

. bysort byvar: egen n = count(varname)
. by byvar: egen i = rank(varname), track

. generate pcrank = (i - 1) / (n - 1)

All of these examples return results between 0 and 1; for percents, just multiply by
100.

In sum, despite a mass of small details to be thought about, these calculations boil
down to the application of two egen functions.

422 Speaking Stata

3.3 How do | create variables summarizing for each individual prop-
erties of the other members of a group?

Examples: data on families

Suppose that you have data on families. For each person in each family, it may be
useful to calculate variables that summarize properties of the other members of the
same family. How many other children are there? What is their average, maximum, or
minimum age? Is there an older child or a younger child? The more general problem
can be described as summarizing properties, for each individual, of the other members
of the same group.

Let’s look at some invented data. For what follows, it is essential to have a group
identifier, so in this example we have an identifier for each family. It is not always
essential to have an individual identifier, but what follows does depend upon each person
occurring just once in the dataset. In practice, however, such data do usually include
individual identifiers.

family person female age
36
16
14
45
42
14
12
10
39
36
11

9

7

3

©0ONOOOPd WN -

10.
11.
12.
13.
14.

WWWWWWNNNNNE P
O WOUNRFE, OO WNEFE, WN -
PRPPRPROROOROKRORRE

We will suppose that female is recorded as 1 for female and 0 for male. Such 0-1
coding is in a sense arbitrary, but makes life easier, especially for statistical modeling in
which the response is a binary variable and (more directly important here) for counting
values within each group.

Specific problem: for each child, how many other children are there?

Let’s define children as those for whom age is 17 and under. For each child, how many
other children are there? This is simply the number of children in the family, minus 1
if each person is a child. (In family 3, with 4 children, for each child there are 3 other
children.)

For any calculation like this, it is always worth looking to see whether egen provides
an answer, at least to part of the problem. In particular, egen, sum() with by varlist:
is natural for producing sums, including counts, separately for groups defined by one
or more variables. egen, count() used in this way is also often useful, but a little less
general in application, so we will concentrate for now on sum().

N. J. Cox 423

. bysort family: egen nchild = sum(age <= 17)
. replace nchild = nchild - (age <= 17)

age <= 17 will be true (evaluates to 1) whenever age is less than or equal to 17,
and false (evaluates to 0) otherwise. Adding up the 1s and 0Os within egen, sum() is
the same as counting the observations for which age <= 17. We then subtract age <=
17 from each observation. The effect of the bysort family: prefix is to count within
families. The effect of the replace correction is confined to individual observations.

The syntax for egen indicates that sum() works on an expression exp. As just illus-
trated, the argument need not be a single variable, but, very usefully, can be something
more complicated. Interested in not other children, but other female children? This is
hardly more difficult:

. bysort family: egen nsisters = sum(age <= 17 & female)

. replace nsisters = nsisters - (age <= 17 & female)

This solution also assigns values to adults, those with age greater than or equal to
18. This could be useful, or not useful, depending on your substantive problem. If you
wanted to exclude adults completely from the calculation, you could specify if age <=
17 on the egen command, and values for adults would then be missing.

Note that if we wanted to count not “other children” but “other adults”, we should
be a little more careful. The expression age >= 18 includes missing values for age, as
in Stata missing counts higher than any other numeric value. Often we will want to
exclude those with the condition age >= 18 & age < . unless we know that missing
ages can be treated as implying an adult.

Generic problem: totals and means
Other totals, and by extension means, can be calculated using the same general ap-
proach. Put very simply,

1. Calculate the sum for each group.

2. Subtract each member’s contribution from that sum (possibly, the contribution is
0).

3. If needed, calculate the mean as the sum divided by the number of values.

What is the average age of the other children in each family? Here is one solution:

. bysort family: egen sumage = sum(age) if age <= 17
. replace sumage = sumage - age

. generate meanage = sumage / nchild

424 Speaking Stata

This solution excludes the adults. Not only are they not included in the summation
of age, but they also receive missing values for the result. In the replace command,
we can be cavalier about excluding or not excluding the adults; either way, the missing
values will not be changed by either subtraction or division.

What if we want to include the adults? That is, we want a record, for each adult,
of the average age of the children. Here is a solution to that:

. bysort family: egen sumage = sum(age * (age <= 17))
. replace sumage = sumage - age * (age <= 17)

. generate meanage = sumage / nchild

In this, the multiplier age <= 17 has the effect that the summand is 0 whenever
age is 18 or more, so that the sum is the correct sum and is assigned to all observations
in each family.

Generic problem: other statistics

What we have done so far hinges delicately on two properties of sums: first, the sum
for “everybody else” is just the sum for “everybody” minus the sum (the value) for this
observation; and second, that the value of a sum is not affected by adding or subtracting
0. When we turn to other summary statistics, we can no longer rely on these properties.
We need a more general approach.

In broad terms, we need to do the work within a loop:

for each member in the family {
calculate a statistic from data on the family
assign the result to that member of that family

Specific problem: maximum age of the other children

Let’s suppose that we want to know, for each child, the maximum age of the other
children in the same family. Within the loop, we will find ourselves assigning chunks
of values; for that task, we cannot use generate repeatedly. We can use replace
repeatedly, so we need to generate a variable before we can do that:

. generate maxage = .

Next, we need an identifier running from 1 upwards to assign to each person in the
family. In our little dataset, there was already such an identifier, but if there was not,
one could easily be created using bysort:

. bysort family: generate pid = n
. summarize pid

Note that under by wvarlist: _n is interpreted within each group of observations,
not for the whole dataset. For this problem, it does not matter that pid is arbitrary;

N. J. Cox 425

we just need a systematic way of doing the calculations in turn for each member of the
family. The summarize shows us the maximum value of pid, which we will need shortly.
We could also pick up the value of the maximum as r(max), which is important for any
automation of the whole process.

Within the loop, we need a way of excluding each value of pid from the calculation.
Here is one way to do it using forvalues:

. quietly forvalues i = 1 / ‘r(max)’ {
generate include = 1 if pid != ‘i’ & age <= 17
bysort family: egen work = max(age * include)

[4

replace maxage = work if pid == ‘i’

. drop include work
-}
The forvalues construct loops over values of the local macro i, which is set in turn
to 1, then to 2, and so on, up to the maximum of pid as returned by summarize. The
macro is automatically incremented each time through the loop. In practice, most Stata
programmers use the abbreviation forval. Within the loop, the value of i is referred
to as ‘i’. For more details, see [P] forvalues or Cox (2002a). The generate statement
produces a variable that is 1 if the observation is to be included in the calculation, and
missing otherwise. The expression age * include, which is then fed to egen, max(),
is age * 1 or age when include is 1, and age * . or missing . when include is
missing. What egen, max() does is exclude missings from the calculation, and only if
all the values in each group are missing will the maximum be returned as missing. Stata
has a general rule that numeric missing is larger than any other numeric value, but as
mentioned in section 2.2.3, it assumes when calculating maxima that you really want
the largest nonmissing value. We then use the result of that calculation to replace the
maxage value for the current member of the family. Finally, it is easiest to drop the
variables include and work so that Stata can start fresh next time around the loop.

Why is this loop not the following?

. quietly forvalues i = 1 / ‘r(max)’ {
bysort family: egen work = max(age) if age <= 17 & pid != ‘i’
replace maxage = work if pid == ‘i’
. drop work
-}
The reason is that this will not work as desired. The result of the egen calculation
will be missing for observations excluded by the if condition. In fact, the result of the

loop is that all values of maxage will be missing.
For each child, there is an older one (strictly, one or more) if maxage is greater than
age,
. generate olderch = maxage > age if age <= 17

We could use a similar approach to get the minimum age of the other children, and
thus to determine whether there are younger children.

426 Speaking Stata

The same general scheme can be used for other egen functions that take an expres-
sion exp as an argument. See the help for egen.

4 Summary

Functions are provided to do work for you, to encapsulate in a single call the calculation
of a new value or a new variable from appropriate arguments. Stata’s approach to
supplying functions mixes standard and original styles, built-in functions and those
that can be run using egen. This combination affords users with a large and growing
toolkit. Knowing what is in that toolkit and how to make best use of it is a key part of
getting to use Stata more easily and more effectively.

5 What’s next?

Thus far in this series our focus has been resolutely microscopic, on the level of com-
mands or blocks of commands needed to achieve specific aims. In the next column we
will look at a macroscopic issue, the structure of your dataset and how to get it into a
shape you need.

6 Acknowledgments

Many thanks to those Stata users who by questions or programs have contributed to
the stock of egen functions, and especially to Kit Baum for his maintenance of the
Statistical Software Components archive.

7 References

Barnett, V. 1975. Probability plotting methods and order statistics. Applied Statistics
24: 95-108.

Cajori, F. 1929. A history of mathematical notations. Volume II: Notation mainly in
higher mathematics. La Salle, IL: Open Court.

Conroy, R. M. 2002. Choosing an appropriate real-life measure of effect size: the case
of a continuous predictor and a binary outcome. Stata Journal 2(3): 290—295.

Conway, J. H. and R. K. Guy. 1996. The book of numbers. New York: Copernicus.

Cox, N. J. 1999. dm70: Extensions to generate, extended. Stata Technical Bulletin 50:
9-17. In Stata Technical Bulletin Reprints, vol. 9, 34—-45. College Station, TX: Stata
Press.

—. 2000. dm70.1: Extensions to generate, extended: corrections. Stata Technical Bul-
letin 57: 2. In Stata Technical Bulletin Reprints, vol. 10, 9. College Station, TX:
Stata Press.

N. J. Cox 427

—. 2002a. Speaking Stata: How to face lists with fortitude. Stata Journal 2(2): 202-222.
—. 2002b. Speaking Stata: How to move step by: step. Stata Journal 2(1): 86-102.
—. 2002¢. Speaking Stata: On numbers and strings. Stata Journal 2(3): 314-329.

Cunnane, C. 1978. Unbiased plotting positions—a review. Journal of Hydrology 37:
205-222.

Hamming, R. W. 1973. Numerical methods for scientists and engineers. New York:
McGraw-Hill.

Harter, H. L. 1984. Another look at plotting positions. Communications in Statistics,
Theory and Methods 13: 1613-1633.

Knuth, D. E. 1997. The art of computer programming. Volume I: Fundamental algo-
rithms. Reading, MA: Addison-Wesley.

McDowell, A. 2001. From the help desk. Stata Journal 1(1): 76-85.

Ryan, P. 1999. dm71: Calculating the product of observations. Stata Technical Bulletin
51: 3—4. In Stata Technical Bulletin Reprints, vol. 9, 45-48. College Station, TX:
Stata Press.

—. 2001. dm87: Calculating the row product of observations. Stata Technical Bulletin
60: 3—4. In Stata Technical Bulletin Reprints, vol. 10, 39—41. College Station, TX:
Stata Press.

Schwartzman, S. 1994. The words of mathematics: an etymological dictionary of math-
ematical terms used in English. Washington, DC: Mathematical Association of Amer-
ica.

About the Author

Nicholas Cox is a statistically-minded geographer at the University of Durham. He contributes
talks, postings, FAQs, and programs to the Stata user community. He has also co-authored
eight commands in official Stata. He was an author of several inserts in the Stata Technical
Bulletin and is Executive Editor of the Stata Journal.

