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Programmable GLM: Two user-defined links
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Abstract. With the release of Stata 7, the glm command for fitting generalized
linear models underwent a substantial overhaul. Stata 7 glm contains an expanded
array of variance estimators, regression diagnostics, and other enhancements. The
overhaul took place to coincide with the release of Hardin and Hilbe (2001). With
the new glm came a modular design that enables users to program customized
link functions, variance functions, and weight functions to be used if Newey—West
covariance estimates are desired. Because cases requiring customized link functions
are the more prevalent in the literature, only those are considered here. We give
two examples where a nonstandard link function is required: the relative survival
model of Hakulinen and Tenkanen (1987) and a logistic model that accounts for
natural response as described in Collett (2003). The relative ease (over previous
versions of Stata) with which these alternate links can be programmed into glm is
demonstrated.
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1 Introduction

The theory of Generalized Linear Models (GLM) can be traced back to Nelder and
Wedderburn (1972), who noted that generalizing some of the assumptions of linear
regression resulted in a rich class of models. This class contained many existing models,
such as logistic regression, which were already being used by researchers.

The basic premise of GLM is best understood by the following chronology, summa-
rized here and exquisitely detailed in Hardin and Hilbe (2001). Many regression models,
such as standard linear, logistic, probit, and Poisson, can be expressed in canonical ex-
ponential form. By expressing these models in canonical exponential form, it is noted
that the relevant portion of the log likelihood differs over these models only by the
specification of a link function and a variance function. The link function is so named
because it expresses the conditional mean of the response as a function of the linear pre-
dictor, and thus “links” the response to the linear predictor, the standard ingredient in
a linear regression model. The variance function expresses the variance of the response
as a function of the mean.

Estimates of regression parameters may be obtained by maximizing the log likeli-
hood. Two algorithms by which this may be achieved are Newton—-Raphson and the
method of Fisher scoring. Fisher scoring differs from Newton—Raphson in that the ex-
pectation of the matrix of second derivatives (the expected Hessian) is utilized rather
than the observed Hessian. Regardless of the algorithm used, the calculations take a
general form obtained from the exponential form of the likelihood, the link and variance
functions, and the derivatives thereof. Using Fisher scoring as opposed to Newton—
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Raphson simplifies the required calculations in two ways. First, Fisher scoring requires
fewer analytical derivatives of the link and variance functions. Second, the method of
Fisher scoring amounts to a series of repeated weighted linear regressions, known as
iterated reweighted least squares (IRLS).

Furthermore, the distributional assumption of the response may be dropped alto-
gether, in which case, the GLM model consists of only a link and variance function
specification. In this case, the likelihood based on an exponential family is still utilized,
but is referred to as a quasi-likelihood. Maximum quasi-likelihood estimators possess
many of the same large sample properties as their distribution-based counterparts.

With Stata 7, the glm command for fitting generalized linear models underwent a
substantial overhaul. Among the additions to the command were additional variance
estimators based on the observed Hessian, the jackknife, the bootstrap, and additional
diagnostic measures such as Anscombe residuals and Cook’s distances. These enhance-
ments were designed to make the most of the “many models under one roof” philosophy
of glm. With these changes also came a more modular design, which allows the user to
program his own link functions, variance functions, and weight functions for use with
the Newey—West estimator of variance; see Hardin and Hilbe (2001) for a full treatment.

By far, the most useful of these programmer’s features is the ability to program
one’s own link functions. There exist several examples in the literature of models that
consist of a standard GLM variance function specification, such as the binomial or Pois-
son, coupled with a nonstandard link function. In this paper, we demonstrate two of
these models: the Hakulinen and Tenkanen (1987) relative survival model, and a logistic
model that accounts for natural response (Collett 2003).

Section 2 of this paper gives some details of the calculations involved in GLM, which
serves to motivate the ingredients one needs to program a link function. Section 3
demonstrates the link for the relative survival model, Section 4 the link for the logistic
model with natural response, and Section 5 some concluding remarks.

2 Calculations

Assume that the distribution of response, y, given a linear predictor, x3, is a member
of the canonical exponential family. For a random sample of n observations (y;,x;),
i=1,...,n, define n; = x;3. Also define

i =Ey) =g (m);  Var(y) = V(u)a(e)

for some g(), known as the link function, V (), known as the variance function, and some
scale parameter a(¢). The fact that the mean and variance of y; can be expressed in this
manner follows by properties of the canonical exponential family; see Hardin and Hilbe
(2001) for details.
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Additionally, the maximum likelihood estimate of 3 may be obtained as the solution
to the system of equations

oL _ zn: Yi — Hi (391(77))
B = ale)V(ui) on
where L is the log likelihood. For example, in the case of OLS regression, g() is the

identity function, V(1) = 1, and a(¢) is the error variance. In the case of canonical
Poisson regression, g(u) = In(u), V(i) = pu, and a(¢) = 1.

xt =0 (1)

(3

n="mni

Part of the appeal behind GLM is that the exponential family assumption may be
dropped altogether, in favor of merely specifying ¢g() and V(). In this case, L is not a
true likelihood, but a quasi-likelihood, and the solution to (1) would yield the maximum
quasi-likelihood estimate of 3. This is how glm works: you specify ¢() using the 1ink ()
option and you specify V() using the family () option, and there are many standard
links and families to choose from; see [R] glm. Whether you want to think of the
resulting B as maximum likelihood or maximum quasi-likelihood depends on whether
you accept the distributional assumption.

Given the form of (1), the calculations involved in its solution can be separated into
those involving g() and those involving V(), and Stata takes full advantage of this. For
example, suppose you want to fit a GLM with the Poisson variance function and log link.
You would then use

. glm depvar indep_vars, family(poisson) link(log) ...

and when you do so, you are actually specifying two ado-files. poisson in the above
points to an ado-file in which the calculations pertaining to V() are contained. log
points to an ado-file containing the calculations pertaining to g(). This not only allows
links and families to be mixed and matched with ease, but also allows the definition of
new links and families by the creation of new ado-files.

In general, the solution to (1) requires some sort of iterative method, such as the
method of Newton—Raphson or the method of Fisher scoring. The method of Newton—
Raphson (the default in glm) involves the matrix of second derivatives of L with respect
to B (the Hessian), and examination of (1) reveals that this would involve the additional
evaluation of 92g—1(n)/0n? and OV (u)/Op. The calculation of the former is contained
in the ado-file pertaining to g(), and the latter in the ado-file pertaining to V().

The method of Fisher scoring (obtained by specifying irls to glm) involves using
the expected value of the Hessian rather than the observed Hessian, and from (1) it can
be shown that this would only involve the already necessary evaluation of dg~*(n)/dn.
This calculation is contained in the ado-file pertaining to g().

In order to program a customized link function, one would thus need only the fol-
lowing information:




W. Guan & R. G. Gutierrez 381

1. The calculation of n = g(u).
2. The calculation of u = g~1(n).
3. The calculation of dg~1(n)/dn = du/on.

4. If estimation via Newton—Raphson is desired, the calculation of 92g~1(n)/0n* =
) om>.

Items 1 and 2 are necessary so that glm is able to communicate between those results
given in p and those given in 7. Some additional consideration is required concerning
the processing of information associated with the binomial variance function, since in
glm, Bernoulli and binomial count responses are treated jointly.

The implementation of the above is demonstrated by example in the following.

3 Example: Relative survival

3.1 The Hakulinen & Tenkanen model

Consider the relative survival model of Hakulinen and Tenkanen (1987), who considered
relative survival rates of those patients with a certain disease to those from the disease-
free population. Patient follow-up time is divided into g fixed subintervals [t;,;11), for
j=1,...,g9. The total hazard rate for the ¢th patient in the jth follow-up is

Aij(t) = exp{a;(t) + xi; 8} + A\j;(t) (2)

where AJ;(?) is the hazard rate for the disease-free population, x;; is a row-vector of
covariates, and v;;(t) = Ai;(t) — Aj;(t) is the hazard rate for the population with the
disease of interest. a;(t) is a constant unique to each follow-up; i.e. a “baseline hazard
rate”. This model can be seen as a Cox proportional hazards model with an additional
additive hazard component.

Given the hazard rates, the survival rates are then calculated as

exp {— /:Hl vij(t)dt}

J

rij

Dij
tjt1

pfj = exp 7/ /\fj(t)dt
t;

In{—Tn(ps;/pi;)} = j +*i;8 (3)
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and from (2), we get




382 Programmable GLM

where p;; is the survival rate for those in the study, pj; is the survival rate for the
disease-free population, and r;; = p;;/ pj; is the relative survival rate, or, equivalently,
the survival rate when death is due only to the disease of interest. ; is an intercept
term unique to each follow-up time.

The survival rate for the disease-free population, pj;, is taken to be fixed, as it is
usually available from life tables. One of the advantages of this model is that should pj;
be measured with bias, it may be reasonable to assume that the same (multiplicative)
bias applies to p;;, and thus r;; would be free of this bias.

Given fixed p*, (3) suggests (for the observable data) a binomial model with success
probability p;;, with a modified complimentary log-log link function

n=g(p) =In{—In(u/p*)} (4)

3.2 Programming the link function

In the calculations that follow, we replace p by p/m in the right-hand side of (4), where
m is the “binomial denominator”, the number of trials for which the number of successes
is the response. This is to ensure that our link program can handle both Bernoulli and
aggregate count responses. In cases where we have a Bernoulli or other non-binomial
response, m is simply set to one.

The required calculations are then given by

= 9_1(77) = mp* exp{—exp(n)}

g_':: = —mp* exp{—exp(n)}exp(—n) = —pexp(n)
g—n’; = —pexp(n) {exp(n) + 1}

Given these calculation, we can now define the new link program, relsurv, contained
in the file relsurv.ado, the contents of which are listed below:

(Continued on next page)
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program define relsurv
version 7
args todo eta mu return

if ‘todo’ == -1 { /* Title */
global SGLM_1lt "Hakulinen-Tenkanen"
if "$SGLM_m" == "1" {
global SGLM_1f "ln(-1n(u/$SGLM_p))"
}
else {
global SGLM_1f "1n(-1n(u/($SGLM_m*$SGLM_p)))"
}
exit
}
if ‘todo’ == 0 { /* eta = g(mu) */
gen double ‘eta’ = ln(-1n(‘mu’/($SGLM_m*$SGLM_p)))
exit
}
if ‘todo’ == 1 { /* mu = g~-1(eta) */
gen double ‘mu’ = $SGLM_m*$SGLM_p* (exp(-exp(‘eta’)))
exit
¥
if ‘todo’ == 2 { /* (d mu)/(d eta) */
gen double ‘return’ = -‘mu’*exp(‘eta’)
exit
}
if ‘todo’ == 3 { /* (d°2 mu) (d eta”2) =/
gen double ‘return’ = -‘mu’*exp(‘eta’)*(exp(‘eta’)+1)
exit
}
noi di as err "Unknown call to glm link function"
exit 198

end

Some notes:

1. Link programs contain four arguments: todo, eta, mu, and return, although it is
not critical that they be named as so. todo controls the action of the code, with
todo == -1 used as an initialization stage where titles for glm output are set. eta
and mu are self-explanatory, and the return argument is used for derivatives.

2. Aside from the four arguments, glm communicates with the link program via
global macros that begin with SGLM. SGLM_m holds the binomial denominator, or
1 if not used. SGLM_1t and SGLM_1f hold titles for display.

3. The global macro SGLM_p is used to contain an optional argument to the link
function. For our purposes, we use SGLM_p (coincidentally) to hold the name of
the variable containing p*, the survival rate for the disease-free population.

Because it is a global macro, however, SGLM_p could also be set to contain a
constant or matrix name, depending on what is needed for that particular link.
To use this link, one specifies the option link(relsurv arg) to glm, and SGLM_p
is set to contain arg, whatever that may be. relsurv is the name of the program.
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4. todo==3 dictates the calculation of the second derivative of the inverse link, re-
quired only if Newton—Raphson estimation is desired. If only IRLS is wanted, then
you can simply set ‘return’ to missing. In that case, you would then need to
specify the irls option to glm. Otherwise, the program will issue an error.

5. The derivatives may be expressed in terms of mu, eta, or both, whichever is most
convenient.

3.3 Melanoma data

The following data were obtained from Dickman (1998), and represent a subset of skin
melanoma cases diagnosed from 1975-1994 and followed up through 1995. The data
were originally obtained from the Finnish Cancer Registry (Dickman et al. 1999). Since
the data presented below are only a subset of the full study, it is noted in Dickman (1998)
that the following is to be used only for illustrative purposes:

. describe

Contains data from skin2.dta

obs: 80

vars: 8 28 Oct 2002 11:17

size: 1,680 (87.2) of memory free)

storage display value

variable name type format label variable label

fu byte %4.0g Follow-up period, 1-5

nd byte %4.0g Number died

1d float %9.0g Number in group

ps float %9.0g survival rate (non-diseased)

age byte  %9.0g age Age group

ns float %9.0g Number survived

female byte %8.0g sex 1 if female

dgnyear byte %9.0g dgnyear year of diagnosis

Sorted by:

. list in 1/10, noobs
fu nd 1d ps age ns female dgnyear
3 29 321 L97772 60-74 292 female 1975-1984
4 12 242 .98523 45-59 230 male 1975-1984
3 30 205 .90208 75+ 175 female 1985-94
5 13 177 .94929 60-74 164 male 1975-1984
3 16 323 .99537 45-59 307 female 1975-1984
4 5 354 .99887 0-44 349 female 1985-94
5 7 31 .86427 75+ 24 male 1975-1984
3 16 53 .8748 75+ 37 male 1975-1984
2 6 379 .99907 0-44 373 female 1975-1984
3 6 360 .99607 45-59 354 female 1985-94

We fit the relative survival model using the number survived (ns) as the response,
cohort size (1d) as the binomial denominator, and indicator variables for sex, age group,
year of diagnosis, and follow-up period as covariates. The name of the variable contain-
ing disease-free survival rates, ps, is passed as an argument to our link function.
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. xi: glm ns i.fu female i.age dgnyear, family(binomial 1d) link(relsurv ps)
(naturally coded; _Ifu_1 omitted)
(naturally coded; _Iage_1 omitted)

i.fu
i.age

_Ifu_1-5
_Tage_1-4
note: 1d has non-integer values
note: ns has non-integer values

Iteration O: log likelihood = -213.68868
Iteration 1: log likelihood = -205.31208
Iteration 2: log likelihood = -205.15948
Iteration 3: log likelihood = -205.15886
Iteration 4: log likelihood = -205.15886
Generalized linear models No. of obs 80
Optimization : ML: Newton-Raphson Residual df = 70
Scale param = 1
Deviance = 75.71093802 (1/df) Deviance = 1.081585
Pearson = T74.96041422 (1/df) Pearson = 1.070863
Variance function: V(u) = ux(1-u/1ld) [Binomial]
Link function : g(w) = 1n(-1n(u/(1d*ps))) [Hakulinen-Tenkanen]
Standard errors : 0IM
Log likelihood = -205.1588641 AIC = b5.378972
BIC = -231.0309264
ns Coef. Std. Err. z P>|z| [95% Conf. Intervall]
_Ifu_2 1.899964 .2984151 6.37 0.000 1.315081 2.484847
_Ifu_3 1.960777 .2990444 6.56  0.000 1.37466 2.546893
_Ifu_ 4 1.672874 .3071967 5.45 0.000 1.07078 2.274969
_Ifu b 1.523127 .3145164 4.84 0.000 .9066862 2.139568
female -.5711185 .0971435 -5.88 0.000 -.7615164  -.3807207
_Tage_2 .3248696 .1251922 2.59 0.009 .0794974 .5702419
_Iage_3 .6390242 .1282907 4.98 0.000 .3875791 .8904693
_Iage_4 1.161009 .1723661 6.74 0.000 .8231777 1.498841
dgnyear -.4640116 .0977171 -4.75 0.000 -.6555337  -.2724895
_cons -4.998121 .3036738 -16.46  0.000 -5.593311  -4.402932

and we note that the results match those of Dickman (1998).

385

Besides ease, an advantage of programming this model into glm rather than writing
our own ml program is that all the diagnostic tools contained in glm are now available
to us. For example, a common diagnostic is a plot of Pearson residuals versus the linear
predictor, easily obtained by typing

. predict xbeta, xb

. predict pearson, pearson

. graph pearson

xbeta

which produces Figure 1. In this case, the plot reveals no visible problems with the

model fit.

(Continued on next page)
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Figure 1: Pearson residuals versus linear predictor

4 Example: Natural response

4.1 A modified logit link

Collett (2003) describes a logistic regression model that adjusts for response due to
factors other than those of interest, known as natural response (or natural mortality
when appropriate). For a count response y;, assume that y; ~ Bin(n,;,u;) for i =
1,...,n. The observable response probability, u;, is taken to be

pi =m+ (1= m)p; (5)

where 7 is taken to be some fixed (or well-estimated) probability of response to factors
outside those of interest, and p is the probability of a response due to the factors of
interest. What one observes is either the natural response or, given no natural response,
a response due to the factors of interest. Equation (5) is known as Abbott’s formula.

If one assumes a logit model for the true response probability,

log< f )szﬂ
1—pur

3

where x; are the factors of interest, then combining this with (5) results in the following
model for the observable response probability:

log (ﬁ”_‘uf) = x,8 =, (6)

Of course, one could estimate 7 jointly with 3 via maximum likelihood, but in the
context of GLM, one must treat 7 as fixed since it does not pertain to the linear predictor.
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4.2 The link program

From (6), including the binomial denominator (m) and suppressing the subscripts, we
obtain

p = mfexp(n) + mH1 + exp(n)} "

Calculating first and second derivatives yields the following code for the logit link
function with natural response:

program define logit_nr
version 7
args todo eta mu return

if ‘todo’ == -1 { /* Title */
global SGLM_1t "Logit - natural response"
if II$SGLM_mII == lI1ll {
global SGLM_1f "1ln((u-$SGLM_p)/(1-u))"
¥
else {
global SGLM_1f "1ln((u-$SGLM_m*$SGLM_p)/($SGLM_m-u))"
¥
exit
}
if ‘todo’ == 0 { /* eta = g(mu) */
gen double ‘eta’ = 1n((‘mu’-$SGLM_m*$SGLM_p)/ ($SGLM_m-‘mu’))
exit
}
if ‘todo’ == 1 { /* mu = g~-1(eta) */
gen double ‘mu’ = $SGLM_m*(exp(‘eta’) + $SGLM_p) / /*
*/ (1 + exp(‘eta’))
exit
}
if ‘todo’ == 2 { /* (d mu)/(d eta) */
gen double ‘return’ = $SGLM_m¥exp(‘eta’)*(1-$SGLM_p) / /*
*/ ((1 + exp(‘eta’))"2)
exit
}
if ‘todo’ == 3 { /* (d°2 mu) (d eta~2) */
gen double ‘return’ = $SGLM_m*exp(‘eta’)*(1-$SGLM_p)* /*
*/ (1-exp(‘eta’)) / ((1 + exp(‘eta’))"3)
exit
}
noi di as err "Unknown call to glm link function"
exit 198

end

Note that this time the global macro SGLM_p holds the value of 7, which we have
been considering constant. However, given the way SGLM_p is used in the program, our
code would apply even if m were instead m; and varied over the data, in which case,
SGLM_p would hold the name of variable containing the values of ;.

4.3 Analysis of flour beetle data

As was done in Collett (2003), we apply the logit model with natural response to data
on flour beetle response to insecticide treatment.

. use flour
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. list
insecti~e
1. DDT
2. DDT
3. DDT
4. DDT
5. DDT
6. DDT
7. BHC
8. BHC
9. BHC
10. BHC
11. BHC
12. BHC
13. DDT & BHC
14. DDT & BHC
15. DDT & BHC
16. DDT & BHC
17. DDT & BHC
18. DDT & BHC

deposit y
2 3
2.64 5
3.48 19
4.59 19
6.06 24
8 35

2 2
2.64 14
3.48 20
4.59 27
6.06 41
8 40

2 28
2.64 37
3.48 46
4.59 48
6.06 48
8 50

n
50
49
47
50
49
50
50
49
50
50
50
50
50
50
50
50
50
50

Programmable GLM

Data were collected on n = 18 batches of flour beetles, each approximately 50 beetles
in size. Three insecticide treatments were applied (insecticide) to six levels of spray
deposit (deposit). The response y is the number killed, whether by the insecticide or
otherwise. A control group of 200 beetles were also examined, of which 20 died, yielding
an estimated natural mortality rate of 0.10.

A binomial model with the natural response link was then fit to the data, using the
insecticide type and the natural logarithm of deposit level as covariates.

. generate log_dep
. xi:
i.insecticide

Iteration 0: log
Iteration 1: log
Iteration 2: log
Iteration 3: log
Iteration 4: log

Generalized linear
Optimization

Deviance
Pearson =

= log(deposit)

_Iinsectici_1-3

likelihood = -47.552937
likelihood = -44.947778
likelihood = -44.930099
likelihood = -44.930092
likelihood = -44.930092
models

: ML: Newton-Raphson

26.38923716
24.29630348

No.

of obs =
Residual df
Scale param
(1/df) Deviance =
(1/df) Pearson =

glm y i.insecticide log_dep, family(binomial n) link(logit_nr 0.10)
(naturally coded; _Iinsectici_1 omitted)

18

14

1
1.884946
1.73545

Variance function: V(u) = ux(1-u/n) [Binomial]
Link function : g(u) = 1In((u-n*0.10)/(n-u)) [Logit - natural response]
Standard errors : 0IM
Log likelihood = -44.9300923 AIC = b5.436677
BIC = -14.07596745
y Coef.  Std. Err. z P>|z| [95% Conf. Intervall
_Iinsectic~2 .9098902 .247889 3.67 0.000 .4240367 1.395744
_Iinsectic~3 3.637506 .3221903 11.29 0.000 3.006024 4.268987
log_dep 3.113487 .2763729 11.27 0.000 2.571806 3.655168
_cons -5.634301 .5048525 -11.16 0.000 -6.623794 -4.644809
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In this case, ignoring the effect of natural mortality and simply fitting a standard
binomial/logit model yielded somewhat different, but not substantially different esti-
mates.

5 Concluding remarks

The purpose of this paper was to demonstrate the relative ease with which link functions
could be programmed into glm with Stata 7. The code required was shown to be
compact, general, and isolated to the creation of one new ado-file.

Although one may also program their own variance functions, the need to do so is
not well-demonstrated in the literature. The most popular example of a nonstandard
variance function is the squared-binomial variance function of Wedderburn (1974), as
done using Stata in Hardin and Hilbe (2001). One obstacle to the creation of other
variance functions is the limited class of such functions yielding an analytical form for
the quasi-deviance. Another is the absence of need for new variance functions, given
the flexibility of the already standard power family, where the variance is taken to be
some general power of the mean.
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