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Abstract. In this paper, we describe a new Stata command, stlh, which esti-
mates and tests for the significance of the time-varying regression coefficients in
Aalen’s linear hazards model; see Aalen (1989). We see two potential uses for this
command. One may use it as an alternative to a proportional hazards or other
nonlinear hazards regression model analysis to describe the effects of covariates on
survival time. A second application is to use the command to supplement a propor-
tional hazards regression model analysis to assist in detecting and then describing
the nature of time-varying effects of covariates through plots of the estimated cu-
mulative regression coefficients, with confidence bands, from Aalen’s model. We
illustrate the use of the command to perform this supplementary analysis with
data from a study of residential treatment programs of different durations that are
designed to prevent return to drug use.

Keywords: st0024, survival analysis, survival-time regression models, time-to-event
analysis

1 Introduction

The Cox proportional hazards model is the most frequently used regression model for the
analysis of censored survival-time data, particularly within health sciences disciplines.
Stata, in its suite of st-survival time programs, has excellent capabilities for fitting
the model, as well as options to obtain diagnostic statistics to assess model fit and
assumptions. In particular, the vital proportional hazards assumption can be tested
using stphtest and can be examined graphically using its covariate specific plot option.
The problem with the plot is that it is based on the scaled Schoenfeld residuals that are
time-point specific and are themselves quite noisy. Even with smoothing, departures
from proportionality may be quite hard to determine. It is also not clear how powerful
the statistical test in stphtest is to detect modest, but, from a subject matter point
of view, important departures from proportional hazards. In many applied settings,
it may be reasonable to suspect that some covariates may have effects on the hazard

c© 2002 Stata Corporation st0024



332 Using Aalen’s linear hazards model

function that are relatively constant effect initially and then fade or end. The converse
is also a distinct possibility. The standard procedures and tests have a difficult time
diagnosing these situations. We have found plots of the estimated cumulative regression
coefficients from a fit of the Aalen linear survival-time model to be a useful adjunct to
standard proportional hazards model analyses. The purpose of this paper is to make
available a Stata st-class command called stlh and to illustrate its use.

2 The Aalen linear hazards model

Aalen (1980) proposed a general linear survival-time model, an important feature of
which is that its regression coefficients are allowed to vary over time. He discusses
issues of estimation, testing, and assessment of model fit in Aalen (1989 and 1993).

2.1 The model

The hazard function at time t for a model containing p+1 covariates, denoted in vector
form, x′ = (1, x1, x2,K, xp), is

h(t,x,β(t)) = β0(t) + β1(t)x1 + β2(t)x2 + K + βp(t)xp (1)

The coefficients in this model provide the change in hazard at time t, from the
baseline hazard function, β0(t) , for a one-unit change in the respective covariate, holding
all other covariates constant. Note that the model allows the effect of the covariate to
change continuously over time. The cumulative hazard function obtained by integrating
the hazard function in (1) is

H(t,x,B(t)) =

∫ t

0

h(u,x,β, (u))du

=

p∑

k=0

xk

∫ t

0

βk(u)du (2)

=

p∑

k=0

xkBk(t)

where x0 = 1 and Bk(t) is called the cumulative regression coefficient for the kth
covariate. It follows from (2) that the baseline cumulative hazard function is B0(t).
The model is discussed in some detail in Hosmer and Lemeshow (1999), and the text
also includes a review of additional relevant literature. In this paper, the emphasis is
placed on using plots of the estimated cumulative regression coefficients to check for
possible time-varying covariate effects.
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2.2 Estimation

Assume that we have n independent observations of time, a right-censoring indicator
variable, assumed to be independent of time conditional on the covariates, and p fixed
covariates all denoted by the usual triplet for the ith subject as (ti, ci,xi), with ci = 0
for a censored observation and 1 for an event. Aalen’s 1989 estimator of the cumulative
regression coefficients is a least-squares-like estimator. Denote the data matrix for the
subjects at risk at time tj by an n by p + 1 matrix, Xj , where the ith row contains the
data for the ith subject, x′

i, if the ith subject is in the risk set at time tj ; otherwise,
the ith row is all 0s. Denote by yj a n by 1 vector, where the jth element is 1 if the
jth subject’s observed time, tj , is a survival time (i.e., cj = 1); otherwise, all the values
in the vector are 0. If we consider, in an informal way, the following as an estimator of
the vector of the regression coefficient at time tj ,

b̂(tj) = (X′
jXj)

−1X′
jyj (3)

then Aalen’s (1989) estimator of the vector of cumulative regression coefficients is

B̂(t) =
∑

tj≤t

b̂(tj) (4)

Note that the value of the estimator changes only at observed survival times and is con-
stant between observed survival times. Huffer and McKeague (1991) discuss weighted
versions of the estimator in (3). The weighted estimator is much more complicated
to implement, and it is not clear if it provides better diagnostic power to detect time-
varying covariate effects. Thus, it is not used in stlh. Also note that the increment
in the estimator is computed only when the matrix (X′

jXj) can be inverted; i.e., it is
nonsingular. In particular, when there are fewer than p + 1 subjects in the risk set,
the matrix is singular. Other data configurations can also yield a singular matrix. For
example, if the model contains a single dichotomous covariate and all subjects who re-
main at risk have the same value for the covariate, the matrix will be singular. The
stlh program checks for this, and estimation stops when (X′

jXj) turns singular.

If we use as an estimator of the variance of b̂(ti), the expression

V̂ar

[
b̂(tj)

]
= (X′

jXj)
−1(X′

jIjXj)(X
′
jXj)

−1 (5)

then Aalen’s (1989) estimator of the covariance matrix of the estimated cumulative
regression coefficients at time t may be expressed as
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V̂ar

[
B̂(t)

]
=

∑

tj≤t

V̂ar

[
b̂(tj)

]

=
∑

tj≤t

(X′
jXj)

−1(X′
jIjXj)(X

′
jXj)

−1 (6)

In equations (5) and (6), the matrix Ij is an n by n diagonal with yj on the main
diagonal. It follows from equation (3) and equation (5) that for the kth coefficient,

V̂ar

[
b̂k(tj)

]
= b̂2

k(tj) (7)

and

V̂ar

[
B̂k(t)

]
=

∑

tj≤t

b̂2

k(tj) (8)

In addition, it follows from (2) and (4) that the estimator of the cumulative hazard
function for the ith subject at time t is

Ĥ(t,xi, B̂(t)) =

p∑

k=0

xikB̂k(t) (9)

and an estimator of the covariate-adjusted survivorship function is

Ŝ(t,xi, B̂(t)) = exp

[
− Ĥ(t,xi, B̂(t))

]
(10)

Aalen (1989) notes that it is possible for an estimate of the cumulative hazard in (9)
to be negative and to yield a value for (10) that is greater than 1.0. This is most likely
to occur for small values of time. One way to avoid this problem is to use zero as the
lower bound for the estimator in (9).

The graphical presentation provided to examine for time-varying covariate effects in
stlh is a plot of B̂k(t) versus t, along with the upper and lower endpoints of a 100(1−α)
percent pointwise confidence interval,

B̂k(t) ± z1−α/2 × ŜE

[
B̂k(t)

]
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where z1−α/2 is the upper 100(1−α/2) percent point of the standard normal distribution,

and ŜE

[
B̂k(t)

]
is the estimator of the standard error of B̂k(t), obtained as the square

root of the variance estimator in (8).

2.3 Testing

Aalen (1989) presents a method for testing the hypotheses that the coefficients in the
model are equal to zero. While tests can be made for the overall significance of the model,
the stlh command implements tests for the significance of individual coefficients. The
individual statistics are formed from the components of the vector

Û =
∑

Kjb̂(tj) (11)

The summation in (11) is over all noncensored times when the matrix (X′
jXj) is

nonsingular, and Kj is a (p + 1) × (p + 1) diagonal matrix of weights. Aalen (1989)
suggests two choices for weights. One choice mimics the weights used by the Wilcoxon
tests and is the number in the risk set at tj , Kj = diag(mj). His other choice is based on
the observation that the estimator in (3) has the same form as the least squares estimator
from linear regression. He suggests using weights equal to the square root of the inverse
of a least-squares-like variance estimator, namely the inverse of the square root of the
diagonal elements of (X′

jXj)
−1. Lee and Weissfeld (1998) studied the performance of

the Aalen’s test with these two weights, as well as several others. Based on simulation
results, they recommend using weights based on the Kaplan–Meier estimator, ŜKM (t),

at the previous survival time, Kj = diag

[
ŜKM (tj−1)

]
, with the convention that K1 =

diag

[
ŜKM (t0) = 1

]
and weights equal to the product of the Kaplan–Meier weights and

the Aalen’s inverse standard error weights. Lee and Weissfeld (1998) found that these
two weight functions were the best at detecting late and early differences, respectively.
One obvious choice for weights (that does not seem to have been considered previously)
is to mimic the weights for the log-rank test and use Kj = diag(1). Based on experience
with the log-rank and Wilcoxon tests, we expect that the tests with weights equal to 1
should also be sensitive to later effects, while the test with weights equal to the size of
the risk set should be sensitive to early effects.

Since the stlh command computes the variance estimator in (6), we use the inverses
of the respective diagonal elements of the standard error estimator,

Kj = diag

{
ŜE

[
b̂(tj)

]−1
}

(12)

instead of the diagonal elements of (X′
jXj)

−1.
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The variance estimator of U in (11) is obtained from the variance estimator in (6)
and is

V̂ar(Û) =
∑

tj

Kj(X
′
jXj)

−1(X′
jIjXj)(X

′
jXj)

−1Kj

=
∑

tj

KjV̂ar

[
b̂(tj)

]
Kj (13)

Tests for significance of individual coefficients use the individual elements of the vector
U and are scaled by the estimator of their standard error obtained as the square root
of the appropriate element from the diagonal of the matrix in (13). Aalen remarks that
this ratio has approximately the standard normal distribution when the hypothesis of no
effect is true and the sample is sufficiently large. Individual standardized test statistics
and their significance levels based on the user-requested weights are presented in the
output from stlh.

In addition to the stlh command provided in this paper, we know of two other
sources for software to fit and obtain the plots from the Aalen model. Aalen and Fekjær
provide macros for use with S-PLUS at http://www.med.uio.no/imb/stat/addreg (for
the model as described here, as well as an extended model for multivariate survival
times, see Aalen et al. (2001)). Klein and Moeschberger (1997) provide macros for use
with SAS at http://www.biostat.mcw.edu/SoftMenu.html.

3 Syntax

The syntax of stlh is similar to other st-survival time regression commands:

stlh varlist
[
if exp

] [
in range

] [
, level(#) nograph nomore

saving(string
[
, replace

]
) testwt(numlist) nodots generate(string)

tcent(#) graph options
]

As with all st commands, one must use stset before using stlh. The command will
accommodate any combination of the following types of data: right censoring, left
truncation or delayed entry, and multiple events per subject.

3.1 Required arguments

varlist contains the model covariates; the minimum is 1.
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3.2 Options

level(#) sets # to be the confidence level used for pointwise confidence bands in the
plots. The default # is set by system global macro $S level (default 95, giving
95% confidence bands).

nograph suppresses graphical output.

nomore suppresses more , the pausing after displaying each graph.

saving(string
[
, replace

]
) saves the graphs (of cumulative regression coefficients

and their confidence bands), with filename(s) string<xvarname>.gph. One graph is
saved for each covariate in varlist, with , replace required to replace existing files
with the same names.

testwt(numlist) specifies the weights to be used in the tests for no covariate effect.
The values in numlist may be any or all of the integers 1 through 4, with weights
defined as follows:

1. all 1.0

2. size of the risk set

3. Kaplan–Meier estimator

4. Kaplan–Meier estimator divided by the standard error of the regression coefficients

nodots suppresses the output of dots displayed for entertainment, with one dot shown
per 100 observations processed.

generate(string) requests that variables containing the estimated cumulative regression
coefficients and their estimated standard error be added to the data. The names of
the new variables are stringB<#> and stringS<#>, where # is the order number of
the covariate varlist. For example, if abc is the chosen string, then abcB1 contains
the estimated cumulative regression coefficients for the first covariate in varlist, and
abcS1 contains the estimated standard errors. The final variable, abc cons, contains
results for the constant term ( cons).

tcent(#) specifies the upper limit on the time axis for the plots. The purpose is to
suppress the high variability in the plot expected for long survival times, where the
data are sparse and there is little information available to estimate the time-specific
coefficients and their variance.

graph options are any of the options allowed with graph, twoway, except for sort,
pen(), symbol(), connect(), t1title(), yline(), and saving(). To customize
graphs, one needs to save the relevant quantities (see the generate() option) and
then recreate the confidence bands as cumulative regression coefficient ±z∗ standard
error, where z = 1.96 for the default 95% confidence band.
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In cases where there are ties in the survival times, the results can depend on the
order of the tied survival. In order to have invariant results, in this case, stlh sorts the
data in a unique and reproducible fashion. This involves first sorting the names of the
covariates lexicographically using the method described by Royston (2001), and then
including the covariates in the specified order in a sort of the failure times.

4 An example

To illustrate the use of the Aalen linear survival-time model as implemented in stlh, we
consider a subset of the data and variables from the UIS Study described in Hosmer and
Lemeshow (1999, Section 1.3). Briefly, this study is a randomized trial of residential
treatment programs of two different lengths or durations for drug abuse. The time
variable records the number of days from randomization to treatment until self-reported
return to drug use, lost to follow-up, or end of the study. The right censoring variable
is equal to 1 for return to drug use and 0 otherwise.

4.1 Proportional hazards analysis

As an example, we fit the proportional hazards model containing age, the subject’s Beck
depression score at randomization, and an indicator variable for treatment (0 = shorter
duration, 1 = longer duration). The data for the 575 subjects used in this example
are in the Stata data file uisaalen.dta. There are a total of 628 subjects in the main
dataset and 12 variables. A text file containing all the data, as well as text files for
all the other datasets used in Hosmer and Lemeshow (1999), can be downloaded from
the John Wiley & Sons Inc. ftp site: ftp://ftp.wiley.com/public/sci tech med/survival,
or from the survival section of the dataset archive at the University of Massachusetts,
http://www-unix.oit.umass.edu/˜statdata.

Before fitting the models, we centered age at 32.4 years and Beck score at 17.4, their
respective means. Thus, the baseline cumulative hazard is for a subject of average age,
average Beck score, and randomized to the shorter intervention.

The results of fitting the proportional hazards model are shown below. Note that we
saved the Schoenfeld residuals in order to use stphtest. Following the fit of the model
are the results of stphtest performed on the log-time and time scale. In addition, we
present results from a fit including continuous time-varying interactions between each
covariate and time by utilizing the tvc() and texp() options of stcox.

. stset time, failure(censor)

. stcox age_c beck_c treat, nolog nohr sch(sch*) sca(sca*)

failure _d: censor
analysis time _t: time

id: id
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Cox regression -- Breslow method for ties

No. of subjects = 575 Number of obs = 575
No. of failures = 464
Time at risk = 138900

LR chi2(3) = 13.94
Log likelihood = -2657.017 Prob > chi2 = 0.0030

_t
_d Coef. Std. Err. z P>|z| [95% Conf. Interval]

age_c -.0130252 .007501 -1.74 0.082 -.0277268 .0016764
beck_c .00989 .0048615 2.03 0.042 .0003617 .0194184
treat -.2394376 .0930941 -2.57 0.010 -.4218986 -.0569765

. stphtest, detail log

Test of proportional hazards assumption

Time: Log(t)

rho chi2 df Prob>chi2

age_c 0.02248 0.22 1 0.6380
beck_c -0.06353 1.74 1 0.1870
treat 0.06430 1.90 1 0.1684

global test 3.90 3 0.2724

. stphtest,detail

Test of proportional hazards assumption

Time: Time

rho chi2 df Prob>chi2

age_c 0.03007 0.40 1 0.5291
beck_c -0.06057 1.58 1 0.2084
treat 0.11437 6.00 1 0.0143

global test 8.00 3 0.0459

The coefficients for Beck score and treatment are significant with p < 0.05, while age
is significant at the 10 percent level. The tests for proportional hazards using stphtest

on the log-time scale are not significant overall or for each of the three covariates. When
we test for proportional hazards on the time scale, we see that the test is significant
overall, p = 0.045, largely due to the significance of the test for treatment where p =
0.0143. The plots of the scaled Schoenfeld residuals and their smooth on the time scale
are shown in Figure 1, Figure 2, and Figure 3.

. stphtest, plot(age_c)

(Continued on next page)
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Test of PH Assumption
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Figure 1: Plot of the raw and smoothed scaled Schoenfeld residuals for centered age.

. stphtest, plot(beck_c)

Test of PH Assumption
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Figure 2: Plot of the raw and smoothed scaled Schoenfeld residuals for centered Beck
score.

. stphtest, plot(treat)

(Continued on next page)
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Test of PH Assumption
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Figure 3: Plot of the raw and smoothed scaled Schoenfeld residuals for treatment.

The smoothed line in the plot for age in Figure 1 has a slope approximately equal
to zero, suggesting that there may be no time-varying effect, and this is in agreement
with the test. The plot for Beck score in Figure 2 appears to have a slight negative
slope, suggesting the potential for time-varying effect. The smoothed line in the plot
for treatment in Figure 3 has a definite positive slope, suggesting that treatment has a
diminishing time-varying effect.

Winnett and Sasieni (2001) show that the scaling of the Schoenfeld residuals used
by Stata in the plots from stphtest may yield plots that do not demonstrate the correct
nonproportional effect when one is present. Their work shows that this is most likely to
occur when the range of a covariate changes over the risk sets. In this case, the covariance
matrix of the Schoenfeld residuals is not approximately constant and thus is not well
approximated by its average. Plots, not shown, of the age and Beck score versus time
show that the range is approximately constant over time; thus, the smooth in Figure 1
and Figure 2 should provide a good estimate of any nonproportional effects. Since the
treatment covariate is dichotomous, the range is always 1.0 when estimation is possible.
Winnett and Sasieni note that the computational burden of using the more sensitive
scaling suggested in their paper is not severe and thus could be easily incorporated into
a future version of stphtest.

To complete the analysis for nonproportional hazards, we display the fit of a model
that adds interactions between model covariates and analysis time. We note that the
p-values for the Wald tests for the interaction variables are similar to the p-values from
stphtest. The results of a similar analysis on the log time scale agree with the ones
presented for stphtest and are not shown here.
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. stcox age_c beck_c treat, nolog nohr tvc( age_c beck_c treat) texp(_t)

failure _d: censor
analysis time _t: time

id: id

Cox regression -- Breslow method for ties

No. of subjects = 575 Number of obs = 575
No. of failures = 464
Time at risk = 138900

LR chi2(6) = 21.79
Log likelihood = -2653.0912 Prob > chi2 = 0.0013

_t
_d Coef. Std. Err. z P>|z| [95% Conf. Interval]

rh
age_c -.0189407 .0125671 -1.51 0.132 -.0435718 .0056904

beck_c .0178941 .0081022 2.21 0.027 .002014 .0337741
treat -.5467554 .1576506 -3.47 0.000 -.855745 -.2377658

t
age_c .0000311 .0000603 0.52 0.606 -.0000871 .0001492

beck_c -.0000483 .0000402 -1.20 0.230 -.0001271 .0000306
treat .0018746 .0007857 2.39 0.017 .0003347 .0034145

note: second equation contains variables that continuously vary with respect to
time; variables are interacted with current values of _t.

Thus, at the conclusion of what one might call the standard analysis to examine
for proportional hazards, we have significant evidence of nonproportional hazards for
treatment, some graphical evidence for Beck score that is not supported by stphtest,
and no evidence of a nonproportional hazard in age.

The problem we face now is to try and figure out from the plots the nature of
the time dependency in the effect of treatment and possibly Beck score. The problem
is that the smoothed line in the plots gives few clues as to how to parameterize the
time-varying effect. As we demonstrate, plots of the estimated cumulative regression
coefficients from Aalen’s linear survival-time model can be quite helpful in identifying
the form of time-varying effects in the proportional hazards model.

4.2 Aalen linear hazards model analysis: estimation

Before looking at the plots for the example, we discuss their expected behavior. Suppose
that the time-varying coefficient for a covariate in Aalen’s model in equation (1) is
constant, b(t) = α. It follows that the cumulative coefficient at time t is B(t) = αt. In
this case, the plot of the cumulative regression coefficient versus time is a straight line
with slope α. Now suppose that the covariate has no further effect on the hazard after,
say, 200 days. The plot after 200 days will be constant and equal to 200α. If the effect,
α, is significant, then the confidence bands are expected not to include zero. Similar
arguments can be used to describe a late effect α with no early effect, as well as different
effects in different time intervals.
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After Aalen first introduced his model, there was a flurry of additional research on its
properties. Of particular relevance to this paper is the work by Henderson and Milner
(1991). They demonstrated that even under proportional hazards, a covariate exhibits
a slight curve, nonlinearity, in the Aalen plots. They show that the more significant
the effect in the proportional hazards model, the more curved the plot. While we must
keep this in mind when examining the Aalen plots, we do so with the knowledge that
tests and plots based on the proportional hazards model have already suggested that
some covariates may have nonproportional hazards. More importantly, any time-varying
effect must make contextual (in this case, clinical) sense.

The plots of the cumulative regression coefficients that result from using stlh to fit
the three-covariate model are shown below. For the age and Beck score, we present the
plots from stlh. The time-varying effect for treatment is a bit more complex. In order
to better focus the discussion, we present an annotated plot obtained by using graph

with generated variables. In these data, the maximum observed survival time when the
matrix (X′

jXj) was nonsingular was 569 days. However, we restrict the plots to the
interval 0 to 377 days, the 75th percentile of the survival time. It is our experience that
the plot is highly variable beyond this point due to few subjects still at risk.

The plot of the cumulative coefficient for age in Figure 4 decreases linearly and
flattens a bit after about 150 to 180 days. Note that the upper confidence band crosses
back and forth across the zero line, suggesting that age might not be significant in the
Aalen model. We discuss tests for covariate effects in the Aalen model after the plots.

. stlh age_c beck_c treat, xlabel(0,90,180,270,377) l1title("Hazard") /*
*/ testwt(1 2 3 4) b1title(" ") b2title("Time") gen(uis)

age_c

H
a
z
a
rd

 
Time

0 90 180 270 377

�.036875

.010355

Figure 4: Plot of the estimated cumulative regression coefficient for centered age and
for the pointwise 95 percent confidence bands.

The plot of the cumulative regression coefficient for Beck score in Figure 5 increases
in a curvilinear manner for the first 180 or so days and then has roughly zero slope.
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This plot suggests that Beck score may have an early effect, up to 180 days, and no late
effect. Note that the lower confidence band does not include the zero line for most of
the first 180 days and does so after 180 days. This is consistent with the pattern of an
early, but no late effect for Beck score, or in terms of the time-varying coefficient

bbeck(t) =

{
α if t ≤ 180

0 if t > 180
(14)

beck_c

H
a
z
a
rd

 
Time

0 90 180 270 377

�.00848

.023854

Figure 5: Plot of the estimated cumulative regression coefficient for centered Beck score
and the pointwise 95 percent confidence bands.

The pattern in the plot of the cumulative regression coefficient for treatment in
Figure 6 is much more complex. Recall that the shorter treatment was for 90 days, and
the longer for 180 days planned duration. For the first 75 days, the slope is effectively
zero, and the upper confidence band lies above the zero line. From days 75 to 90, the
slope is negative, but the upper confidence band still lies above the zero line. The
curve continues with the same negative slope until about 180 days, after which it is
again approximately zero. This pattern suggests that the time-varying coefficient in the
Aalen model is zero up to 90 days, indicating no early effect; is nonzero and constant
from 90 to 180 days, indicating a middle effect; and is zero after 180 days, indicating
no late effect. Specifically,

btreat(t) =





0 if t ≤ 90

α if 90 < t ≤ 180

0 if t > 180

(15)

These observations make sense from a clinical point of view, as they agree with the
two different durations of planned treatment. It is not surprising that while subjects
in both planned durations are under treatment, there would be no effect for the longer
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treatment. (The actual study is more complicated than this, but this discussion is
accurate enough for the purposes of this paper.) From 90 to 180 days, only subjects
in the longer treatment could still be in the residential program. Thus, we expect that
there may be an effect in this time interval. After 180 days, none of the subjects remain
on active treatment. We might expect some continuing benefit of the longer treatment,
but there is none. Refitting the Aalen model for follow-up times greater than 180 days
confirms this observation.

. rename uisB3 Btreat

. gen Btreat_l= Btreat-1.96* uisS3

. gen Btreat_u= Btreat+1.96* uisS3

. graph Btreat_l Btreat_u Btreat time if time <=377, c(lll) s(iii)/*
/ xline(60,75,90,180) xlabel(0,60,75,90,180,270,377)/*
/* yline(0) ylabel(-0.68,0,0.061) b1title(" ") b2title("Time")/*
*/ l1title("Hazard") t1title(" ")
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0 607590 180 270 377
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0
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Figure 6: Plot of the estimated cumulative regression coefficient for treatment and the
pointwise 95 percent confidence bands.

4.3 Proportional hazards analysis with time-varying covariates

The next step in the proportional hazards analysis is to create the time-varying co-
variates for Beck score and treatment as suggested by the Aalen model plots and the
hypothesized time-varying coefficients in equation (14) and equation (15). For Beck
score, we must create two new time-varying covariates:

beckearly(t) =

{
1 if t ≤ 180

0 if t > 180

and
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becklate(t) =

{
1 if t > 180

0 if t ≤ 180

For treatment, we must create three new time-varying covariates:

treatearly(t) =

{
1 if t ≤ 90

0 if t > 90

treatmid(t) =

{
1 if 90 ≤ t ≤ 180

0 if t < 90 t > 180

and

treatlate(t) =

{
1 if t > 180

0 if t ≤ 180

We create these covariates using the stsplit command to split the records at 90 and
180 days. The newly created variables, splt1 and splt2, are then used to create the
time-varying covariates. The Stata commands are as follows:

. stsplit splt1, at(90)
(414 observations (episodes) created)

. stsplit splt2, at(180)
(277 observations (episodes) created)

. replace splt1 = 1 if splt1 > 0
(691 real changes made)

. replace splt2 = 1 if splt2 > 0
(277 real changes made)

. gen bck_early=beck_c*(1-splt2)

. gen bck_late=beck_c*splt2

. gen trt_early=treat*(1-splt1)

. gen trt_mid=treat*splt1*(1-splt2)

. gen trt_late=treat*splt2

The next step is to fit the model after replacing beck c and then treat by their
time-varying versions. We save the Schoenfeld residuals in order to use stphtest to
test for proportional hazards.

(Continued on next page)
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. stcox age_c bck_early bck_late trt_early trt_mid trt_late, nohr nolog /*
*/ noshow sch(sch*)sca(sca*)

Cox regression -- Breslow method for ties

No. of subjects = 575 Number of obs = 1266
No. of failures = 464
Time at risk = 138900

LR chi2(6) = 21.59
Log likelihood = -2653.1897 Prob > chi2 = 0.0014

_t
_d Coef. Std. Err. z P>|z| [95% Conf. Interval]

age_c -.0136093 .0075037 -1.81 0.070 -.0283162 .0010976
bck_early .014278 .0060733 2.35 0.019 .0023745 .0261814
bck_late .0027401 .0081245 0.34 0.736 -.0131836 .0186637
trt_early -.2725956 .1588572 -1.72 0.086 -.58395 .0387588

trt_mid -.5427174 .1730745 -3.14 0.002 -.881937 -.2034977
trt_late .0368758 .157425 0.23 0.815 -.2716715 .3454232

. stphtest, detail

Test of proportional hazards assumption

Time: Time

rho chi2 df Prob>chi2

age_c 0.02533 0.28 1 0.5955
bck_early -0.02399 0.25 1 0.6201
bck_late 0.00931 0.04 1 0.8455
trt_early -0.00310 0.00 1 0.9467
trt_mid 0.02973 0.40 1 0.5266
trt_late 0.05033 1.18 1 0.2768

global test 2.16 6 0.9040

The results of the fit support the observation of an early, but no late effect for Beck
score, as the p-values are 0.019 for bck early and 0.736 for bck late. The results do
not completely support our observations on the time-varying effect of treatment. The
p-values for the three coefficients are 0.086, 0.002, and 0.815. The interpretation is that
there is an indication of some possible early effect, at the 10 percent level, and a highly
significant treatment effect between 90 and 180 days. There is no significant late effect.
If we define the early and mid time-varying covariates for treatment using 75 days as
the cut-point, the three p-values are (output not presented) 0.293, <0.001, and 0.815,
respectively. Both analyses, 75 and 90 day cut-points, support a significant treatment
effect in the time interval when subjects in the longer duration treatment group are in
the residential treatment facility, and the ones on the shorter duration treatment are
not.

The results from stphtest support proportional hazards of all model covariates on
both the time and the log-time scale (output not presented).

The next step in the proportional hazards model analysis would be to use the results
from the fitted model to estimate time-interval-specific hazard ratios for Beck score and
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treatment and an overall hazard ratio for age. We do not show these results, as they
are standard steps that we assume the reader is quite comfortable in performing.

In summary, the plots of the estimated cumulative regression coefficients with con-
fidence bands from the Aalen linear survival-time model have proven to be a useful
adjunct to the standard analysis for proportional hazards. We emphasize “adjunct”, as
we know from results of Henderson and Milner (1991) that nonlinearity in the Aalen
model plots can occur for covariates that have proportional hazards. Thus, it is vital
that any derived time-varying covariates have a sound grounding in the science of the
problem being studied.

4.4 Aalen linear hazards model analysis: testing

The last point we touch on in this note is tests for no covariate effect in the Aalen
model, Ho : bk(t) = 0 for k = 0, 1, 2,K, p. As we noted, the stlh command supports
four weight functions: (1) weights equal to 1, (2) weights equal to the size of the risk
set, (3) weights equal to the Kaplan–Meier estimator at the previous survival time, and
(4) weights equal to the product of the third weight and the inverse of the standard
deviation of the time-specific Aalen model coefficient. The results from the test portion
of the stlh command and each of the four weight functions follow.

. stlh age_c beck_c treat, test(1 2 3 4) nograph

Graphs and tests for Aalen’s Additive Model
-------------------------------------------
Model: age_c beck_c treat
Obs: 1266

Test 1: Uses Weights Equal to
1.0

Variable z P
-----------------------------
age_c -1.323 0.186
beck_c 1.385 0.166
treat 0.551 0.582
_cons 12.515 0.000

Test 2: Uses Weights Equal to
the Size of the Risk Set

Variable z P
-----------------------------
age_c -2.288 0.022
beck_c 2.515 0.012
treat -2.902 0.004
_cons 14.959 0.000

Test 3: Uses Weights Equal to
Kaplan-Meier Estimator at Time t-

Variable z P
-----------------------------
age_c -1.932 0.053
beck_c 2.167 0.030
treat -0.673 0.501
_cons 15.301 0.000
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Test 4: Uses Weights Equal to
(Kaplan-Meier Estimator at Time t-)/(Std. Dev of the Time-varying Coefficient)

Variable z P
-----------------------------
age_c -2.001 0.045
beck_c 1.201 0.230
treat -1.696 0.090
_cons 12.242 0.000

When we test using weights equal to 1, none of the tests for covariate effect are
significant. The test appears to be picking up the fact that there is either no effect or
no additional effect after 180 days.

When we test using weights equal to the size of the risk set, all of the tests for
covariate effect are significant. Here the tests seem to pick up the fact that all covariates
have some effect in the interval from 0 to 180 days.

The test results obtained when using the Kaplan–Meier weights or weights equal
to the product of the Kaplan–Meier weights and the inverse of the estimated standard
deviation of b̂(t) yield results that are contrary to the observations of Lee and Weissfeld
(1998). The test using Kaplan–Meier weights detects the early difference in Beck score,
but not the middle effect in treatment. The reverse is true when using weights equal
to the product of the Kaplan–Meier weights and the inverse of the estimated standard
deviation of b̂(t). We are not sure why this is the case. It certainly warrants further
simulation studies, as Lee and Weissfeld (1998) only considered models containing a
single dichotomous covariate.

5 Summary

In this paper, we have shown how a new Stata command, stlh, can be used as an
adjunct to the traditional proportional hazards analysis to help identify the nature
of time-varying effects of covariates. The example shows that this analysis can be
particularly useful when covariates have constant but different effects in different time
intervals. Since the basic plot of the estimated cumulative regression coefficients can
display curvature when covariate effects are proportional, considerable care must be
taken when interpreting their shape. Any identified time-varying effect must have a
sound contextual basis before being added to the proportional hazards model.
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