
Give to AgEcon Search

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

Help ensure our sustainability. 
 

AgEcon Search 
h-p://ageconsearch.umn.edu 

aesearch@umn.edu 

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including pos;ng to another Internet site, is permi=ed without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

No endorsement of AgEcon Search or its fundraising ac;vi;es by the author(s) of the following work or their 
employer(s) is intended or implied. 

http://ageconsearch.umn.edu
mailto:aesearch@umn.edu
https://makingagift.umn.edu/give/yourgift.html?&cart=2313


The Stata Journal (2002)
2, Number 3, pp. 253–266

The robust variance estimator for two-stage
models

James W. Hardin
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Abstract. This article discusses estimates of variance for two-stage models. We
present the sandwich estimate of variance as an alternative to the Murphy–Topel
estimate. The sandwich estimator has a simple formula that is similar to the
formula for the Murphy–Topel estimator, and the two estimators are asymptoti-
cally equal when the assumed model distributions are true. The advantages of the
sandwich estimate of variance are that it may be calculated for the complete pa-
rameter vector, and that it requires estimating equations instead of fully specified
log likelihoods.
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1 Introduction

Numerous models have been presented in the literature in which one model is embedded
in another. Such models are broadly known as two-step estimation problems and are
characterized by

Model 1 : E {y1|x1, θ1}
Model 2 : E {y2|x2, θ2,E (y1|x1, θ1)}

The overall model indicates that there are two parameter vectors to estimate. The
first parameter vector θ1 appears in both models, but the second parameter vector θ2
appears only in the second model.

There are two standard approaches to estimation. The first approach is a full in-
formation maximum likelihood, FIML, model in which we specify the joint distribution
f(y1,y2|x1,x2, θ1, θ2) and maximize the joint log-likelihood function. Alternatively, we
can adopt a limited information maximum likelihood, LIML, two-step procedure. In this
approach, we estimate the first model, since it does not involve the second parameter
vector. Subsequently, we estimate the second parameter vector conditional on the re-
sults of the first step estimation; we maximize the conditional log-likelihood L given
by

L =
n∑

i=1

ln f
{
y2i|x2i, θ2, (x1i, θ̂1)

}
Here, and throughout this article, we assume that there are n observations, x1i is the
ith row of the X1 design matrix, x2i is the ith row of the X2 design matrix, and θ̂1 is
the maximum likelihood estimate obtained from the estimation of Model 1.
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254 Robust Murphy–Topel

2 Murphy–Topel estimate of variance for two-stage mod-
els

Greene (2000) gives a concise presentation of one of the results in Murphy and Topel
(1985). The presentation describes a general formula of a valid variance estimator for
θ2 in a two-stage maximum likelihood estimation model. This LIML estimation fits one
model, which is then used to generate covariates for a second model of primary interest.
Calculation of a variance estimate for the regressors θ2 in the primary model of interest
must address the fact that one or more of the regressors have been generated via (x1, θ̂1).

In order to highlight the derivation and comparison to the sandwich estimate of
variance, we assume that θ1 is a q×1 vector of unknown parameters associated with an
n × q matrix of covariates X. In addition, θ2 is a p × 1 vector of unknown parameters
associated with an n× p matrix of covariates W.

Following Greene (2000), the formula for the Murphy–Topel variance estimate for
θ2 is given by

V2 + V2

(
CV1CT − RV1CT − CV1RT

)
V2 (1)

where

V1 = (q × q) Asymptotic variance matrix of θ̂1 based on L1(θ1)

V2 = (p× p) Asymptotic variance matrix of θ̂2 based on L2(θ2|θ1)
C = (p× q) matrix given by E

{(
∂L2

∂θ2

) (
∂L2

∂θT1

)}
(2)

R = (p× q) matrix given by E
{(

∂L2

∂θT2

) (
∂L1

∂θT1

)}

We assume that V1 and V2 are calculated as the inverse matrix of negative second
derivatives. This is not required (as indicated), and some researchers will substitute the
outer product of the gradient instead. The asymptotic equivalence of these estimators
is given by

E

{(
∂L
∂θ

) (
∂L
∂θT

)}
= −E

{
∂2L
∂θ∂θT

}
(3)

The component matrices of the Murphy–Topel estimator are estimated by evaluating
the formulae at the maximum likelihood estimates θ̂1 and θ̂2. The presentation assumes
the existence of a log likelihood for the first model L1(θ1) and a conditional log-likelihood
for the second (primary) model of interest L2(θ2|θ1).

To gain a better appreciation and understanding of the formula in equation (1), we
derive the sandwich estimate of variance for the same class of models. Our derivation
assumes the first model has an estimating equation Ψ1(θ1), and the second model has
an estimating equation Ψ2(θ2|θ1). The results we present follow from the lucid presen-
tation of the theoretical justifications given in Stefanski and Boos (2002). Our goal is
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to build the sandwich estimate of variance for Θ = (θ1, θ2). We can partition the overall
estimating equation as

[Ψ(Θ)] =
[

Ψ1(θ1)
Ψ2(θ2|θ1)

]
= [0]

Following Binder (1983), we know that the sandwich estimate of variance A−1BA−T

for the complete parameter vector Θ = (θ1, θ2) can be written in terms of the partitioned
matrices for the complete estimating equation,

A =



∂Ψ1

∂θT1

∂Ψ1

∂θT2

∂Ψ2

∂θT1

∂Ψ2

∂θT2




B =


 Ψ1ΨT

1 Ψ1ΨT
2

Ψ2ΨT
1 Ψ2ΨT

2




Since the sandwich estimate of variance for estimating Θ = (θ1, θ2) is given by VS =
A−1BA−T, the estimated sandwich variance matrix may be partitioned to emphasize
that

V̂S =




{
V̂S(θ1)

}
q×q

{
ĈovS(θ1, θ2)

}
q×p

{
Ĉov

T

S (θ1, θ2)
}

p×q

{
V̂S(θ2)

}
p×p


 (4)

It follows that the sandwich estimate of variance for the model of interest is the lower
right p× p partition of V̂S.

Our presentation of the sandwich estimate of variance has thus far been under
less restrictive assumptions than the presentation of the Murphy–Topel variance es-
timate. Thus far, we have only assumed the existence of two estimating equations.
Stefanski and Boos (2002) point out that we are, in fact, building the variance estimate
of an M-estimator as described in Huber (1967); the former reference gives the name
partial M-estimator to our particular case. The two-stage models addressed by the
Murphy–Topel estimator are, in fact, a special case of partial M-estimators.

For the sake of comparison of the sandwich and Murphy–Topel variance estimates,
we now assume that the estimating equations are derived from models with valid log-
likelihoods. Under this assumption, the estimating equations are derivatives of the
model log-likelihoods,

Ψ1(θ1) =
∂L1(θ1)
∂θ1

Ψ2(θ2|θ1) =
∂L2(θ2|θ1)

∂θ2
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Using the log-likelihood notation L, we calculate the sandwich estimate of variance in
terms of the two log-likelihoods as

A =




∂2L1

∂θ1∂θT1

∂2L1

∂θ1∂θT2

∂2L2

∂θ2∂θT1

∂2L2

∂θ2∂θT2


 =




∂2L1

∂θ1∂θT1
0

∂2L2

∂θ2∂θT1

∂2L2

∂θ2∂θT2


 (5)

B =




{(
∂L1

∂θ1

) (
∂L1

∂θT1

)} {(
∂L1

∂θ1

) (
∂L2

∂θT2

)}

{(
∂L2

∂θ2

) (
∂L1

∂θT1

)} {(
∂L2

∂θ2

) (
∂L2

∂θT2

)}



In equation 5, the upper right matrix entry of A is zero since θ2 does not enter into L1.
This is a common occurrence when a partial M-estimator for a model is specified from
multiple estimating equations. The same result is seen in Liang and Zeger (1986) for
generalized estimating equations.

Substituting the component matrices used in the calculation of the Murphy–Topel
estimator, we have

A =
[ −V−1

1 0
−C∗ −V−1

2

]

B =
[

V∗−1
1 RT

R V∗−1
2

]

The inverse of A is then given by

A−1 =
[ −V1 0

V2C∗V1 −V2

]

Our use of asterisks (∗) as superscripts distinguishes similar matrix components. The
asterisk appears when the component in the sandwich estimator differs from the corre-
sponding component in the Murphy–Topel estimator. The difference is in the evaluation
based on the two approaches described by equation (3). For example, the C matrix in
the Murphy–Topel estimator is the outer product of the gradients, equation (2), while
the C∗ matrix in the sandwich estimator is the inverse matrix of second derivatives; see
the lower left matrix of equation (5).
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We can carry out the matrix multiplication VS(Θ) = A−1BA−T to see that the
matrix elements of equation (4) are given by

VS(θ1) = V1V∗−1
1 V1

= VS1

CovS(θ1, θ2) = V1RTV2 − V1V∗−1
1 V1C∗TV2

= V1RTV2 − VS1C∗TV2

VS(θ2) = V2C∗V1V∗−1
1 V1C∗TV2 − V2RV1C∗TV2 − V2C∗V1RTV2

+V2V∗−1
2 V2

= V2V∗−1
2 V2 + V2

(
C∗V1V∗−1

1 V1C∗T − RV1C∗T − C∗V1RT

)
V2

= VS2 + V2

(
C∗VS1C∗T − RV1C∗T − C∗V1RT

)
V2 (6)

The sandwich estimate of variance for θ1 is the usual result for a single model. This is
the expected result since the first model does not involve the second parameter vector.

As mentioned previously, this is the same result obtained for the case of generalized
estimating equations (GEE). Looking at the variance estimate in this way highlights
why the sandwich estimate of variance for the regression coefficients in GEE is said to
be robust to misspecification of the assumed correlation structure—because the corre-
lation parameters do not enter the calculation of the variance matrix for the regression
coefficients (they only affect the efficiency of the coefficient estimates).

The sandwich estimate of variance for θ2 given in equation (6) has a form that is
similar to the Murphy–Topel variance estimate in equation (1). The differences are in
the use of the sandwich estimators, VS1 and VS2 from the individual models, and the
specification of the matrix of second derivatives estimator C∗ over the outer product of
the gradient estimator C.

3 Example

Greene (2000) provides a model of consumer behavior. The dependent variable of
interest is the number of derogatory reports for a sample of people applying for a credit
card. This variable is a nonnegative integer that is zero for the majority of applicants,
but values up to ten are not unusual. We address this dependent variable via a Poisson
regression model. The original study included a secondary model for the outcome of
the application. This outcome is binary and modelled using logistic regression. The
predicted probability of the logistic model is used as one of the covariates in the Poisson
model of interest.

From the original study, the author makes 100 observations available for our use.
The initial logistic model is in terms of z, an indicator of whether the application is
accepted. This outcome is a function of age, the applicant’s age in years; income,
the annual income; ownrent, an indicator of whether the applicant owns their home;
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and selfemp, an indicator of whether the applicant is self employed. The model also
includes a constant term.

A logistic model where z is the outcome (whether the application is successful) and
X is the matrix of covariates has log likelihood given by

Lz =
n∑

i=1

[zixiθ1 − ln{1 + exp(xiθ1)}]

The results for fitting the logistic regression model are given by

Logit estimates Number of obs = 100
LR chi2(4) = 8.80
Prob > chi2 = 0.0662

Log likelihood = -53.924625 Pseudo R2 = 0.0755

z Coef. Std. Err. z P>|z| [95% Conf. Interval]

age -.0732769 .0316192 -2.32 0.020 -.1352493 -.0113045
income .2192029 .1800238 1.22 0.223 -.1336373 .5720431
ownrent .189368 .5417589 0.35 0.727 -.8724599 1.251196
selfemp -1.943879 1.037069 -1.87 0.061 -3.976497 .0887385

_cons 2.723656 1.055066 2.58 0.010 .6557644 4.791547

The second stage is the Poisson model of interest. We model y, the number of
derogatory reports, as a function of age, the applicant’s age in years; income, the
applicant’s annual income; expend, the monthly average expenditures of the applicant;
and ẑ, the predicted probability that the application for a credit card is accepted stored
in zhat. The predicted probabilities are calculated from the fitted first stage logistic
model. The logistic model also includes a constant term.

A Poisson model where y is the outcome (number of derogatory reports) and W is
the matrix of covariates has log-likelihood given by

Ly =
n∑

i=1

{yiwiθ2 − exp(wiθ2) − ln Γ(yi + 1)}

The results for fitting the second stage Poisson model are given by

Poisson regression Number of obs = 100
LR chi2(4) = 27.21
Prob > chi2 = 0.0000

Log likelihood = -78.330992 Pseudo R2 = 0.1480

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .0731059 .0542458 1.35 0.178 -.0332139 .1794258
income .0452336 .1741114 0.26 0.795 -.2960184 .3864856
expend -.0068969 .00202 -3.41 0.001 -.0108561 -.0029378

zhat 4.632355 3.661774 1.27 0.206 -2.54459 11.8093
_cons -6.319947 3.930768 -1.61 0.108 -14.02411 1.384217
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This output includes the naive standard errors, which assume that there is no error in
the generation of the ẑ predictor in the first-stage logit regression model.

4 Obtaining estimates in Stata

Stata makes it relatively easy to obtain the Murphy–Topel variance estimates for a
two-stage model. The powerful commands that we have at our disposal are the matrix
accum and matrix vecaccum commands.

A do-file for generating the results of the two stage estimation proceeds as follows.
In this construction, we will include the details for building the naive, Murphy–Topel,
and robust variance estimates. We begin with the specification of the two models.

/* Assumption: the data is already loaded */
logit z age income ownrent selfemp /* First stage: logit */
matrix V1 = e(V) /* First stage variance estimate */
logit z age income ownrent selfemp, robust
matrix V1s = .99 * e(V) /* Undo the 100/(100-1) adjustment */
predict double zhat /* Covariate for second stage */

poisson y age income expend zhat /* Second stage: poisson */
matrix V2 = e(V)
poisson y age income expend zhat, robust
matrix V2s = .99 * e(V) /* Undo the 100/(100-1) adjustment */
predict double yhat
scalar zz = _b[zhat] /* Coeff on generated variable */

With this much of the two-stage estimation specified, we obtain several of the pieces
that we need to construct the desired estimates of variance. Thus far, we have V1,
the variance of the first stage model; V1s, the robust variance of the first stage model;
V2, the variance of the second stage model; and V2s, the robust variance of the second
stage model. We note that V2 is the naive variance estimate of the two-stage estimation
and V2s is the naive robust variance estimate. Both naive estimators assume that the
zhat= ẑ predictor from the first stage is without error.

Since Stata applies a small sample adjustment n/(n − 1) to the robust variance
estimates, we undo that adjustment in defining those matrices. It is still left to calculate
R, C, and C∗. The first two matrices are relatively easy to calculate using the predict
command to get intermediate results, and we apply the matrix accum command to
generate the desired matrix. Continuing our development, the do-file is augmented
with the following steps. The only trick we need to apply is that there is a constant
in each of the two stages of estimation. The matrix accum command will (by default)
add a constant to the end of the variable list. Instead, we generate our own constant
variable, include it twice in the list, and specify the nocons option to prevent adding
another constant to the list.

To highlight the calculation of these matrices with the matrix accum command,
note that
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∂Lz

∂θ1
=

n∑
i=1

xi(zi − ẑi)xT
i = XT Diag(zi − ẑi) X

∂Lz

∂θ2
= 0

∂Ly

∂θ2
=

n∑
i=1

wi(yi − ŷi)wT
i = WT Diag(yi − ŷi) W

∂Ly

∂θ1
=

n∑
i=1

xi(yi − ŷi)(ẑ)(1 − ẑi)θ̂2ẑxT
i = XT Diag{(yi − ŷi)ẑi(1 − ẑ)θ̂2ẑ} X

where θ̂2ẑ is the estimated coefficient in the second stage model for the generated pre-
dictor ẑ.

gen byte cons = 1

matrix accum C = age income ownrent selfemp cons age income expend zhat cons /*
*/ [iw=(y-yhat)*(y-yhat)*zhat*(1-zhat)*zz], nocons

matrix accum R = age income ownrent selfemp cons age income expend zhat cons /*
*/ [iw=(y-yhat)*(z-zhat)], nocons

matrix C = C[6..10,1..5] /* Get only the desired partition */
matrix R = R[6..10,1..5] /* Get only the desired partition */

At this point, we have all of the necessary information for building the Murphy–
Topel variance estimate. However, we still need an estimate of C∗ for the sandwich
variance estimate. This second derivative is complicated by the dependence on the
fitted values from the first stage.

∂2Ly

∂θ2j∂θ1k
=

n∑
i=1

wij{−ŷiẑi(1 − ẑi)θ̂2ẑ}xT
ik +

n∑
i=1

I(ẑ)i(yi − ŷi)ẑi(1 − ẑi)xT
ik

= WT Diag{−ŷiẑi(1 − ẑi)θ̂2ẑ} X + I(ẑ)T Diag{(yi − ŷi)ẑi(1 − ẑi)} X

where I(ẑ) is an (n× p) matrix; the column associated with the generated covariate ẑ
from the first stage is equal to one, and all other columns are zero. We can form this
matrix using Stata’s accumulation commands, but we address the two matrix products
separately.

matrix accum Cs1 = age income ownrent selfemp cons age income expend zhat cons /*
*/ [iw=-yhat*zz*zhat*(1-zhat)], nocons

matrix Cs1 = Cs1[6..10,1..5] /* Get only the desired partition */

gen dd = (y-yhat)*zhat*(1-zhat)
matrix vecaccum Cs2 = dd age income ownrent selfemp cons, nocons
matrix Cs2 = J(5,3,0) , Cs2’ , J(5,1,0) /* Plug into the relevant column */

matrix Cs = -(Cs1 + Cs2’)
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Armed with the accumulated information, the Murphy–Topel estimate may now be
calculated as

matrix M = V2 + (V2 * (C*V1*C’ - R*V1*C’ - C*V1*R’) * V2)

and the Sandwich estimate may be calculated as

matrix Ms = V2s + (V2 * (Cs*V1s*Cs’ - R*V1*Cs’ - Cs*V1*R’) * V2)

Once the final estimates are formed, we can post them to the estimation areas and
list them in the usual manner so that the variance estimates are available for testing.
To post the Murphy–Topel estimates, we can append the following code to our do-file.

matrix b = e(b)

capture program drop doit
program define doit, eclass

est post b M /* For sandwich results: est post b Ms */
est local vcetype "Mtopel" /* For sandwich results:

* est local vcetype "Robust" */
est display

end
doit

Alternatively, we can make the obvious adjustments to the do-file to list the sandwich
estimate of variance results. If we run the above do-file, the final results with the
Murphy–Topel variance estimates are listed as

MTopel
Coef. Std. Err. z P>|z| [95% Conf. Interval]

y
age .0731059 .1096293 0.67 0.505 -.1417636 .2879755

income .0452336 .4375397 0.10 0.918 -.8123285 .9027957
expend -.0068969 .004265 -1.62 0.106 -.0152561 .0014623

zhat 4.632355 10.82669 0.43 0.669 -16.58757 25.85228
_cons -6.319947 9.661564 -0.65 0.513 -25.25626 12.61637

5 Results

The results of the two-stage estimation problem along with standard errors are listed
in Table 1. Results for the Murphy–Topel and sandwich estimators are similar for this
model, and both estimators are approximately double the size of the naive results.

Interested readers will note differences in the results for the Murphy–Topel standard
errors listed here and the ones listed in the cited text (current results for the text are
listed in the errata on the author’s web site). The difference between the calculation
used here and the calculation used in the text is for V1. The Murphy–Topel variance
estimate specifies only that a valid variance estimate from the model should be used.
We use the inverse matrix of negative second derivatives V1, while the text uses the
outer product of the gradient V∗

1.
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Table 1: Coefficients and standard errors from the second stage Poisson model. Naive
standard errors are calculated for the Poisson regression model, assuming the values of
ẑ are true (without error).

Coefficient Naive SE Murphy–Topel SE Sandwich SE
age .0731059 .0542458 .10962933 .09863122
income .0452336 .1741114 .43753973 .36183127
expend -.0068969 .0020200 .00426497 .00300891
ẑ 4.632355 3.661774 10.826693 8.2048782
constant -6.319947 3.930768 9.6615637 7.9570337

6 Simulation

A simulation study is not possible for every type of two-stage model that we may
encounter. Here, we simulate data for two models similar to the previously illustrated
example. The initial model is a logistic regression described by y∗i = Logit(γ0 + γ1x1i +
γ2x2i + γ3x3i + γ4x4i). We simulate the covariates such that X1 ∼ Uniform(−.5, .5),
X2 ∼ Normal(0, 1), X3 ∼ Discrete Uniform{−1, 0, 1}, and X4 ∼ Exponential(1) − 1.
Logistic error is added to the calculation of the continuous outcome, and a binary
outcome yi is then generated.

The second model is a linear regression model for which data are generated such
that zi = β0 + β1w1i + β2x2i + β3x3i + β4yi where W1 ∼ Uniform(−.5, .5). Normally,
distributed error is added to the outcome zi. We estimate the regression model using
the fitted values ŷi from the first-stage logistic regression.

We consider six different sample sizes, {20, 40, 60, 80, 100, 1000}, and we expect simi-
lar coverage probabilities for the two estimators when data are generated from the fitted
models. In addition, we simulate error for the regression model that depends on the
value of W1. Here, we wish to investigate the robustness properties in terms of the
coverage probabilities for the variance estimators; especially that for the β1 coefficient
on W1. Results of the simulations are listed in Table 2 and Table 3.

The coverage probabilities estimated from the simulations indicate that the Murphy–
Topel and sandwich estimates of variance have similar coverage probabilities when the
models are correct. For the heteroskedastic regression model, the sandwich estimate of
variance has coverage probability that is closer to the nominal level than the Murphy–
Topel estimate. This is especially true for large sample sizes where the Murphy–Topel
underestimates the variance of the covariate on which the errors depend.

(Continued on next page)
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Table 2: Coverage probabilities from 10,000 replications for simulation of correct model.
Both estimators exhibit coverage probabilities close to the nominal level for all covari-
ates.

Murphy–Topel Sandwich
Coefficient p = 0.900 p = 0.950 p = 0.900 p = 0.950

n = 20 n = 20
β0 0.933 0.968 0.938 0.967
β1 0.885 0.936 0.869 0.923
β2 0.908 0.947 0.897 0.937
β3 0.896 0.943 0.895 0.939
β4 0.923 0.962 0.928 0.961

n = 40 n = 40
β0 0.941 0.977 0.949 0.978
β1 0.887 0.941 0.880 0.935
β2 0.913 0.956 0.907 0.951
β3 0.917 0.973 0.919 0.959
β4 0.934 0.978 0.937 0.973

n = 60 n = 60
β0 0.940 0.977 0.942 0.976
β1 0.895 0.947 0.887 0.941
β2 0.913 0.958 0.911 0.954
β3 0.917 0.960 0.917 0.958
β4 0.931 0.971 0.931 0.970

n = 80 n = 80
β0 0.937 0.976 0.934 0.975
β1 0.896 0.947 0.890 0.943
β2 0.913 0.959 0.901 0.956
β3 0.915 0.959 0.915 0.958
β4 0.930 0.971 0.928 0.963

n = 100 n = 100
β0 0.928 0.969 0.930 0.968
β1 0.892 0.944 0.888 0.940
β2 0.912 0.960 0.908 0.959
β3 0.907 0.955 0.908 0.953
β4 0.921 0.962 0.921 0.962

n = 1000 n = 1000
β0 0.912 0.956 0.911 0.957
β1 0.898 0.947 0.899 0.948
β2 0.904 0.955 0.904 0.954
β3 0.905 0.954 0.904 0.953
β4 0.911 0.953 0.906 0.953
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Table 3: Coverage probabilities from 10,000 replications for simulation of heteroskedastic
model. The second stage regression model includes heteroskedastic error, depending on
the values of the covariate associated with β1. Note the discrepancy in results for the
rows associated with this estimator.

Murphy–Topel Sandwich
Coefficient p = 0.900 p = 0.950 p = 0.900 p = 0.950

n = 20 n = 20
β0 0.917 0.946 0.941 0.970
β1 0.790 0.854 0.838 0.897
β2 0.905 0.941 0.907 0.948
β3 0.896 0.937 0.910 0.952
β4 0.918 0.950 0.933 0.963

n = 40 n = 40
β0 0.935 0.966 0.956 0.982
β1 0.804 0.873 0.867 0.921
β2 0.918 0.955 0.920 0.960
β3 0.913 0.951 0.922 0.963
β4 0.933 0.969 0.948 0.977

n = 60 n = 60
β0 0.938 0.972 0.949 0.976
β1 0.805 0.874 0.872 0.925
β2 0.918 0.958 0.915 0.961
β3 0.916 0.956 0.917 0.960
β4 0.935 0.974 0.931 0.970

n = 80 n = 80
β0 0.938 0.973 0.943 0.981
β1 0.890 0.877 0.876 0.935
β2 0.924 0.959 0.915 0.959
β3 0.917 0.958 0.911 0.957
β4 0.935 0.970 0.935 0.963

n = 100 n = 100
β0 0.934 0.974 0.938 0.977
β1 0.813 0.882 0.888 0.942
β2 0.924 0.963 0.912 0.960
β3 0.916 0.959 0.911 0.958
β4 0.930 0.971 0.921 0.971

n = 1000 n = 1000
β0 0.910 0.960 0.911 0.960
β1 0.807 0.883 0.898 0.950
β2 0.921 0.963 0.906 0.954
β3 0.915 0.960 0.904 0.954
β4 0.910 0.960 0.906 0.956
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Carroll and Kauermann (2002) point out that the sandwich variance estimator is
more variable than its naive counterpart. They provide a useful investigation of the
model properties that affect this variability and make several suggestions for altering
the usual calculation of test statistics and/or degrees of freedom.
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Figure 1: In each of the four graphics, the left boxplot is for the the log of the 10,000
Murphy–Topel standard errors, and the right boxplot is for the log of the 10,000 sand-
wich standard errors. The left column shows results for data generated under the correct
models, and the right column shows results for data generated under the heteroskedastic
models. The top row shows results for sample size equal to 20, and the bottom row
shows results for sample size equal to 100. We note that the sandwich estimator is more
variable than the Murphy–Topel estimator for small samples, and that the difference in
variability appears to diminish as the sample sizes increase.

7 Summary

The sandwich estimate of variance for two-stage maximum likelihood models has a
form similar to the familiar Murphy–Topel estimator. The use of the C∗ matrix in
the sandwich estimate of variance requires computing second derivatives of the second
model’s log likelihood. This is computationally more difficult than the corresponding
matrix in the Murphy–Topel estimator. However, we gain three advantages with the
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sandwich estimator. First, we have an estimator with the same robustness properties
of all sandwich estimates of variance. Second, we can easily calculate the full sandwich
estimate of variance for the complete parameter vector using equation 4. Third, the
full sandwich variance matrix admits Wald tests of hypotheses across the two models,
which is not possible using the Murphy–Topel estimator.
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