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Abstract. The nested logit model has become an important tool for the empirical
analysis of discrete outcomes. There is some confusion about its specification of the
outcome probabilities. Two major variants show up in the literature. This paper
compares both and finds that one of them (called random utility maximization
nested logit, RUMNL) is preferable in most situations. Since the command nlogit
of Stata 7.0 implements the other variant (called non-normalized nested logit,
NNNL), an implementation of RUMNL called nlogitrum is introduced. Numerous
examples support and illustrate the differences between both specifications.
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1 Introduction

The nested logit model has become an important tool for the empirical analysis of dis-
crete outcomes. It is attractive since it relaxes the strong assumptions of the multinomial
(or conditional) logit model. At the same time, it is computationally straightforward
and fast compared to the multinomial probit, mixed logit, or other even more flexible
models due to the existence of a closed-form expression for the likelihood function.

There is some confusion about the specification of the outcome probabilities in nested
logit models. Two substantially different formulas and many minor variations of them
are presented and used in the empirical literature and in textbooks. Many researchers
are neither aware of this issue nor of which version is actually implemented by the soft-
ware they use. This obscures the interpretation of their results. This problem has been
previously discussed by Hensher and Greene (2002), Hunt (2000), Koppelman and Wen
(1998), and Louviere et al. (2000, section 6.5). This paper provides a comparison of both
approaches in line with this literature. It argues and shows in numerous examples that
one of these specifications is preferable in most situations. The nlogit command of
Stata 7.0 does not implement this specification. Therefore, the nlogitrum command is
presented, which does.

The remainder of this paper is organized as follows: Section 2 introduces basic
concepts of discrete choice and random utility maximization (RUM) models and discusses
the conditional logit model as the most straightforward example. Section 3 presents one
version of the nested logit model, the so-called RUMNL model. It can directly be derived
from a RUM model. Section 4 introduces the other variant, which is implemented as
nlogit in Stata 7.0. It is shown that this model is more difficult to interpret and might
imply counterintuitive and undesired restrictions. This is often overlooked by applied
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228 Nested logit models

researchers. Section 5 compares both models in special cases of nesting structures. The
Stata implementation of the preferred RUMNL model is introduced in Section 6, and
Section 7 concludes.

2 Fundamental concepts

Discrete choice models are used to make statistical inferences in the case of discrete
dependent variables. This paper deals with a special class of discrete choice models, for
which there are more than two possible outcomes that cannot be sensibly ordered. A
classical example is the travel-mode choice. This paper uses a well-known dataset on
this topic to provide empirical examples. Among others, Greene (2000, example 19.18),
Hunt (2000), and Louviere et al. (2000, section 6.4) present nested logit estimates based
on these data. The data contain 210 non-business travelers between Sydney, Canberra,
and Melbourne. They had four travel-mode alternatives: car, train, bus, and plane.

Section 2.1 presents the concept of random utility maximization (RUM) models.
Different types of variables can enter RUM models of discrete choice. Since this will
be important for the following discussion, Section 2.2 characterizes these variable types
and the specification of their coefficients. Section 2.3 presents the RUM interpretation
of the well-known conditional logit model and first estimates.

2.1 Random utility maximization models

Econometricians often interpret discrete choice models in terms of underlying structural
models of behavior, called random utility maximization (RUM) models. They assign a
utility level U;; to each alternative j = 1,...,J for each decision maker ¢ = 1,...,1I.
The decision makers are assumed to choose the alternative from which they derive the
highest utility.

The utilities are determined by a large number of characteristics of the decision maker
and the alternatives. The researchers have information on some of those determinants,
but not on all. This is reflected by splitting the utilities into a deterministic part V;;
and a stochastic part €;;:

Uij = Vij + €ij (1)

The probability P;; that individual i chooses some alternative j is equal to the prob-
ability of U;; being the largest of all Ui,...U;;. With y; € {1...J} denoting the
alternative that decision maker i chooses, this probability is

Pz‘j:PI‘(yi:j) = Pr(Uij >Uik Vk:L,Jk#]) (2)
= Pr(Eik—GijSVvij_‘/ik Vk:]-vv‘]k#j) (3)

Given the deterministic parts of the utility functions V;1, ..., Vs, this probability will
depend on the assumptions on the distribution of the stochastic error terms €;1,...,€; .
For some distributions, there exists a closed-form solution for this expression. The most
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prominent examples are the conditional logit model discussed in Section 2.3 and the
random utility version of the nested logit model discussed in Section 3.2.

A look at equation (2) reveals two interesting properties of the RUM outcome prob-
abilities: They are based on utility differences only. The addition of a constant to all
utilities does not change the outcome probabilities. In addition to that, the scale of util-
ity is not identified: Multiplying each of the utilities U;1,...,U;; by a constant factor
does not change the probabilities. So, RUM models have to normalize the utilities.

2.2 Types of variables and coefficients

The deterministic utility components V;; may consist of different types of determinants.
Alternative-specific constants a;; for all but one (the reference) alternative should enter
the model. They capture choice probabilities relative to the reference alternative that
cannot be attributed to the other explanatory variables. In addition, individual-specific
and/or alternative-specific variables may enter the utilities.

Individual-specific variables describe characteristics of the decision maker. These
variables may influence the relative attractiveness of the alternatives. Prominent exam-
ples are socio-economic variables like income or age. They are collected in a vector z; for
each decision maker ¢ = 1,...,I. A parameter vector 7, for each alternative j is associ-
ated with the individual-specific variables. Since only utility differences are relevant for
the choice, the parameters for one (the reference) alternative have to be normalized to
zero for purposes of identification.! The other parameters can be estimated freely. They
represent the effect of the individual-specific variables on the utility of the respective
alternatives relative to the reference alternative. In the travel-mode-choice example, the
respondents were asked about their household income. The individual-specific variable
inc; represents the income of individual 7 in tens of thousands of dollars.

Alternative-specific variables vary both over individuals and alternatives. A promi-
nent example is the price in models of brand choice. In the travel-mode-choice data,
there is a variable time;; that represents the time (in hours) that individual ¢ would
need for the trip with travel mode j. These variables will be collected in a vector x;;
for each decision maker ¢ = 1,...,I and for each alternative j = 1,...,J. They may
enter the utilities in two different ways. Since the variation over alternatives provides
additional ground for identification, a separate parameter for each alternative is statis-
tically identified. In the travel-mode-choice example, spending one hour in their own
car might be associated with a lower disutility than spending one hour in the bus. This
would be reflected in a larger fpyg than Bcar in absolute value.

Including all these variables, the deterministic part of the utility V;; can, in general,
be written as

On the other hand, researchers often want to estimate a joint coefficient 3 for all

LOf course any other value can be chosen for normalization. The normalization to zero simplifies
the interpretation of the other parameters.
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alternatives. This is possible because of the variation of x;; over the alternatives. In
this case, we will call these variables generic variables and add the restriction

B;i=B Vi=1,...,J (5)

With this specification, the joint parameter 3 of travel time in our example may be
interpreted as the value of time in terms of utility. If price is included as a generic
variable, its parameter is often used to rescale the utility in dollar terms. Whether or
not generic variables enter the model will affect the discussion of the nested logit model
below.

2.3 Multinomial/Conditional/McFadden’s logit model

The multinomial logit (MNL) and conditional logit (CL) models are probably the most
widely used tools for analyzing discrete dependent variables. The terminology is not
consistent in the literature, but this paper refers to the MNL model as a special case
of a CL model in which all explanatory variables are individual specific. Such a model
is implemented in Stata as mlogit; see [R] mlogit. The more general conditional
logit model is implemented as the clogit command; see [R] clogit. The same model
without the interpretation in terms of an underlying RUM model is often referred to as
multinomial logistic regression. In the following, this paper will discuss the most general
CL model.

Consider a RUM model as described in Section 2.1. The CL model assumes that
the error terms €;1,...,¢;5 are i.i.d. as Extreme Value Type I. This distribution has a
variance of 02 = 72 /6, which implicitly sets the scale of the utilities. McFadden (1974)
shows that under these assumptions, the resulting probability PSL that individual 7 =
1,...,1 chooses some alternative j = 1, ..., J has a straightforward, analytical solution:
CL eV
Pyt ==

> k=1 eV

Table 1 shows estimation results for two CL models of the travel mode choice example.
Both consider income and time as explanatory variables and define the outcome air
as the reference outcome; i.e., aairy and a3, are normalized to zero. The deterministic
parts of the utility in equation (4) are, therefore,

(6)

V;',air = ﬁair . timei,air
‘/;,car = Olcar + ﬂcar N timei,car +’Ycar 'inCi

(7)
‘/i,bus = Qpus + ﬁbus N timei,bus +’)/bus 'inCi

‘/i,train = Qltrain T ﬁtrain : timei,train +’Ytrain 'iIlCi

for both models.




F. Heiss 231

Table 1: Conditional Logit estimates

Model (A) (B)
Coef. z Coef. Z
const x car —4.122  —4.09 —3.886 —3.97
bus —2.614 —2.33 —2.678 —2.68
train —-1.153 —-1.14 —1.523 —1.60
incx car —0.209 —1.66 —0.201 —1.60
bus —0.454 —3.00 —0.457 —3.02
train —0.680 —4.92 —0.678 —4.93
time —0.600 —8.29
timex air -3.364 —7.92 —2.754 —7.43
car —0.572 —7.58
bus —0.609 —6.92
train —0.639 —8.02
Log likelihood —201.34 —202.19

Model A allows for different time parameters 3; for all alternatives. The estimates
of all three «; alternatives are negative. This implies that higher income decreases the
probability of choosing a travel mode other than air. The relative magnitude can also be
interpreted: the order of the coefficients corresponds to the order of the marginal effects
of the choice probabilities. All time parameters are highly and significantly negative.
This implies that the time spent for the trip is associated with a disutility and that the
probability of choosing any travel mode decreases as the time spent traveling increases.

As the results from model A indicate, the time parameters for the alternatives
train, bus, and car are very similar. A test of the hypothesis that they are actually
equal cannot be rejected. It makes sense to impose equality; that is, to specify time as
a generic variable. This has two advantages. It improves the efficiency of the estimates
and allows an interpretation of the coefficient as the implicit value of time in terms of
utility, but [air is significantly higher in absolute value than the other parameters. So,
model B specifies time as a generic variable and, additionally, includes an interaction
for the air alternative.? As expected, the log-likelihood value decreases relative to the
unconstrained model A, but this decrease is insignificant. The marginal effects and
elasticities do not change significantly either.

The CL/MNL model is widely used because of its convenient form of the choice prob-
abilities and due to its globally concave likelihood function that makes maximum likeli-

2There may be different reasons for the unequal parameter. Either the disutility of spending time
in the plane is higher than for the other travel modes, or time actually enters the utility nonlinearly
(the mean travel time by air is obviously significantly lower than the time for the other alternatives),
or the situations in which people choose to fly differ in that time is more crucial. We will not further
explore the reason since this paper is not really about travel mode choice and since adding nonlinear
terms, etc. complicates the model unnecessarily for the purpose of demonstration.
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hood estimation straightforward, but it imposes strong restrictions on the distribution
of the error terms. Most notably, they are assumed to be independently distributed.
Note that these terms capture all unobserved determinants of the choices. If two alter-
natives are similar, it is plausible to assume that their errors are positively correlated.
In our example, if there are unobserved individual characteristics that affect the utility
of both public transportation modes bus and train similarly, the error terms of those
alternatives are correlated. This is ruled out by the CL model. If the assumption of
independent error terms is violated, the CL parameter estimates are biased.

3 Nested logit models I: RUMNL

The basic idea of nested multinomial logit (NMNL) models is to extend the CL model
in order to allow groups of alternatives to be similar to each other in an unobserved
way; that is, to have correlated error terms. The general approach of NMNL models
is introduced in Section 3.1. Section 3.2 presents a NMNL model that is derived from
a RUM model and is therefore called RUMNL model in this paper. Finally, Section 3.3
extends the CL example for this model. A Stata implementation of the RUMNL model
is introduced later in this paper; see Section 6.

3.1 General approach

The researcher partitions the choice set into M subsets (‘nests’) B,,,m = 1,..., M3, so
that each alternative belongs to exactly one nest. Denote the nest to which alternative
j=1,...,J belongs as B(j):

B(j)={Bn:j € Bm, m=1,...M} (8)

For the travel mode example, one possible nesting structure is depicted in Figure 1.
The number of nests is M = 2. The public transportation modes (train and bus) share
the nest Bpupiic = {bus,train}, and the other modes (air and car) share the nest
Boiher = {car,air}. In our notation, B(bus) is equivalent to Bpup1ic just as B(train)
is. This notation will help in formulating the choice probabilities below.

(Continued on next page)

3This can be generalized to various nesting levels in a straightforward way by grouping the alter-
natives within such a nest in sub-nests and so on, but we will concentrate on the simplest case of only
one nesting level.
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|Train| |Bus| |Car| |Air|

Figure 1: Nesting structure for models C through H

In order to develop an intuitive expression for the choice probabilities, it helps to
decompose them into two parts. The probability of individual ¢ choosing alternative
J, Pr(y; = j), is equal to the product of the probability to choose some alternative in
nest B(j), Pr{y; € B(j)}, and the conditional probability to choose exactly alternative
J given some alternative in the same nest B(j) is chosen Pr{y; = jly; € B(j)}; that is,

P; = Pr(y = j) = Pr{y = jly € B(j)} - Pr{y € B(j)} (9)

where the individual subscript i is dropped from now on for the sake of a more concise
notation. In our example, the probability of taking the bus Pr(y = bus) is equal to
the probability of choosing public transportation Pr{y € B(bus)} times the conditional
probability of taking the bus given a public transportation mode is chosen Pr{y =
bus|y € B(bus)}. Note that this decomposition is valid in general by the rules of
conditional probability, but it is especially useful for thinking about the nested logit
model.

3.2 Nested logit as a RUM model

The NMNL model can be derived from a RUM model just as the CL model. Consider a
RUM model as described in 2.1. The CL model assumes that the error terms €;1,...,€;s
are i.i.d. as Extreme Value Type 1. Instead, the RUMNL model assumes a generalized
version of this distribution. This special form of the generalized extreme value (GEV)
distribution extends the Extreme Value Type I distribution by allowing the alternatives
within a nest to have mutually correlated error terms.

For each nest m = 1,..., M, the joint distribution of the error terms has an addi-
tional parameter 7, that represents a measure of the mutual correlation of the error
terms of all alternatives within this nest. Actually, this paper specifies 7,,, to be equal to
/1= pm, with p,, representing the correlation coefficient. So, it is an inverse measure
of the correlation. Therefore, it is often called dissimilarity parameter.* The marginal
distribution of each error term is again Extreme Value Type I.

The RUMNL conditional choice probability of choosing alternative j given some al-
ternative in its nest is chosen is Pr{y = j|y € B(j)}, which corresponds to a simple CL
model for the choice between the alternatives in nest B(j). The utilities are rescaled by

40ther equivalent parameterizations are used in the literature. For example, McFadden (1981)
replaces 7y, with oy, = 1 — 7, and Louviere et al. (2000) replace Tm with pym = 1/7m.
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the inverse of the dissimilarity parameter 7(j) for this nest:
eVi/T()
EkEB(j) er/T(j)

The most intuitive explanation is based on the consideration of the implicit scaling in
the logit model. As seen in Section 2.1, the RUM choice probabilities depend on the
utility differences. As noted above, the CL model implicitly scales all utilities such that
the error terms have a variance of 02 = 72/6. Since they are assumed to be independent
in the CL model, their differences have a variance of 202, but the RUMNL error terms
within a nest are positively correlated. The higher the correlation between the error
terms, the lower is the variance of these differences. With the relationship between the
dissimilarity parameter 7, and the coefficient of correlation p,, presented above, it is
straightforward to show that the variance of the difference is 20272. By normalizing
the utilities by the factor 1/7,,, the variance of this normalized difference becomes 202.
Without this normalization, the utilities in each nest would be scaled by a different
factor and would therefore not be comparable across nests.

Pr{y = jly € B(j)} (10)

The denominator in equation (10) represents a (rescaled) measure of the attractive-
ness of the nest B(j). The log of this expression for each nest m is called inclusive value
IV,,. It corresponds to the expected value of the utility individual ¢ obtains from the
alternatives in nest m:

IV =In Y eV/mn (11)
kEB,,

The probability Pr{y € B(j)} of choosing some alternative from nest k is again a
CL probability for the choice between the nests. The scaled back inclusive values take
the role of the deterministic parts of the utilities:

. TDIVE)
Pr{y € B(j)} = W (12)

Because of the way the dissimilarity parameters enter this equation, they are also called
IV parameters.

Nested logit models can be fit sequentially. First, fit a sub-model for each nest
according to equation (10). Then, calculate the inclusive values defined in equation
(11) and fit a model for the choice of a nest shown in equation (12). See, among
others, Train (2002) for a discussion of this sequential estimation and the necessary
decomposition of the explanatory variable into nest- and alternative-specific variables.
Alternatively, all these equations can be plugged into equation (9). In this way, we
obtain the marginal choice probability for alternative j as

Vil DIV ()

— X
eIV () ZM ) eTm I Vin
m=

RNL __
PRNL = (13)

This probability is the full information likelihood contribution.
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The CL model follows as a special case when 7,,, =1, Vm = 1,..., M. This can be
easily checked: the nests merely partition the choice set, so Zﬁf:l elVm = Zi:l eVk
must hold in this case. The RUMNL model is consistent with RUM if all 7, lie in the
unit interval.> For an introduction to this model, also see Train (2002) and Maddala
(1983).

3.3 Examples

Table 2 shows estimation results for two RUMNL models of the travel-mode-choice exam-
ple with the nesting structure depicted in Figure 1. Model C corresponds to a RUMNL
version of the CL model A. The log-likelihood value increases considerably by allowing
the 1V parameters to diverge from unity. A likelihood-ratio test clearly rejects the CL
model that implicitly restricts the IV parameters to unity. The IV parameter Tpupiic
is within the unit interval and corresponds to a correlation of the two error terms of
about .71. The IV parameter Toiper iS clearly above 1. This implies that this model
is inconsistent with RUM. We will ignore this for now and come back to this issue in
Section 5.2.

Table 2: RUMNL estimates

Model (©) (D)
Coef. Z Coef. Z
const x car —5.751 —1.60 —6.383 —2.24
bus —2.499 —0.76 —2.782 —1.03
train —1.253 —-0.39 —1.786 —0.66
incx car —0.354 —0.90 —0.362 —0.93
bus —0.556 —1.94 —0.554 —1.93
train —0.827 —2.90 —0.831 —-2.91
time —1.301 —5.6
timex air —7.027 —5.49 —5.878 —5.54
car —1.325 —5.12
bus —1.281 —5.37
train —1.305 —5.54
T public 0.539 3.69 0.545 3.79
T other 4.879 3.58 4.801 3.84
Log likelihood —165.12 —165.26

The other parameters tend to be larger in the RUMNL model than in the CL model.
They cannot be compared, however, since the scaling differs across the models. One can
either compare ratios of coefficients or calculate statistics such as the estimated marginal
effects or the elasticities of the choice probabilities with respect to the explanatory

5This condition can be relaxed for local consistency with RUM, see Bérsch-Supan (1990).
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variables. The interpretation within the RUMNL model is equivalent to the interpretation
in the CL model A. Model D in Table 2 shows a RUMNL model with time entering as
a generic variable analogous to the CL model B. Again, the interpretation remains the
same. The generic restrictions of model D cannot be rejected by a likelihood-ratio test.

4 Nested logit models 1I: NNNL

This section discusses a variant of the nested logit model. It will be called non-
normalized nested logit (NNNL) model for reasons that are explained below. This is
the model that is presented as the nested logit model, for example, presented by Greene
(2000, section 19.7.4). It is also the model implemented in Stata 7.0 by the command
nlogit; see [R] nlogit.

4.1 Structure of the model

A latent variable ‘Z similar to the deterministic part of the utility in a RUM model is
defined as a linear combination of the explanatory variables:

Vi =a;+xB; + 27, (14)
If alternative-specific variables enter the model as generic variables, that is, with a
common coefficient 3; for all alternatives, analogous restrictions to equation (5) are
imposed: ~ _

B;=B Vi=1,...,J (15)

The reason for adding the tilde to the V' and the parameters is that the variable V; is
reserved to represent deterministic utility parts in this paper, and as will be explained
below, this linear combination V; may not be interpreted in this way.

With the inclusive value for any nest m defined as
V=l Y e (16)
kEBm

the choice probabilities of the NNNL model are

v T(HIV ()
PNNL - = (17)
e (]) Zm:l eTmIVTn

Comparing these equations to equations (11) and (13), the relevant difference is that the
deterministic utilities are not scaled by the inverse of the IV parameter in the conditional
probability within the nest, e7 /el V(7). This is the reason for calling this model a non-
normalized nested logit (NNNL) model. As argued in Section 3.2, this implies different
scaling of the utilities across nests. In consequence, the interpretation of this model
as a RUM model with the deterministic utility defined as Vj is challenged. This can
be confirmed formally by considering what happens in a RUM model when the utility
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of each alternative is increased by some value a. According to Section 2.1, the RUM
choice probabilities do not change. Now have a closer look at equation (16). Adding
the constant a to every V; does alter the NNNL choice probabilities.

As a result, this model is not based on a RUM model with the deterministic parts
of the utilities defined as V; as was noted by Hensher and Greene (2002), Hunt (2000),
Koppelman and Wen (1998), and Louviere et al. (2000, section 6.5). The next section,
however, argues that it can be interpreted in RUM terms with other deterministic utili-
ties.

4.2 Interpretation of the NNNL as a RUM model

As a result of the discussion above, the parameters &j,Bj, and 7; of a NNNL model may
not be interpreted as the structural parameters of an underlying RUM model as many
researchers tend to do. But how can the parameters be interpreted? A reformulation
of the NNNL model that is motivated from the insights of Section 4.1 helps to answer
this question. Suppose the deterministic part of the utility is not defined as V; but as
a scaled version VjNNL of it,

V}NNL _ T(j)‘7j = 7(§) (&j + x;-Bj + z’%) (18)

where 7(j) is the IV parameter of the nest to which alternative j belongs. Adding the
constant a to every VjNNL means adding a/7(j) to V; and the inclusive value IV (j). As

can be easily seen from equation (17), this leaves the choice probabilities unchanged.

If ‘7] in equations (16) and (17) are replaced with the equivalent term a/T(j)VjNNL,
the equations become equivalent to the RUMNL equations (11) and (13). So, the dif-
ference between the NNNL and the RUMNL model boils down to the specification of the
utilities. While the RUMNL model directly considers the deterministic utilities and their

parameters «, 3, and -, the NNNL model specifies utility according to equation (18).

A researcher with access to NNNL software but not to RUMNL software can apply
a NNNL model and deduce the implicit RUM assumptions and parameters according to
equation (18). Depending on the nesting structure and the presence of generic variables,
this can be more or less straightforward and more or less sensible. In some cases, the
NNNL parameters “only” have to be rescaled to recover the RUM parameters. In other
cases, the NNNL model implicitly imposes restrictions that are usually undesired and
unnoticed by researchers and readers of their work. The next sections identify these
cases in order to illustrate the theoretical arguments and to provide a guideline of how
to interpret NNNL results.

4.3 Example 1: Alternative-specific coefficients only

In many applications, no generic variables enter the model. This case will turn out to
be the least problematic for NNNL estimation in the sense that no implicit restrictions
are imposed and the utility parameters can be recovered easily from the estimates.
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The NNNL utility from equation (18) can be rewritten as

VL — 1) (@ + X8, + 7%) (19)
= 7()a; +x{r())B;} + 2 {7()7;} (20)
So, with
aj = T(j)§J
B; = 7(1)B; (21)
Y= T(j)qj

the utility simplifies to the equivalent of the RUMNL specification (4):

VNNL _y o B 4l (22)

So, assume that you have estimated a nested logit model using NNNL software such
as the nlogit command of Stata. The estimates of a;, 3;, and ; do not directly have
a structural interpretation in terms of a RUM model, but the underlying parameters «;,
B;, and v; can be recovered according to equation (21).

As an illustration, Table 3 shows the results for a NNNL (model E) that corresponds
to the RUMNL model C. Both models are equivalent in terms of the log likelihood and
the implied marginal effects and elasticities. The estimated IV parameters are also
identical, but the other parameter estimates differ. For example, the RUMNL estimate
for the structural parameter of ‘incxtrain’ is Vi, ¢y train = —0-474. It can be recovered

from the NNNIL estimates by multiplying the estimated coefficient %incxtrain = —0.879
?public = 0.539, as can be

easily verified: —0.474 = —0.879 x 0.539. Table 3 does these calculations for each of
the coefficients. The third column shows the scaling factors, which correspond to the
respective estimated IV parameter. The products of these factors and the estimated
NNNL coefficient can be found in the fourth column of Table 3. Their equality to the
RUMNL parameters can be easily verified by a comparison with the RUMNL results in
the first column of Table 2.

with the estimated IV parameter of the respective nest

(Continued on next page)
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Table 3: NNNL estimates without generic variables

Recovering
Model (E) RUM params
Coef. Z Factor Par. z*
const x car —1.179 —-1.29 4.879 —=5.751 1.60
bus —4.635 —0.73 0.539 —2.499 0.77
train —2.323 —0.38 0.539 —1.253 0.40
incx car —0.072  —-0.90 4.879 —0.354 0.90
bus —1.031 —1.82 0.539 —0.556 1.94
train —1.534 —2.48 0.539 —0.827 2.90
timex air —1.440 —3.63 4.879 —7.027 5.49
car —0.272 —5.03 4.879 —1.325 5.12
bus —2.376 —4.92 0.539 —1.281 5.37
train —2.420 —4.87 0.539 —1.305 5.54
7 public 0.539 3.69
T other 4.879 3.58

Log likelihood —165.12

*: Wald test of Hp: Rescaled parameter = 0. Shown is the
square root of the test statistic asymptotically N (0, 1)

Note that the NNNL parameters cannot be interpreted in terms of RUM directly. The
relative size of the coefficients does not have any meaning before they are rescaled. The
scaling also has to be taken into account when testing hypotheses based on the param-
eters. For example, the presented asymptotic ¢ statistic for ¥jj,c,train for the NNNL

model does not correspond to the respective test for the RUMNL parameter vij ¢ train-

The tests of the RUMNL parameters can be reproduced from the NNNL estimates. The

appropriate null hypothesis Ho : ¥ ey train ¥ Tpublic = 0 can, for example, be tested

using a Wald test. The respective test statistics for all parameters are shown in the fifth

column of Table 3. They are equivalent to the asymptotic ¢ statistics of the RUMNL
model (C).°

So, in the case without generic variables, the NNNL and RUMNL models are equiv-
alent. But while the RUMNL model directly estimates the parameters of interest, the
estimated coefficients from NNNL have to be rescaled before they can be interpreted.
This rescaling also has to be taken into account when testing hypotheses. For example,
the asymptotic ¢ statistics from the output of nlogit do not correspond to tests of
intrinsically interesting hypotheses.

6The test statistic for the Wald test is asymptotically x%. The displayed value is the square root of
this statistic, which is asymptotically N(0,1) by the properties of the x? distribution with one d.f.
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4.4 Example 2: Inclusion of generic variables

As discussed above, the researcher may often want to constrain the coefficients 3;
of alternative-specific variables to be equal for each alternative. This constraint, (5):
B; =B Vj=1,...,J, could easily be imposed for the CL model B and for the RUMNL
model D. However, the corresponding constraints on the NNNL parameters according to
equation (15) are not equivalent. Instead of equal RUM parameters, they impose equal
scaled RUM parameters:

B, = B Vi=1,....J (23)
1 ~ .
& B, = TG)B Vi=1,...,J (25)

The structural parameters 3, are not restricted to be equal across alternatives. Instead,
they are constrained to be proportional to the IV parameters of their nest. The author
of this paper cannot think of a RUM model for which these constraints could make any
sense. Why should the travel time in our example be associated with more disutility
for travel modes that happen to share a nest with relatively dissimilar alternatives?

Table 4 shows NNNL estimates with time specified as a “generic” variable in the
sense of equation (23). A comparison of models F and D illustrates that the NNNL
model does not give the same estimates as the RUMNL model in this case. In particular,
the log-likelihood values differ. While the corresponding RUMNL model D shows very
different 1v parameters for both nests (0.55 vs. 4.80), the estimates of the NNNL IV
parameters from model F are relatively similar for both nests (2.54 vs. 2.64). With the
intuition developed so far, this can be readily interpreted. In the RUMNL model, the 1v
parameters solely capture the (dis)similarity of the alternatives within the corresponding
nest. While the public transportation modes appear to be quite similar, the other modes
are not. This is reflected in the RUMNL estimates. The IV parameters in the NNNL model
capture another effect: the relative importance of travel time for the alternatives within
the nest. The diverging IV parameters that are in accordance with the dissimilarity
would imply that travel time is much more important for the car alternative than for
the public transportation modes. This is not the case, as is obvious from the previous
results. So, both effects that are captured by the same NNNL IV parameters are not in
line with each other.

(Continued on next page)
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Table 4: NNNL estimates with generic variables

Model (F) (G) (H)
NNNL NNNL RUMNL
Coef. Z Coef. Z Coef. Z
const x car —2.325 —2.56 —2.556 —3.01 —6.645 —3.26
bus —2.364 —2.87 —2.398 —3.03 —6.235 —2.88
train —1.319 —-1.73 —1.358 —1.86 —-3.531 —1.89
incx car —0.138 —1.34 —0.150 —1.47 —0.390 —1.47
bus —0.196 —1.56 —0.191 —-1.54 —0.497 —1.64
train —0.352 —-3.18 —0.349 -3.24 —0.907 —-3.68
time —0.460 —6.75 —0.456 —6.73 —1.185 —5.64
timex air —1.988 —5.39 —-2.079 —6.04 —5.405 —5.46
T public 2.535 4.29 2.600 4.41 2.600 4.41
7 other 2.638 4.36 2.600 4.41 2.600 4.41
Log likelihood —194.01 —194.29 —194.29

The “generic” specification for the NNNL model implies a counterintuitive restriction
that can hardly be motivated from a RUM model. As a result, specifications like model
F should be avoided. RUM models like model D can, in general, not be estimated with
NNNL software like Stata’s nlogit command if generic variables are present. There are
exceptions, some of which are discussed in the next section.

5 Special nesting structures

Section 4.4 argued, that the specification of NNNL models with generic variables can, in
general, imply implausible binding constraints. This section discusses special cases for
which this is not true.

5.1 Equal IV parameters across all nests

If one is willing to assume a priori that the dissimilarity parameters of all nests in a
nesting level have the same value, the scaling problem of the NNNL model disappears.
The restrictions (23) imply essentially the same as the generic restrictions in a RUMNL
model according to equation 5. The presence of the generic variable does not distort
the estimates of the NNNL model, since its parameter is forced to be scaled equally in
each nest.

Table 4 shows results for a NNNL and a RUMNL model that differ from the previous
ones in that their IV parameters are constrained to be equal. The RUMNL parameters
(model H) can be deduced from the NNNL estimates by multiplying them with the
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joint IV parameter. For example, the estimated RUMNL income coefficient for the train
alternative is ¥ip ey train = —0-907. It can be recovered from the NNNL estimates as

Vincxtrain X 7/:public = —0.349 x 2.600.

The problem with this constraint is that it cannot be tested with NNNL estimates,
because the unconstrained model F is misspecified. In contrast, both RUMNL specifica-
tions are valid, and a comparison of the log-likelihood values of models D and H clearly
shows that this constraint is rejected by the data.

5.2 Degenerate nests

If a nest contains only one alternative, it is called a degenerate nest. The dissimilarity
parameter of degenerate nests is not defined in the RUMNL model. This can be easily seen
from equations (11) and (13). Since the degenerate nest B(j) only contains alternative
J, its inclusive value (11) simplifies to IV (j) = V;/7(j). The dissimilarity parameter
7(j) cancels out of the choice probability (13). This is intuitive since the concept of
(dis)similarity does not make sense with only one alternative.

In the NNNL model, however, the dissimilarity parameter of degenerate nests does
not vanish from the choice probability and may be statistically identified. As discussed
above, the identification in general comes from two sources: the dissimilarity and the
relative importance of the “generic” variables in the respective nest. Like in the RUMNL
model, the former source disappears in degenerate nests, but the latter source may be
present if generic variables enter the model. Without “generic” variables, the dissimi-
larity parameters are not jointly identified with the other parameters, so they can be
constrained to any nonzero value. The only effect of choosing this value is that the
respective parameters are scaled accordingly as discussed in Section 4.3.

If at least one “generic” variable is included in the NNNL model, the IV parameter
of degenerate nests may be identified along with the other model parameters. This
identification comes from the restriction of equally scaled parameters 3, /7(j) across
alternatives and nests, and the parameters only constitute this scaling. A conventional
approach to restrict the IV parameter to be equal to unity does not result in a model
that is consistent with the underlying RUM model.

This is demonstrated with the estimates shown in Table 5. The fact that the esti-
mated dissimilarity parameter of the nest other in Table 2 is substantially larger than
1 indicates that the alternatives air and car should not share a nest. Therefore, the
nesting structure is modified by splitting this nest into two degenerate nests. The re-
sulting nesting structure is depicted in Figure 2. In models I and J shown in Table
5, the variable time purely enters as a generic variable. The dissimilarity parameters
of the degenerate nests air and car are not identified from the RUMNL model 1. As
argued above, they cancel out in the likelihood function. In contrast, all IV parameters
are identified in the NNNL model J. It has two more free parameters than the RUMNL
model and a substantially higher likelihood value.
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PR

Public |(Car)| [ (Ain)]

| Train | | Bus ‘ | Car | ‘ Air |

Figure 2: Nesting structure for models I through L

Table 5: Degenerate Nests

Model ) J) (K) (L)
RUMNL NNNL RUMNL NNNL
Coef. 4 Coef. Z Coef. Z Coef. Z
const X car 1.140 1.97 -19.400 -2.74 -3.613 —-3.83 -3.613 —-3.83
bus 3.206 6.17 —7.283 —1.48 —1.433 —-1.56 —7.283 —1.48
train 3.371 6.19 -5.130 -1.07 —-1.010 -1.11 -5.130 —-1.07
incx car -0.011 -0.10 -0.695 —1.09 -0.130 -1.09 -0.130 -1.09
bus —-0.451 —-4.31 —-2.328 -2.74 —0.458 -3.81 —-2.328 -2.74
train —0.505 —4.83 -3.013 -3.13 —0.593 —4.86 -3.013 -3.13
time -0.165 -3.79 —-2.319 —-4.66
timex public —-0.456 —6.17 —-2.319 —4.66
air —-2.654 —-6.73 —-2.654 —-6.73
car -0.432 -6.11 -0.432 -6.11
7 public 0.073 2.96 0.197 3.78 0.197 3.78 0.197 3.78
T air — — 1.144 3.86 — —* 1 —
T car — —* 0.186 3.74 — —* 1 —**
Log likelihood —212.45 —182.57 —182.57 —182.57

*: Parameter not defined.
**: Parameter normalized to 1.

However, these IV parameters do not have anything to do with (dis)similarity. They
simply relax the constraint of equal scaling of the generic variable coefficient across
nests. To demonstrate this, models K and L shown in Table 5 do the same explicitly by
estimating a separate time coefficient for each nest. As a result, the IV parameters of the
degenerate nests are not jointly identified with the other parameters of the corresponding
nests in the NNNL model and have to be constrained to any nonzero number. Both
models result in the same log-likelihood value and the parameters are equivalent if the
NNNL parameters are rescaled with the value of the corresponding IV parameter. The
results are also equivalent to model J. This supports the assertion that the IV parameters
in model J do nothing more than relax the constraint of equal scaling.
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So, if there is only one generic variable present in the model, the NNNL estimate of
the IV parameter can be interpreted in a straightforward way, although this is probably
not the way the researcher intends to interpret Iv parameters. It is much more direct to
explicitly relax the specification of generic variables. If there is more than one generic
variable, the interpretation becomes more obscure. Then, the NNNL specification im-
poses the restriction that the coefficients of all generic variables differ proportionally
across nests. Greene (2000, example 19.18) presents a model in which this problem
appears. It is a NNNL model based on the data used in this paper. In addition to
time, the generic variable cost is included. As a result, the estimates have no clear
interpretation. The RUMNL avoids the danger of misspecification and misinterpretation.

5.3 Dummy nests

There is a way to trick NNNL software into estimating a RUM consistent nested logit
model with generic variables and without imposing equality of dissimilarity parameters.
Koppelman and Wen (1998) propose to add degenerate dummy nests and constrain
their TV parameters appropriately. This can most easily be explained by an example.

Figure 3 shows the nesting structure for the travel-mode-choice example according
to Figure 1 with appropriate dummy nests added. For each alternative, such a degener-
ate nest is specified. The corresponding IV parameters 6; through 4 are shown next to
each nest along with the respective constraint. The two public alternatives each have
a degenerate dummy nest whose IV parameters are constrained to be equal to the 1V
parameter of the other nest. Intuitively, their parameters are first scaled by 1/7pup1ic-
Then the additional dummy nest scales them by 1/7otner. For the two ‘other’ alterna-
tives, this works accordingly. As a result, the parameters of all alternatives are scaled
by 1/(Tpub1icTotner). While 71 and 75 can be allowed to differ, this does not translate
into different scaling across nests.

(Continued on next page)
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Tother

91 = Tother

Train Bus Car Air

Figure 3: Nesting structure with dummy nests

Table 6 shows the results from a specification according to this strategy. Model M
is identical to model D. It could not be reproduced by NNNL since it contains generic
variables and the IV parameters are allowed to differ between nests. Model N is a NNNL
model with the dummy nests added as described above (NNNL-DN). As can be seen, this
specification mimics the RUMNL model except for the scaling of the parameters for the
explanatory variables. The structural coefficients can be recovered from these estimates
by multiplying the estimated coefficients by both estimated IV parameters. For example,
the coefficient for incxtrain is —0.831. It can be calculated from the NNNL-DN estimates
as —0.831 = —0.317 x 4.801 x 0.545.

Table 6: Dummy nests

Model (M)=(D) (N)
RUMNL NNNL-DN
Coef. Z Coef. Z
const xcar —6.383 —2.24 —2.438 —1.51
bus —2.782 —1.03 —1.063 —0.86
train —1.786 —0.66 —0.682 —0.59
incx car —0.362 —0.93 —0.138 —0.92
bus —0.554 —1.93 —0.212 —1.58
train —0.831 —-2.91 —-0.317 —1.98
time —1.301 —5.60 —0.497 —-3.08
timex air —5.878 —5.54 —2.245 —2.69
T public 0.545 3.79 0.545 3.79
7 other 4.801 3.84 4.801 3.84
Log likelihood ——165.257 —165.26

Depending on the original nesting structure, a large number of dummy nests may be
needed for this strategy. This complicates both the specification and the estimation.”

"The command nlogitdn, introduced in Section 6.7, automates the generation of dummy nests and
appropriate constraints.




246 Nested logit models

Therefore, this strategy seems to be a real alternative to RUMNL only for researchers
who just have access to a NNNL implementation.

6 Stata implementation of RUMNL

The NNNL model is available for Stata 7.0 users as the nlogit command. As argued
in this paper, the RUMNL model is preferable in most situations. This section intro-
duces the command nlogitrum.ado that implements the RUMNL model. It was used to
produce all RUMNL estimates in this paper. Furthermore, the command nlogitdn.ado
is described. It adds dummy nests to any specified nesting structure, as discussed in
Section 5.3.

6.1 Syntax

nlogitrum depvar indepvars [weight} [if exp} [in mnge} , group(varname)
nests (altsetvarB [ . . altsetvar? altsetvar]}) [ notree nolabel clogit
level(#) nolog robust ivconstraints(siring) constraints(numlist)

mazrimize_options ]

by ...: may be used with nlogitrum; see [R] by.

fweights and iweights are allowed; see [U] 14.1.6 weight, but they are interpreted to apply
to groups as a whole and not to individual observations.

nlogitrum shares the features of all estimation commands; see [U] 23 Estimation and post-
estimation commands.

where

depvar is a dichotomous variable coded as 0 for not selected
alternatives and 1 for the selected alternative.

indepvars are the attributes of the bottom-level alternatives
(absolute or perceived) and possibly interactions of
individual attributes with the bottom-level alternatives.

altsetvarB is a categorical variable that identifies the bottom,
or final, set of all alternatives.

altsetvar? is a categorical variable that identifies the second-level
set of alternatives—these must be mutually exclusive groups
of the third-level alternatives.

altsetvari is a categorical variable that identifies the top- or

first-level set of alternatives—these alternatives must
be mutually exclusive groups of the second-level alternatives.
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6.2 Syntax for predict

predict [type] newvarname [if e:cp} [in mnge] [, statistic]

where statistic is

pb predicted probability of choosing bottom-level, or choice-set,
alternatives—each alternative identified by altsetvarB; the default.

pl predicted probability of choosing first-level alternatives—each
alternative identified by altsetvarl .

p2 predicted probability of choosing second-level alternatives—each choice

identified by altsetvar2.

p# predicted probability of choosing #-level

alternatives—each alternative identified by altsetvar#.
xb linear prediction for the bottom-level alternatives.

condpb  Pr(each bottom alternative | alternative is available after all earlier choices).
condpl Pr(each level 1 alternative) = pl.
condp2 Pr(each level 2 alternative | alternative is available after level 1 decision).
condp3 Pr(each level 3 alternative | alternative is available after stage 1

and stage 2 decisions).

condp# Pr(each level # alternative | alternative is
available after all previous stage decisions).

ivb inclusive value for the bottom-level alternatives.
ivl inclusive value for the first-level alternatives.
iv2 inclusive value for the second-level alternatives.
iv# inclusive value for the #-level alternatives.

The inclusive value for the first-level alternatives is not used in the estimation of the model,
therefore, it is not calculated.

These statistics are available both in and out of sample; type predict ... if e(sample) ...
if wanted only for the estimation sample.

6.3 Data setup

The data setup for nlogitrum is equivalent to nlogit. That is, a set of categori-
cal variables altsetvarB | ... altsetvar? altsetvari] is generated using nlogitgen. The
tree structure can be visualized using nlogittree. For a thorough description, see
[R] nlogit.

The syntax is similar to that of nlogit, with one major difference. nlogit insists
on explanatory variables for each nesting level, and nlogitrum only allows explanatory
variables to directly enter the conditional probabilities of the alternatives. There are
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three reasons for this change. The first reason is that in many cases it is hard to find
a variable that is specific to a nest instead of an alternative. So, one often ends up
throwing nonsense variables into the specification of nest-specific explanatory variables
and constraining their coefficients to zero. The second reason is that for the RUMNL
model, it does not make a difference at all if a nest-specific variable is specified for a
nest or for all alternatives within the nest. The third reason is that it greatly simplifies
the syntax and makes it equivalent to the syntax of clogit except for the additional
options.

The option d1 of nlogit does not exist for nlogitrum. The current version uses the
ml method do.

6.4 Predictions

The syntax for predict after nlogitrum is nearly identical to the syntax after nlogit
estimation. The only difference is that the options xbb and xbb# are replaced by the
option xb, since the linear prediction can only be sensibly defined for the bottom level
(the alternatives).

6.5 Options

group (varname) is not optional; it specifies the identifier variable for the groups.

nests(altsetvarB[. .. altsetvar2 altsetvar]]) is not optional; it specifies the nesting
structure.

notree specifies that the tree structure of the nested logit model is not to be displayed.

nolabel causes the numeric codes rather than the label values to be displayed in the
tree structure of the nested logit model.

clogit specifies that the initial values obtained from clogit are to be displayed.

level (#) specifies the confidence level, in percent, for confidence intervals of the coef-
ficients; see [R] level.

nolog suppresses the iteration log.

robust specifies that the Huber/White/sandwich estimator of variance is to be used
in place of the traditional calculation; see [U] 23.11 Obtaining robust variance
estimates.

ivconstraints(string) specifies the linear constraints of the inclusive value parameters.
One can constrain inclusive value parameters to be equal to each other, equal to fixed
values, etc. Inclusive value parameters are referred to by the corresponding level
labels; for instance, ivconstraints(fast = family) or ivconstraints(fast=1).
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constraints (numlist) specifies the linear constraints to be applied during estimation.
Constraints are defined using the constraint command and are numbered; see
[R] constraint. The default is to perform unconstrained estimation.

mazimize_options control the maximization process; see [R] maximize. You will likely
never need to specify any of the maximize_options, except for iterate(0) and pos-
sibly difficult. If the iteration log shows many “not concave” messages and is
taking many iterations to converge, you may want to use the difficult option to
help it converge in fewer steps.

6.6 Options for predict
Consider a nested logit model with three levels: P(ijk) = P(kl|ij) * P(j|i) x P(4).

pb, the default, calculates the probability of choosing bottom-level alternatives,
pb = P(ijk).

pl calculates the probability of choosing first-level alternatives, p1 = P(1).

p2 calculates the probability of choosing second-level alternatives,
p2 = P(ij) = P(jli)*P(i).

xbb calculates the linear prediction for the bottom-level alternatives.
xb1 calculates the linear prediction for the first-level alternatives.

xb2 calculates the linear prediction for the second-level alternatives.

condpb, condpb = P(k|ij).
condpl, condpl = P(i).
condp2, condp2 = P(j|i).

ivb calculates the inclusive value for the bottom-level alternatives:
ivb = ln(sum(exp(xbb))), where xbb is the linear prediction for the bottom-level
alternatives.

iv2 calculates the inclusive value for the second-level alternatives:
iv2 = In(sum(exp(xb2 + tau_j*ivb))), where xb2 is the linear prediction for the
second-level alternatives, ivb is the inclusive value for the bottom-level alternatives,
and tau_j are the parameters for the inclusive value.

6.7 Generating dummy nests: nlogitdn

The command nlogitdn is a wrapper for nlogit. Its syntax is equivalent to the nlogit
syntax. nlogitdn analyzes the specified nesting structure, adds appropriate dummy
nests and constraints to the specification as discussed in Section 5.3, and calls nlogit.
It was used for the estimation of model N in Table 6.
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6.8 Examples

In order to help the reader become accustomed to the syntax, the commands used
to produce the example models A through N are listed below. Most variable names
should be self-explanatory. The variable grp identifies the observations, and the variable
travel identifies the alternatives and takes the values 0 for air, 1 for train, 2 for bus,
and 3 for car. The variable mode is the 0/1 coded dependent variable. For most NMNL
models, the nesting structure is depicted in Figure 1. The respective variable type was
generated using nlogitgen. For the models I through L, the nesting structure according
to Figure 2 was generated with the variable typedeg:

. nlogitgen type = travel(public: 1 | 2, other: O | 3 )
new variable type is generated with 2 groups
1b_type:

1 public

2 other
. nlogitgen typedeg = travel(public: 1 | 2, air: 0, car: 3)
new variable typedeg is generated with 3 groups
1b_typedeg:

1 public

2 air

3 car

Since no variables enter the models on the level of the nests, the nonsense variables
nothingl and nothing2 were generated. The constraints that show up in the nlogit
commands constrain their coefficients to zero. The models themselves were estimated
using the following commands:

. * Model A:

. clogit mode asc_* hinc_x* time_x, group(grp)

. * Model B:

. clogit mode asc_* hinc_* time time_air, group(grp)

. * Model C:

. nlogitrum mode asc_* hinc_* time_*, group(grp) nests(travel type)

. * Model D:

. * Model E:

. nlogit mode (travel = asc_* hinc_* time_x ) (type=nothingl), group(grp) const(
> 1) 41

. *Model F:

. nlogit mode (travel = asc_* hinc_* time time_air ) (type=nothingl), group(grp)
> const(1)

. * Model G:

. nlogit mode (travel = asc_* hinc_* time time_air) (type=nothingl), group(grp)
> const (1) ivc(other=public)

. * Model H:

. nlogitrum mode asc_* hinc_* time time_air, group(grp) nests(travel type) ivc(
> other=public)

. * Model I:

. nlogitrum mode asc_* hinc_* time , group(grp) nests(travel typedeg) ivc(air=3
> .14159, car=3.14159)

. * Model J:
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. nlogit mode (travel = asc_* hinc_* time ) (typedeg=nothing2), group(grp) const
> (2)

. * Model K:
. nlogitrum mode asc_* hinc_* timepublic time_air time_car, group(grp) nests(tr
> avel typedeg) ivc(air=3.14159, car=3.14159)

. * Model L:
. nlogit mode (travel = asc_* hinc_* timepublic time_air time_car) (typedeg=noth
> ing2), group(grp) const(2) ivc(air=1, car=1)

. % Model M = Model E

. * Model N:
. nlogitdn mode (travel = asc_* hinc_* time time_air) (type=nothingl), group(grp
> ) const(1)

Note that the TV parameters of air and car in models I and K do not actually
exist as discussed in Section 5.2. Since the algorithm does not realize this beforehand,
these parameters have to be restricted to an arbitrary nonzero number (in the examples,
3.14159 was chosen to illustrate the arbitrariness).

7 Conclusions

The name “nested logit” has been given to different models. This paper argues and
demonstrates that the seemingly slight difference in the specification of the outcome
probabilities can lead to substantially different results and interpretations thereof. Re-
searchers using a nested logit model (and the readers of their results) should be aware
of the actual variant used.

One of these variants (called RUMNL in this paper) is derived from a random utility
maximization (RUM) model that is prevalent in econometrics. The estimated coefficients
can be readily interpreted and simple tests like asymptotic ¢ tests directly test hypothe-
ses of interest. This holds irrespective of the type of included explanatory variables and
specified nesting structure.

The alternative (called NNNL in this paper) implies a varying scaling of the under-
lying utilities across alternatives. Depending on the model specification, it can give
equivalent results to those of RUMNL, and the structural parameters can be recovered.
But in order to do so, the estimated coefficients have to be rescaled, and this also has
to be kept in mind for hypothesis tests. This is the case if only alternative-specific
parameters enter the model. If generic variables (variables with a common coefficient
across alternatives) are present, the NNNL model places restrictions on the parameters
that are often counterintuitive and undesired. The reason is that the inclusive value
parameters in this case not only constitute the (dis)similarities of the alternatives, but
also the different scaling of the generic variable coefficients across nests.

Stata 7.0 comes with an implementation of the NNNL model. This paper introduces
the Stata package nlogitrum, which implements the preferred RUMNL model.
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