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Abstract 
Previous literature on volatility links between food and energy prices is scarce and mainly based on 
parametric approaches. We assess this issue by using a semiparametric GARCH model recently proposed 
by Long et al. (2009), which is essentially a nonparametric correction of the parametric conditional 
covariance function. We focus on price links between crude oil, ethanol and sugar prices in Brazil. 
Results suggest strong volatility links between the prices studied. They also suggest that parametric 
approximations of the conditional covariance matrix may lead to misleading results and can be improved 
using nonparametric techniques. 
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1. Introduction 
The global emergence of biofuel production has been a disruptive event for energy and 
agricultural markets, causing significant changes in the liquid fuels market and in the 
demand for food products that are used to provide a portion of worldwide liquid fuel 
supply. Several research papers have attempted to characterize the nature of this event 
from an economic point of view by assessing, among other topics, the effects of the 
ethanol industry on economic welfare (Babcock, 2008), agricultural land allocation and 
values (Henderson and Gloy, 2009), and agricultural commodity prices (Balcombe and 
Rapsomanikis, 2008; de Gorter and Just, 2008; McNew and Griffith, 2005). 

Because of its social and political relevance, the link between energy and 
agricultural commodity prices has received considerable attention. Most research has 
shown that the outbreak of the ethanol industry has strengthened the links between food 
and energy prices. Most of the analyses working on this topic are methodologically 
founded on standard supply and demand frameworks and partial or general equilibrium 
models calibrated to current conditions (Babcock, 2008; Giesecke et al., 2009). A rather 
common characteristic of these analyses is that they focus on price-level links. The 
studies of price volatility interactions between energy and food markets are, however, 
very scarce. 

An increased correlation between food and energy prices is likely to yield 
stronger volatility spillovers between these prices. Further, changes in price levels and 
volatility may render traditional risk management tools unuseful and may require higher 
economic margins to compensate for increased risk levels. It is thus relevant to assess 
the impacts of the emergence of ethanol, not only on price level links, but also on price 
variability relationships.  

McPhail and Babcock (2008) develop a stochastic equilibrium model of the U.S. 
corn market to assess the impacts of the ethanol industry on prices and welfare. They 
conclude that ethanol markets have increased corn price levels and volatility. Zhang et 
al. (2009) model price volatility interactions between U.S. food and energy markets 
using a MGARCH model. They find that while ethanol price volatility is influenced by 
the feedstock price volatility, corn price levels and volatility do not depend on ethanol’s. 
The work by Serra et al. (2010) assesses volatility interactions within the Brazilian 
ethanol markets by using Seo’s (2007) parametric MGARCH model. They find relevant 
volatility spillovers across markets flowing in multiple directions. 

Both Serra et al. (2010) and Zhang et al. (2009) articles model volatility of 
multiple economic time-series using parametric MGARCH models that have two 
characteristic features. First, they assume a normal distribution of the model errors and 
second, the conditional covariance matrix is assumed to be linear. The literature on 
economic data volatility has widely rejected normality (Longin and Solnik, 2001). 
Further, nonlinear patterns in conditional covariance have been widely observed in the 
financial literature (Long et al., 2009). Asymmetric volatility responses to positive and 
negative market shocks have also been identified.  

Several non-linear volatility functions have been proposed to allow for non-
constant, non-linear conditional correlations over time. The works by Cappiello et al. 
(2003), Lai et al. (2009), Pelletier (2006) are built upon parametric nonlinear GARCH 
models. Nonparametric and semi-parametric approximations to GARCH modeling have 
also been proposed (Audrino, 2006; Härdle and Tsybakov, 1997). Long et al. (2009) 
developed a semiparametric multivariate volatility model that consists of a 
nonparametric correction of the parametric conditional covariance estimator. In contrast 
with previous non and semi-parametric research, Long et al. (2009) jointly model 
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multivariate volatilities. The proposal is robust to potential misspecifications of the 
error density and the parametric conditional covariance function.  

We study volatility interactions between energy and food prices by using Long 
et al.’s (2009) proposal. In a first stage, the reliability of a parametric approximation to 
the conditional covariance functional form is assessed. In the second stage, such 
parametric estimator is adjusted using Long et al.’s (2009) nonparametric correction. 
We focus on the Brazilian ethanol industry. While the U.S. is currently leading 
worldwide ethanol production, the Brazilian case allows assessing price links within a 
more consolidated and mature industry, thus yielding results that are less dependent on 
conjunctural events. We contribute to the literature on volatility interactions between 
energy and food markets by using a semi-parametric method that overcomes two of the 
most important shortcomings of traditional MGARCH models: the assumption of 
normally distributed errors and linearity of the conditional covariance matrix.  

Global ethanol markets have recently been affected by important market shocks. 
Worldwide ethanol demand surged in the mid 2000s partly as a result of major U.S. 
refiners switching from MTBE to ethanol, used as an oxygenate additive. High crude oil 
prices also contributed to increased ethanol demand. More recently however, weak oil 
prices and the global financial crisis have undermined investments in ethanol projects 
and reduced the ethanol-derived demand for feedstocks. The semi-parametric model 
proposed by Long et al. (2009) allows for changing behavior of volatility relationships 
depending on the state of the world, or the prevailing economic regime.  
 
2. The sugarcane ethanol industry 
The global ethanol industry experienced an outbreak by mid 2000s due to a policy-
driven surge in U.S. demand. Other ethanol demand boosting incentives include crude 
oil prices that reached historical highs in the second half of the 2000s and motivated the 
use of alternative fuels, the worldwide promotion of policies to address global warming 
by increasing the use of renewable fuels, or the endorsement of  biofuels as a means of 
increasing energy security, promoting economic growth and rural development. 

Brazil is currently the leading worldwide sugarcane ethanol producer. The 
ethanol industry was initially supported by the ProÁlcool program, a government 
reaction to the petrol shortage during the 1973 oil crisis (Goldemberg, 2006) and that 
provided different policy measures to stimulate both the demand and the supply of 
ethanol. The program was eliminated in the 1990s and currently, though demand 
incentives are still applied, no direct control over ethanol production or trade exists.  

The Brazilian ethanol industry is estimated to have the lowest ethanol production 
costs in the world (Martines-Filho et al., 2006; OECD, 2006). These costs are strongly 
determined by the costs of sugarcane production and processing and the rate of 
sugarcane conversion into ethanol. Investments in sugarcane agronomic research that 
have led to increased sugarcane yields and quality, have played a key role in reducing 
ethanol production costs. The use of sugarcane bagasse as an energy source by the 
ethanol industry instead of fossil fuels, also contributes to reduced costs.  

The Brazilian ethanol industry is not only characterized by its competitiveness, 
but also by its flexibility. A large number of ethanol plants operate on a large scale and 
use a dual technology that allows switching from ethanol to sugar production and vice-
versa, depending on market prices. A sound infrastructure for handling and distributing 
ethanol and the steady increase in flex fuel vehicle (FFV) sales, allow consumers to 
shift from high to low ethanol-gasoline blends depending on the prices at the pump.  

Both the outburst of the international ethanol market and the strong internal 
demand for ethanol, mainly driven by the development and consumer acceptance of 
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flex-fuel vehicles, have led to an expansion of ethanol production in Brazil (De Almeida 
et al., 2007). In 2007, 491 million tons of sugarcane were harvested in Brazil from 6,5 
million  hectares. About 70% of sugarcane is directly cultivated by the sugar and 
ethanol mills in Brazil (around 370), while the remaining 30% is cultivated by around 
70 thousand independent farmers. A strong ethanol demand and less attractive sugar 
prices have led the industry to divert increasing quantities of sugarcane to ethanol 
production. In the 2007/08 marketing year, on the order of 55% of sugarcane was 
processed into ethanol (USDA, 2008). About 65% of sugar production is exported to 
international markets where Brazil plays a leading role. Brazil ethanol production in the 
2007/08 marketing year was on the order of 22,4 billion liters. Brazilian ethanol exports 
were around 3.6 billion liters, with the U.S. and Europe being the main destinations.  

While until 1997 ethanol prices were heavily controlled by the government, 
from 2002 on they fluctuate freely. These prices, however, receive government 
incentives in the form of tax exemptions that enhance ethanol competitiveness (De 
Almeida et al., 2007). The Brazilian ethanol price has a strong dependence on sugarcane 
harvest and harvest yields. It also depends heavily on crude oil prices. During the last 
decade, specially in the second half of the 2000s, Brazilian ethanol prices have 
experienced considerable changes. Relevant drivers of these changes are the increases in 
worldwide and internal ethanol demand, as well as the important changes in oil prices.  

Our analysis focuses on assessing volatility links between the prices of oil, sugar 
and ethanol in the period from July 2000 to November 2009. The period studied 
comprises the ethanol boom in the mid 2000s. From mid 2008 on, the economic scene 
was characterized by an economic and financial crisis. The collapse in crude oil prices 
in the second half of 2008 constrained ethanol demand and weakened ethanol prices. 
Ethanol prices recovered during 2009 as a result of global sugar production being 
unable to cope with demand and resulting in strong increases in sugar prices. The 
decline in crude oil prices, the economic crisis and the high feedstock prices, have 
mined the short-term forecasts of ethanol with millers currently focusing on more 
attractive returns from export sugar (International Sugar Organization, 2009). As noted 
above, the flexible semi-parametric techniques employed in this research, are specially 
suited to allow for time-changing price behavior.  

 
3. Methodology 
Our methodological approach to assessing volatility links within the Brazilian ethanol 
industry is based on Long et al.’s (2009) semiparametric GARCH model. The 
application of an innovative methodology to shed light on ethanol industry price 
behavior is a contribution of our work. The semiparametric estimator consists of a 
nonparametric correction of the parametric estimator of the conditional covariance. 
Suppose that the k-dimensional vector of time series 1( ,..., ) 't t ktr rr , 1,...,t T , follows 

the stochastic process 
1 ( , ; )t t- t t r P HF  , where 1t-F  is the information set at time 1t  , 

1( )t t t-E r F , 1( ' )t t t t-E rr F , P  is the joint cumulative distribution function (CDF) of 

tr , and   includes the distribution parameters.  

It is assumed that t  is zero (or that standardization has been applied). The 

model for tr  can be written as 1 2
t t tr H e , being -1 2

t t te H r  a standardized error with 

1( ) 0t t-E e F  and 1( ' )t t t- kE e e IF . No assumption on the distribution of te  is necessary 

to derive the semiparametric estimator. Matrix 1 2
tH  is the symmetric square root of tH . 
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Let a parametric estimation of tH  be denoted by ( )p,t H . The semiparametric 

estimator of the conditional covariance matrix is obtained as follows  
1 2 1 2

1( ) ( ) ( ) ' ( )t p,t t t t - p,tE     H = H e e HF , where  -1 2
( )t tp,t
 e H r  is the standardized 

error derived from the parametric model. 1( ) ( ) 't t t -E    e e F  is the nonparametric 

component  of tH  which is derived assuming that the conditional expectation of '
t te e  

depends on the current information set only through the q-dimensional vector 

1( ,..., ) 't t qtx x x 1t-F .  Hence,  1
'

t t t - tnp
E    e e G xF . 

 The semiparametric estimator can thus be expressed as: 1 2 1 2
,( ) ( )t p,t np t p,t H = H G H  

To estimate tH , the following two stage method is implemented.  First, an estimate of 

 , ̂ , is obtained by parametrically estimating the conditional covariance matrix 

 p,t H . The standardized residuals are then defined as -1 2ˆˆ t p,t te H r . In the second stage,  

1,
'

t t t- tE   e e x xF
 
is obtained using the nonparametric Nadaraya-Watson estimator as 

follows:      ,
ˆ ˆ ˆ

T T'
np t s s s ss=1 s=1

K K h hG x = e e x - x x - x , where  sKh x -x  is a 

multiplicative kernel function, and  1,..., qh hh  is a vector of bandwidth parameters. 

The semiparametric estimator of the conditional covariance matrix is defined as 
1 2 1 2

,
ˆˆ ˆ ˆ( ) ( )sp,t p,t np t p,t H = H G H . 

 The empirical implementation sets 1t t-x r  and uses a Gaussian kernel. The 

bandwidth is defined as 1/6ˆi j ih c T  , where ˆ i  is the sample standard deviation of itr , 

T  is the number of observations and jc  is selected from 0.5, 0.6,…,5 through a grid 

search process that minimizes the minimum sum of squares (MSE) loss function. This 
function is a measure of the difference between the true conditional covariance matrix 
and its estimates. Since the true conditional covariance matrix is not known, Long et al. 
(2009) use the squared  tr  vector. 

 Based on the semiparametric estimator, Long et al. (2009) propose a test for the 
correct specification of the parametric conditional covariance estimator. If the 
parametric model was correctly specified, 

t p,tH = H  and according to (2) matrix 
,np tG  

would be equal to the identity matrix. Long et al. (2009) test the null hypothesis  
 ,np t t tG x I  against the alternative    1 ,: Pr 1np t t tH  G x I .  

 
4. Results 
Our empirical analysis is based on logarithmic transformations of weekly international 
crude oil prices ( 1p ), as well as on Brazilian ethanol ( 2p ) and sugar ( 3p ) prices. Data 

sources are the Center for Advanced Studies on Applied Economics that provided 
Brazilian ethanol and sugar prices, and the U.S. Energy Information Administration that 
facilitated crude oil prices. All prices are expressed in U.S. dollars and are observed 
from July 2000 to November 2009.  

Our analysis is of a pair-wise nature. Pair-wise analyses are very common in the 
price transmission literature and are further justified because of the “curse of 
dimensionality” that affects nonparametric estimators (Fan, 2000). We consider two 
pairs of prices: oil-ethanol (model 1) and ethanol-sugar (model 2). Standard unit root 
tests confirm the presence of a unit root in each price series. Engle and Granger (1987) 
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and Johansen (1988) tests provide evidence that the pairs of prices are cointegrated. By 
normalizing with respect to the ethanol price, cointegration relationships can be 
expressed as follows (where numbers in parenthesis are standard errors): 
 

2 10.453 2.872 0;

      (0.022)    (0.083)

p p  

    

2 30.777 3.161 0

      (0.022)    (0.057)

p p  

 (1) 
The positive long-run relationship between ethanol and sugar prices is expected given 
the fact that sugar represents a conspicuous part of ethanol production costs. Further, the 
long-run positive link between ethanol and crude oil prices is also expected given the 
use of fossil fuel as an input into blended gasoline. 
 The semiparametric estimator of the conditional covariance matrix is derived in 
two stages. In the first stage a MGARCH model is estimated parametrically. A vector 
error correction model is used to examine the conditional mean (equation 2) and a 
multivariate BEKK-GARCH specification (Engle and Kroner, 1995) is employed to 
analyze the conditional heteroscedasticity (equation 3). Conditional mean and 
heteroscedasticity equations are expressed as follows: 

 

1 1 1 2 2t t t tECT        p p p    (2) 

1 1 1' ' ' 'p,t t t p,t-   H CC A r r A B H B  (3) 

 
where tp  is a 2 1  vector of prices in first differences, 

1tECT   is a lagged error 

correction term,   ( 2 1 ) shows the adjustment of each price to deviations from the 
long-run parity and ,  1, 2ι i   ( 2 2 ) shows the short-run price dynamics. Matrix A (

2 2 ) captures the influence of past market shocks on price volatility, while B  ( 2 2 ) 
models the influence of past volatility on current volatility. C is a 2 2  lower triangular 
matrix. The conditional mean and variance models are jointly estimated using standard 
maximum likelihood procedures. The errors of the parametric model are then used in a 
second stage to derive the standardized errors necessary to build the semiparametric 
estimator. 
 The conditional mean equations derived from the estimation of the BEKK model 
are presented in tables 1 and 2 for the crude oil-ethanol (model 1) and the sugar – 
ethanol (model 2) pairs of prices, respectively. Tables 3 and 4 present the conditional 
variances for these models. The covariance stationarity condition is checked for both 
models and all eigenvalues are found to be less than one in modulus. The   parameters 
that are presented in table 1 suggest that, while ethanol price levels adjust to correct 
disequilibriums from the oil – ethanol long – run parity, crude oil prices can be 
considered as weakly exogenous, which is compatible with findings in Balcome and 
Rapsomanikis (2008) and Serra et al. (2010). This result is expected since, relative to 
the international crude oil market size, the Brazilian ethanol market is small.  

The conditional variance equations are presented in table 3. Crude oil price 
volatility 11th  increases with its own lagged volatility ( 11 1th  ) and with shocks occurring 

in the crude oil market ( 2
1 1tr  ). Lagged ethanol price volatility does not have an influence 

on crude oil price volatility. Further, lagged ethanol market shocks only affect crude oil 
price volatility indirectly through the term 1 1 2 1t tr r  . The small influence of ethanol on 

crude oil price instability is not surprising given the weak exogeneity of crude oil with 
respect to the equilibrium relationship. The volatility in ethanol prices ( 22th ) is found to 
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increase with increases in its own lagged volatility ( 22 1th  ), as well as with shocks 

occurring in the crude oil and ethanol markets ( 2
1 1tr  , 2

2 1tr   and 1 1 2 1t tr r   are significant).  

 The Long et al.’s (2009) test for the correct specification of the parametric 
conditional covariance estimator, that takes the value of 0.76, allows rejecting the null 
of correct specification at the 8% significance level, and motivates the use of the 
semiparametric estimator so as to capture information still remaining in the residuals of 
the parametric model. Figures 1 and 2 show, respectively, to what extent the parameters 
in 11th  and 22th  can vary depending on the prevalent economic conditions. More 

specifically, these figures present the histogram of the nonparametric correction of the 
parameters for 11 1th  , 22 1th  , 2

1 1tr   and 2
2 1tr   that show the direct volatility links between 

crude oil and ethanol markets. 
Figure 1 confirms the relevance of using the nonparametric correction proposed 

by Long et al. (2009) through the heterogeneity in the localized parameter estimates in 
the crude oil price variance ( 11th ). Parameter heterogeneity reduces the reliability of 

previous research estimates fully based on parametric methods. While the parametric 
BEKK model suggests that an increase in one unit in past crude oil price volatility 
contributes to increase current crude oil price volatility by 0.88, figure 1a shows that the 
resulting increase can indeed fluctuate from 0 to 3. The effects of crude oil market 
shocks on crude oil price volatility (figure 1c) are also rather disperse. Figures 1b and 
1d confirm parametric results by suggesting, through the magnitude of the parameters, a 
small capacity of ethanol markets to induce volatility in crude oil prices.  

Parameter dispersion is less acute in the ethanol price variance equation ( 22th ). 

The parametric analysis shows a statistically significant impact of crude oil on ethanol 
price variability through crude oil market shocks. Figure 2c shows that the most 
frequent effect of past crude oil market shocks on ethanol price volatility is on the order 
of  0.05, though the value can fluctuate from 0 to 0.5. Figure 2b suggests that an 
increase in one unit in past ethanol price volatility can result in an increase in current 
volatility that ranges between 0 to 5, with the most frequent value being 0.5.  

The   parameters in model 2 (table 2) suggest that the sugar price can be 
considered as weakly exogenous with respect to the ethanol – sugar long – run parity. 
Hence, it is the ethanol price that reacts to re-equilibrate the system. This result is 
compatible with Balcome and Rapsomanikis’ (2008) and Serra et al.’s (2010) results.  
The exogeneity of sugar with respect to the long-run parity is an indicator that sugar 
prices lead ethanol prices. Sugar prices in Brazil have a very strong dependence on 
agricultural yields, as well as on international sugar prices. This helps to explain the 
decline in Brazilian ethanol production after the increase in international sugar prices in 
1988 that led sugarcane mills to divert their production to sugar. Sugar prices were not 
affected by the decline in energy prices during part of the year 2008 thanks to tight 
worldwide sugarcane supplies that supported sugar prices. Hence, the finding that sugar 
prices are weakly exogenous for long-run parameters can also be explained through the 
relevance of Brazilian sugar exports and the dominant role that Brazil plays in the 
international sugar market (according to the USDA Foreign Agricultural Service, 
Brazilian exports represented more that 40% of world’s sugar exports in 2006).   

The conditional variance equations for model 2 are presented in table 4. Results 
suggest that volatility in the sugar price 33th  increases with its own lagged volatility. An 

increase in ethanol price volatility only affects 33th  indirectly through the covariance 

term.  Shocks originating in the sugar market have also an influence on sugar price 
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volatility, while ethanol market shocks only have an indirect influence through 3 1 2 1t tr r  . 

Lagged instability in sugar and ethanol markets ( 33 1th  , 22 1th  and 32 1th  ) is found to 

increase ethanol price volatility ( 22th ). Shocks occurring either in the sugar or ethanol 

markets are also found to have an impact on ethanol price volatility.   
 Long et al.’s (2009) test for the correct specification of the parametric 
conditional covariance estimator, that takes the value of 15.01, allows rejecting the null 
of correct specification at the 2% significance level suggesting, once more, that relying 
on parametric MGARCH models to assess volatility interactions can lead to misleading 
results. Figures 3 and 4 show to what extent the parameters in 33th  and 22th  from model 

2 can vary depending on the prevalent economic conditions. While the parametric 
model suggests that an increase in past sugar volatility in one unit will cause an increase 
in current volatility equal to 0.78, figure 3a shows that the resulting increase can indeed 
fluctuate from 0.50 to 2.90, being the most frequent increase around 0.70. Figures 3b 
and 4d confirm, in accordance with the parametric results and through the small 
parameter values, the reduced capacity of ethanol markets to influence sugar price 
volatility. Figures [4a] (4c) show that the impact of [sugar price volatility] (sugar 
market shocks) on ethanol’s can range from [0.05 to 1.15] (0 to 1.95).  
 
5. Concluding remarks 
We assess volatility spillovers in Brazilian ethanol markets by using Long et al.’s 
(2009) semiparametric estimator of the conditional covariance matrix. We use weekly 
international crude oil prices and Brazilian ethanol and sugar prices observed from July 
2000 to November 2009. A pair wise analysis is carried out to avoid the “curse of 
dimensionality” affecting nonparametric estimators. 
 Our results suggest that ethanol and crude oil, as well as ethanol and sugar price 
levels are linked in the long-run by an equilibrium parity. These long-run price links 
show that ethanol prices increase with an increase in both crude oil and sugar prices. 
Further, while ethanol prices react to deviations from each long-run parity and respond 
to re-equilibrate the market, sugar and crude oil prices are weakly exogenous for long-
run parameters. Crude oil and sugar prices thus determine ethanol prices.  
 With regards to volatility spillovers, parametric results suggest that crude oil 
market shocks can increase ethanol price volatility. Further, the ethanol price volatility 
is influenced by the sugar price volatility through the variance term. Shocks affecting 
the sugar market have also an impact on ethanol price volatility. Compatible with crude 
oil and sugar price levels being exogenous for long-run parameters, ethanol markets are 
found to have a reduced capacity to increase instability in sugar and crude oil markets. 
Another important result from our paper is that an assessment of volatility links based 
solely on parametric MGARCH models can lead to misleading results. We show the 
relevance of using the nonparametric correction proposed by Long et al. (2009) through 
the heterogeneity in the localized parameter estimates. 
 Our results have important policy implications. Ethanol markets are unable to 
affect feedstock price levels in the long-run. Hence, ethanol prices do not seem to 
induce an increase in food prices, for the markets and time period considered. This is 
compatible with large amounts of land being available for sugarcane cultivation in 
Brazil.  Consistently with these results, we show that ethanol markets have a small 
capacity to induce volatility in feedstock prices, thus reducing the likelihood of 
instability transmission from energy to food markets. Hence, concerns regarding 
Brazilian ethanol markets bringing higher and more volatile food prices do not seem 
founded in light of our results.   
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Table 1. Crude oil ( 1p ) – ethanol ( 2p ) MGARCH model: mean equation 

Short-run dynamics parameters:  

1 1 -1 1 -21 111 112 211 212
1

2 2 -1 2 -22 121 122 221 222

t t t
t

t t t

p p p
EC T

p p p

    
    

            
                        

 

 

 1i   2i   

i  -6.786e-4 (0.007) -0.023** (0.006) 

11i  0.243** (0.045) 0.048 (0.042) 

12i  -0.045 (0.034) 0.531** (0.049) 

21i  -0.006 (0.042) -0.082* (0.043) 

22 i  0.013 (0.036) -0.017 (0.049) 

Test for the correct specification of the parametric conditional 
covariance estimator (p value) 

0.763 
(0.080) 

*(**) denotes statistical significance at the 10(5) per cent significance level 
 
 
Table 2. Sugar ( 3p ) – ethanol ( 2p ) MGARCH model: mean equations 

Short-run dynamics parameters:  

3 133 132 3 -1 233 232 3 -23
1

2 123 122 2 -1 223 222 2 -22

t t t
t

t t t

p p p
ECT

p p p

   
    

            
                        

 

 

 3i   2i   

i  -0.001 (0.006) -0.025** (0.008) 

13i  0.650** (0.046) -0.011 (0.034) 

12i  0.035 (0.060) 0.573** (0.048) 

23 i  -0.144**(0.044) 0.065* (0.033) 

22 i  0.150** (0.053) -0.107** (0.038) 

Test for the correct specification of the parametric conditional 
covariance estimator (p value) 

15.015 
(0.020) 

*(**) denotes statistical significance at the 10(5) per cent significance level 
 
 
Table 3. Conditional variance equations. Crude oil ( 1p )– ethanol ( 2p ) model  

11th   9.423e-
5**  

+0.879**

11 1th   

-0.056

12 1th   

+7.001e-4

22 1th   

+0.053**
2

1 1tr   

+0.101**

1 1 2 1t tr r   

+8.516e-3
2

2 1tr   

22th   
2.896e-
4** 

+8.819e-4

11 1th   

-0.041

12 1th   

+0.482**

22 1th   

+0.048**
2

1 1tr   

-0.252**

1 1 2 1t tr r   

+0.328**
2

2 1tr   

*(**) denotes statistical significance at the 10(5) per cent significance level 
 
 
Table 4. Conditional variance. Sugar ( 3p )– ethanol ( 2p ) model  

33th   
4.022e-
5**  

+0.779**

33 1th   

+0.557**

32 1th   

+1.331e-3

22 1th   

+0.124**
2

3 1tr   

-0.290**

3 1 2 1t tr r   

+1.100e-4
2

2 1tr   

22th   
2.506e-
4** 

+0.099*

33 1th   

+0.317**

32 1th   

+0.254**

22 1th   

+0.169**
2

3 1tr   

-0.692**

3 1 2 1t tr r   

+0.707**
2

2 1tr   

*(**) denotes statistical significance at the 10(5) per cent significance level 
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Figure 1. Distribution of localized estimates of the parameters of the conditional 
variances. Crude oil ( 1p )– ethanol ( 2p ) model. Crude oil price variance 11th  

 
 

 
 
 
Figure 2. Distribution of localized estimates of the parameters of the conditional 
variances. Crude oil ( 1p )– ethanol ( 2p ) model. Ethanol price variance 22th  
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Figure 3. Distribution of localized estimates of the parameters of the conditional 
variances. Sugar ( 3p )– ethanol ( 2p ) model. Sugar price variance 33th  
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Figure 4. Distribution of localized estimates of the parameters of the conditional 
variances. Sugar ( 3p )– ethanol ( 2p ) model. Ethanol price variance 22th  
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