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Abstract
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1. Introduction

The global emergence of biofuel production has been a disruptive event for energy and
agricultural markets, causing significant changes in the liquid fuels market and in the
demand for food products that are used to provide a portion of worldwide liquid fuel
supply. Several research papers have attempted to characterize the nature of this event
from an economic point of view by assessing, among other topics, the effects of the
ethanol industry on economic welfare (Babcock, 2008), agricultural land allocation and
values (Henderson and Gloy, 2009), and agricultural commodity prices (Balcombe and
Rapsomanikis, 2008; de Gorter and Just, 2008; McNew and Griffith, 2005).

Because of its social and political relevance, the link between energy and
agricultural commodity prices has received considerable attention. Most research has
shown that the outbreak of the ethanol industry has strengthened the links between food
and energy prices. Most of the analyses working on this topic are methodologically
founded on standard supply and demand frameworks and partial or general equilibrium
models calibrated to current conditions (Babcock, 2008; Giesecke et al., 2009). A rather
common characteristic of these analyses is that they focus on price-level links. The
studies of price volatility interactions between energy and food markets are, however,
very scarce.

An increased correlation between food and energy prices is likely to yield
stronger volatility spillovers between these prices. Further, changes in price levels and
volatility may render traditional risk management tools unuseful and may require higher
economic margins to compensate for increased risk levels. It is thus relevant to assess
the impacts of the emergence of ethanol, not only on price level links, but also on price
variability relationships.

McPhail and Babcock (2008) develop a stochastic equilibrium model of the U.S.
corn market to assess the impacts of the ethanol industry on prices and welfare. They
conclude that ethanol markets have increased corn price levels and volatility. Zhang et
al. (2009) model price volatility interactions between U.S. food and energy markets
using a MGARCH model. They find that while ethanol price volatility is influenced by
the feedstock price volatility, corn price levels and volatility do not depend on ethanol’s.
The work by Serra et al. (2010) assesses volatility interactions within the Brazilian
ethanol markets by using Seo’s (2007) parametric MGARCH model. They find relevant
volatility spillovers across markets flowing in multiple directions.

Both Serra et al. (2010) and Zhang et al. (2009) articles model volatility of
multiple economic time-series using parametric MGARCH models that have two
characteristic features. First, they assume a normal distribution of the model errors and
second, the conditional covariance matrix is assumed to be linear. The literature on
economic data volatility has widely rejected normality (Longin and Solnik, 2001).
Further, nonlinear patterns in conditional covariance have been widely observed in the
financial literature (Long et al., 2009). Asymmetric volatility responses to positive and
negative market shocks have also been identified.

Several non-linear volatility functions have been proposed to allow for non-
constant, non-linear conditional correlations over time. The works by Cappiello et al.
(2003), Lai et al. (2009), Pelletier (2006) are built upon parametric nonlinear GARCH
models. Nonparametric and semi-parametric approximations to GARCH modeling have
also been proposed (Audrino, 2006; Hardle and Tsybakov, 1997). Long et al. (2009)
developed a semiparametric multivariate volatility model that consists of a
nonparametric correction of the parametric conditional covariance estimator. In contrast
with previous non and semi-parametric research, Long et al. (2009) jointly model



multivariate volatilities. The proposal is robust to potential misspecifications of the
error density and the parametric conditional covariance function.

We study volatility interactions between energy and food prices by using Long
et al.’s (2009) proposal. In a first stage, the reliability of a parametric approximation to
the conditional covariance functional form is assessed. In the second stage, such
parametric estimator is adjusted using Long et al.”’s (2009) nonparametric correction.
We focus on the Brazilian ethanol industry. While the U.S. is currently leading
worldwide ethanol production, the Brazilian case allows assessing price links within a
more consolidated and mature industry, thus yielding results that are less dependent on
conjunctural events. We contribute to the literature on volatility interactions between
energy and food markets by using a semi-parametric method that overcomes two of the
most important shortcomings of traditional MGARCH maodels: the assumption of
normally distributed errors and linearity of the conditional covariance matrix.

Global ethanol markets have recently been affected by important market shocks.
Worldwide ethanol demand surged in the mid 2000s partly as a result of major U.S.
refiners switching from MTBE to ethanol, used as an oxygenate additive. High crude oil
prices also contributed to increased ethanol demand. More recently however, weak oil
prices and the global financial crisis have undermined investments in ethanol projects
and reduced the ethanol-derived demand for feedstocks. The semi-parametric model
proposed by Long et al. (2009) allows for changing behavior of volatility relationships
depending on the state of the world, or the prevailing economic regime.

2. The sugarcane ethanol industry

The global ethanol industry experienced an outbreak by mid 2000s due to a policy-
driven surge in U.S. demand. Other ethanol demand boosting incentives include crude
oil prices that reached historical highs in the second half of the 2000s and motivated the
use of alternative fuels, the worldwide promotion of policies to address global warming
by increasing the use of renewable fuels, or the endorsement of biofuels as a means of
increasing energy security, promoting economic growth and rural development.

Brazil is currently the leading worldwide sugarcane ethanol producer. The
ethanol industry was initially supported by the ProAlcool program, a government
reaction to the petrol shortage during the 1973 oil crisis (Goldemberg, 2006) and that
provided different policy measures to stimulate both the demand and the supply of
ethanol. The program was eliminated in the 1990s and currently, though demand
incentives are still applied, no direct control over ethanol production or trade exists.

The Brazilian ethanol industry is estimated to have the lowest ethanol production
costs in the world (Martines-Filho et al., 2006; OECD, 2006). These costs are strongly
determined by the costs of sugarcane production and processing and the rate of
sugarcane conversion into ethanol. Investments in sugarcane agronomic research that
have led to increased sugarcane yields and quality, have played a key role in reducing
ethanol production costs. The use of sugarcane bagasse as an energy source by the
ethanol industry instead of fossil fuels, also contributes to reduced costs.

The Brazilian ethanol industry is not only characterized by its competitiveness,
but also by its flexibility. A large number of ethanol plants operate on a large scale and
use a dual technology that allows switching from ethanol to sugar production and vice-
versa, depending on market prices. A sound infrastructure for handling and distributing
ethanol and the steady increase in flex fuel vehicle (FFV) sales, allow consumers to
shift from high to low ethanol-gasoline blends depending on the prices at the pump.

Both the outburst of the international ethanol market and the strong internal
demand for ethanol, mainly driven by the development and consumer acceptance of



flex-fuel vehicles, have led to an expansion of ethanol production in Brazil (De Almeida
etal., 2007). In 2007, 491 million tons of sugarcane were harvested in Brazil from 6,5
million hectares. About 70% of sugarcane is directly cultivated by the sugar and
ethanol mills in Brazil (around 370), while the remaining 30% is cultivated by around
70 thousand independent farmers. A strong ethanol demand and less attractive sugar
prices have led the industry to divert increasing quantities of sugarcane to ethanol
production. In the 2007/08 marketing year, on the order of 55% of sugarcane was
processed into ethanol (USDA, 2008). About 65% of sugar production is exported to
international markets where Brazil plays a leading role. Brazil ethanol production in the
2007/08 marketing year was on the order of 22,4 billion liters. Brazilian ethanol exports
were around 3.6 billion liters, with the U.S. and Europe being the main destinations.

While until 1997 ethanol prices were heavily controlled by the government,
from 2002 on they fluctuate freely. These prices, however, receive government
incentives in the form of tax exemptions that enhance ethanol competitiveness (De
Almeida et al., 2007). The Brazilian ethanol price has a strong dependence on sugarcane
harvest and harvest yields. It also depends heavily on crude oil prices. During the last
decade, specially in the second half of the 2000s, Brazilian ethanol prices have
experienced considerable changes. Relevant drivers of these changes are the increases in
worldwide and internal ethanol demand, as well as the important changes in oil prices.

Our analysis focuses on assessing volatility links between the prices of oil, sugar
and ethanol in the period from July 2000 to November 2009. The period studied
comprises the ethanol boom in the mid 2000s. From mid 2008 on, the economic scene
was characterized by an economic and financial crisis. The collapse in crude oil prices
in the second half of 2008 constrained ethanol demand and weakened ethanol prices.
Ethanol prices recovered during 2009 as a result of global sugar production being
unable to cope with demand and resulting in strong increases in sugar prices. The
decline in crude oil prices, the economic crisis and the high feedstock prices, have
mined the short-term forecasts of ethanol with millers currently focusing on more
attractive returns from export sugar (International Sugar Organization, 2009). As noted
above, the flexible semi-parametric techniques employed in this research, are specially
suited to allow for time-changing price behavior.

3. Methodology

Our methodological approach to assessing volatility links within the Brazilian ethanol
industry is based on Long et al.”’s (2009) semiparametric GARCH model. The
application of an innovative methodology to shed light on ethanol industry price
behavior is a contribution of our work. The semiparametric estimator consists of a
nonparametric correction of the parametric estimator of the conditional covariance.
Suppose that the k-dimensional vector of time series r, = (#,,...,r,,)", t=1,...,T, follows

the stochastic process r|...; ~P(u,H,;6), Where . is the information set at time 71,
u=E(r| ), H=E(rr| 3), P isthe joint cumulative distribution function (CDF) of
r,, and @ includes the distribution parameters.

It is assumed that g, is zero (or that standardization has been applied). The
model for r, can be written as r, = H¥%¢,, being e, = H¥?r, a standardized error with
E| ~1)=0and E(eg, '|./t_‘1) =1,. No assumption on the distribution of e, is necessary
to derive the semiparametric estimator. Matrix HY? is the symmetric square root of H, .



Let a parametric estimation of H, be denoted by H , (0) . The semiparametric
estimator of the conditional covariance matrix is obtained as follows
H, = HY2(0)E[e,(0)e,(0)]. -, |HY(6) , where e, (6) =H (49)';/;2 r, is the standardized
error derived from the parametric model. E[e[ (0)e,(0) ‘|./:1] is the nonparametric
component of H, which is derived assuming that the conditional expectation of e,e,
depends on the current information set only through the g-dimensional vector
X, = (x,1%,) € 1y Hence, E[eg| ,]=G (x,)-

The semiparametric estimator can thus be expressed as: H, =H"2(9)G,, ,H"2(0)

np,t” " pt

To estimate H, , the following two stage method is implemented. First, an estimate of

0, 5, is obtained by parametrically estimating the conditional covariance matrix
H,, (). The standardized residuals are then defined as &, = H™r, . In the second stage,

pt t"
E [ete;
follows: G, (x) = z;ésé_;Kh (X, -x)/Z;Kh (x,-x), where K, (x,-x) isa
multiplicative kernel function, and h = (hl,...,hq) is a vector of bandwidth parameters.

X, = x} is obtained using the nonparametric Nadaraya-Watson estimator as

The semiparametric estimator of the conditional covariance matrix is defined as
H,,, =H2(0)G,, H2(0).
The empirical implementation sets x =r,, and uses a Gaussian kernel. The

bandwidth is defined as 7, =cj&,.T’”6, where &, is the sample standard deviation of r,,
T is the number of observations and ¢, is selected from 0.5, 0.6,...,5 through a grid

search process that minimizes the minimum sum of squares (MSE) loss function. This
function is a measure of the difference between the true conditional covariance matrix
and its estimates. Since the true conditional covariance matrix is not known, Long et al.
(2009) use the squared r, vector.

Based on the semiparametric estimator, Long et al. (2009) propose a test for the
correct specification of the parametric conditional covariance estimator. If the
parametric model was correctly specified, H, =H , and according to (2) matrix G, |

would be equal to the identity matrix. Long et al. (2009) test the null hypothesis
G, (x)=1, against the alternative #,:Pr(G,,,(x,)=1,)<1.

4. Results
Our empirical analysis is based on logarithmic transformations of weekly international
crude oil prices ( p, ), as well as on Brazilian ethanol ( p,) and sugar ( p,) prices. Data

sources are the Center for Advanced Studies on Applied Economics that provided
Brazilian ethanol and sugar prices, and the U.S. Energy Information Administration that
facilitated crude oil prices. All prices are expressed in U.S. dollars and are observed
from July 2000 to November 20009.

Our analysis is of a pair-wise nature. Pair-wise analyses are very common in the
price transmission literature and are further justified because of the “curse of
dimensionality” that affects nonparametric estimators (Fan, 2000). We consider two
pairs of prices: oil-ethanol (model 1) and ethanol-sugar (model 2). Standard unit root
tests confirm the presence of a unit root in each price series. Engle and Granger (1987)



and Johansen (1988) tests provide evidence that the pairs of prices are cointegrated. By
normalizing with respect to the ethanol price, cointegration relationships can be
expressed as follows (where numbers in parenthesis are standard errors):

p,—0.453p, +2.872=0; p,—0.777p,+3.161=0
(0.022) (0.083) (0.022) (0.057)

(1)
The positive long-run relationship between ethanol and sugar prices is expected given
the fact that sugar represents a conspicuous part of ethanol production costs. Further, the
long-run positive link between ethanol and crude oil prices is also expected given the
use of fossil fuel as an input into blended gasoline.

The semiparametric estimator of the conditional covariance matrix is derived in
two stages. In the first stage a MGARCH model is estimated parametrically. A vector
error correction model is used to examine the conditional mean (equation 2) and a
multivariate BEKK-GARCH specification (Engle and Kroner, 1995) is employed to
analyze the conditional heteroscedasticity (equation 3). Conditional mean and
heteroscedasticity equations are expressed as follows:

Ap, =aECT, | +v,ApP, 1 +7,AP, , (2)
Hp,t =CC+A'r_r'  A+B’ Hp,t_lB (3)

where Ap, isa 2x1 vector of prices in first differences, £c7 _, is a lagged error

correction term, a (2x1) shows the adjustment of each price to deviations from the
long-run parity and y,, i =1,2 (2x2) shows the short-run price dynamics. Matrix A (

2x2) captures the influence of past market shocks on price volatility, while B (2x2)
models the influence of past volatility on current volatility. C isa 2x2 lower triangular
matrix. The conditional mean and variance models are jointly estimated using standard
maximum likelihood procedures. The errors of the parametric model are then used in a
second stage to derive the standardized errors necessary to build the semiparametric
estimator.

The conditional mean equations derived from the estimation of the BEKK model
are presented in tables 1 and 2 for the crude oil-ethanol (model 1) and the sugar —
ethanol (model 2) pairs of prices, respectively. Tables 3 and 4 present the conditional
variances for these models. The covariance stationarity condition is checked for both
models and all eigenvalues are found to be less than one in modulus. The « parameters
that are presented in table 1 suggest that, while ethanol price levels adjust to correct
disequilibriums from the oil — ethanol long — run parity, crude oil prices can be
considered as weakly exogenous, which is compatible with findings in Balcome and
Rapsomanikis (2008) and Serra et al. (2010). This result is expected since, relative to
the international crude oil market size, the Brazilian ethanol market is small.

The conditional variance equations are presented in table 3. Crude oil price
volatility 4, increases with its own lagged volatility (4, ,) and with shocks occurring

in the crude oil market (#_,). Lagged ethanol price volatility does not have an influence
on crude oil price volatility. Further, lagged ethanol market shocks only affect crude oil
price volatility indirectly through the term #, ,7,, ;. The small influence of ethanol on

crude oil price instability is not surprising given the weak exogeneity of crude oil with
respect to the equilibrium relationship. The volatility in ethanol prices (4, ) is found to



increase with increases in its own lagged volatility (4,,, ,), as well as with shocks

occurring in the crude oil and ethanol markets (7>, and 7, ,», , are significant).

The Long et al.”s (2009) test for the correct specification of the parametric
conditional covariance estimator, that takes the value of 0.76, allows rejecting the null
of correct specification at the 8% significance level, and motivates the use of the
semiparametric estimator so as to capture information still remaining in the residuals of
the parametric model. Figures 1 and 2 show, respectively, to what extent the parameters
in &, and h,, can vary depending on the prevalent economic conditions. More

specifically, these figures present the histogram of the nonparametric correction of the
parameters for %, _,, h,, ,, 1., and r7_, that show the direct volatility links between

crude oil and ethanol markets.

Figure 1 confirms the relevance of using the nonparametric correction proposed
by Long et al. (2009) through the heterogeneity in the localized parameter estimates in
the crude oil price variance (4, ). Parameter heterogeneity reduces the reliability of

previous research estimates fully based on parametric methods. While the parametric
BEKK model suggests that an increase in one unit in past crude oil price volatility
contributes to increase current crude oil price volatility by 0.88, figure 1a shows that the
resulting increase can indeed fluctuate from 0 to 3. The effects of crude oil market
shocks on crude oil price volatility (figure 1c) are also rather disperse. Figures 1b and
1d confirm parametric results by suggesting, through the magnitude of the parameters, a
small capacity of ethanol markets to induce volatility in crude oil prices.

Parameter dispersion is less acute in the ethanol price variance equation (%, ).

The parametric analysis shows a statistically significant impact of crude oil on ethanol
price variability through crude oil market shocks. Figure 2c shows that the most
frequent effect of past crude oil market shocks on ethanol price volatility is on the order
of 0.05, though the value can fluctuate from 0 to 0.5. Figure 2b suggests that an
increase in one unit in past ethanol price volatility can result in an increase in current
volatility that ranges between 0 to 5, with the most frequent value being 0.5.

The o parameters in model 2 (table 2) suggest that the sugar price can be
considered as weakly exogenous with respect to the ethanol — sugar long — run parity.
Hence, it is the ethanol price that reacts to re-equilibrate the system. This result is
compatible with Balcome and Rapsomanikis’ (2008) and Serra et al.’s (2010) results.
The exogeneity of sugar with respect to the long-run parity is an indicator that sugar
prices lead ethanol prices. Sugar prices in Brazil have a very strong dependence on
agricultural yields, as well as on international sugar prices. This helps to explain the
decline in Brazilian ethanol production after the increase in international sugar prices in
1988 that led sugarcane mills to divert their production to sugar. Sugar prices were not
affected by the decline in energy prices during part of the year 2008 thanks to tight
worldwide sugarcane supplies that supported sugar prices. Hence, the finding that sugar
prices are weakly exogenous for long-run parameters can also be explained through the
relevance of Brazilian sugar exports and the dominant role that Brazil plays in the
international sugar market (according to the USDA Foreign Agricultural Service,
Brazilian exports represented more that 40% of world’s sugar exports in 2006).

The conditional variance equations for model 2 are presented in table 4. Results
suggest that volatility in the sugar price A, increases with its own lagged volatility. An

increase in ethanol price volatility only affects 4, indirectly through the covariance
term. Shocks originating in the sugar market have also an influence on sugar price



volatility, while ethanol market shocks only have an indirect influence through r, 7, ;.
Lagged instability in sugar and ethanol markets ( 4, ,, 4,,, ; and h,, ,) is found to
increase ethanol price volatility (4,,, ). Shocks occurring either in the sugar or ethanol

markets are also found to have an impact on ethanol price volatility.

Long et al.’s (2009) test for the correct specification of the parametric
conditional covariance estimator, that takes the value of 15.01, allows rejecting the null
of correct specification at the 2% significance level suggesting, once more, that relying
on parametric MGARCH models to assess volatility interactions can lead to misleading
results. Figures 3 and 4 show to what extent the parameters in 4, and #,,, from model

2 can vary depending on the prevalent economic conditions. While the parametric
model suggests that an increase in past sugar volatility in one unit will cause an increase
in current volatility equal to 0.78, figure 3a shows that the resulting increase can indeed
fluctuate from 0.50 to 2.90, being the most frequent increase around 0.70. Figures 3b
and 4d confirm, in accordance with the parametric results and through the small
parameter values, the reduced capacity of ethanol markets to influence sugar price
volatility. Figures [4a] (4c) show that the impact of [sugar price volatility] (sugar
market shocks) on ethanol’s can range from [0.05 to 1.15] (0 to 1.95).

5. Concluding remarks

We assess volatility spillovers in Brazilian ethanol markets by using Long et al.’s
(2009) semiparametric estimator of the conditional covariance matrix. We use weekly
international crude oil prices and Brazilian ethanol and sugar prices observed from July
2000 to November 2009. A pair wise analysis is carried out to avoid the “curse of
dimensionality” affecting nonparametric estimators.

Our results suggest that ethanol and crude oil, as well as ethanol and sugar price
levels are linked in the long-run by an equilibrium parity. These long-run price links
show that ethanol prices increase with an increase in both crude oil and sugar prices.
Further, while ethanol prices react to deviations from each long-run parity and respond
to re-equilibrate the market, sugar and crude oil prices are weakly exogenous for long-
run parameters. Crude oil and sugar prices thus determine ethanol prices.

With regards to volatility spillovers, parametric results suggest that crude oil
market shocks can increase ethanol price volatility. Further, the ethanol price volatility
is influenced by the sugar price volatility through the variance term. Shocks affecting
the sugar market have also an impact on ethanol price volatility. Compatible with crude
oil and sugar price levels being exogenous for long-run parameters, ethanol markets are
found to have a reduced capacity to increase instability in sugar and crude oil markets.
Another important result from our paper is that an assessment of volatility links based
solely on parametric MGARCH models can lead to misleading results. We show the
relevance of using the nonparametric correction proposed by Long et al. (2009) through
the heterogeneity in the localized parameter estimates.

Our results have important policy implications. Ethanol markets are unable to
affect feedstock price levels in the long-run. Hence, ethanol prices do not seem to
induce an increase in food prices, for the markets and time period considered. This is
compatible with large amounts of land being available for sugarcane cultivation in
Brazil. Consistently with these results, we show that ethanol markets have a small
capacity to induce volatility in feedstock prices, thus reducing the likelihood of
instability transmission from energy to food markets. Hence, concerns regarding
Brazilian ethanol markets bringing higher and more volatile food prices do not seem
founded in light of our results.
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Table 1. Crude oil ( p, ) —ethanol ( p,) MGARCH model: mean equation

Short-run dynamics parameters:

(Aplrj _ (alJECTt_l + (7111 7112J(Ap1r-1] + [7’211
Ap,, a, Yion V22 J\ AP V221

V12 J ( Apys ]
Y220 )\ AP 2

i=1 i=2
a, -6.786e-4 (0.007) -0.023** (0.006)
Vi 0.243** (0.045) 0.048 (0.042)
Yo -0.045 (0.034) 0.531** (0.049)
¥ o, -0.006 (0.042) -0.082* (0.043)
¥ 2 0.013 (0.036) -0.017 (0.049)
Test for the correct specification of the parametric conditional 0.763
covariance estimator (p value) (0.080)
*(**) denotes statistical significance at the 10(5) per cent significance level
Table 2. Sugar ( p,) — ethanol ( p,) MGARCH model: mean equations
Short-run dynamics parameters:
(ApstJZ[angCTtl+[7lss 7132J(Apsz-1]+(7233 7232](Ap3,_2]
Ap,, @, Vizs V122 )\ APz Vs V222 J\AP2
i=3 i=2
a, -0.001 (0.006) -0.025** (0.008)
Vs 0.650** (0.046) -0.011 (0.034)
Vo 0.035 (0.060) 0.573** (0.048)
V0 -0.144**(0.044) 0.065* (0.033)
¥ 2 0.150** (0.053) -0.107** (0.038)
Test for the correct specification of the parametric conditional 15.015
covariance estimator (p value) (0.020)
*(**) denotes statistical significance at the 10(5) per cent significance level
Table 3. Conditional variance equations. Crude oil ( p, )-ethanol ( p,) model
hy, = 942 +0.879%* -0.056 +7.001e-4 +02.053** +0.101%* +8.2516e—3
G My hipiy Py R Nl Toi1
289 +8.819¢-4 -0.041 +0.482%* +0.048** -0.252%* +0.328**
hogy = Gon 2 2
221 4 My ipis Py Hi1 Nl 21
*(**) denotes statistical significance at the 10(5) per cent significance level
Table 4. Conditional variance. Sugar ( p,)- ethanol ( p,) model
4022 +0.779%* +0.557** +1.331e-3 +0.124%* -0.290%* +1.100e-4
by = e 2 2
8 5 By, 4 Ty 4 Py T34 IR Y
2506 +0.099% +0.317%* +0.254%* +0.169%* -0.692** +0.707**
h, = <2°°% 2 2
22t 4 Bz, Dy, 4 Py T34 V3121 T34

*(**) denotes statistical significance at the 10(5) per cent significance level



Figure 1. Distribution of localized estimates of the parameters of the conditional
variances. Crude oil ( p, )- ethanol ( p,) model. Crude oil price variance #,,,
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Figure 2. Distribution of localized estimates of the parameters of the conditional
variances. Crude oil ( p, )- ethanol ( p,) model. Ethanol price variance £,
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Figure 3. Distribution of localized estimates of the parameters of the conditional
variances. Sugar ( p,)- ethanol ( p,) model. Sugar price variance ks,
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Figure 4. Distribution of localized estimates of the parameters of the conditional
variances. Sugar ( p,)- ethanol ( p,) model. Ethanol price variance #,,
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