
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


 
 
 
 
 
 

Modelling farm production risk with copulae instead of correlations 
 
 
 
 

Matthias Schulte-Geers and Ernst Berg 
Institute of Food and Resource Economics, University of Bonn, Germany 

m.schulte-geers@ilr.uni-bonn.de 
 
 
 
 

 
 
 

 
 

Paper prepared for presentation at the EAAE 2011 Congress 
Change and Uncertainty 
Challenges for Agriculture, 

Food and Natural Resources 
 

August 30 to September 2, 2011 
ETH Zurich, Zurich, Switzerland 

 
 
 
 
 
 
 
 
 
 
 
 
Copyright 2011 by Matthias Schulte-Geers and Ernst Berg.  All rights reserved.  Readers 
may make verbatim copies of this document for non-commercial purposes by any means, 
provided that this copyright notice appears on all such copies. 



Modelling farm production risk with
copulae instead of correlations
Abstract
The optimisation of production plans is an important topic in agriculture, often related to diversi-
fication and specialisation as the classical instruments of coping with production risk. Although
the measurement of embedded risk is often inaccurate, it is nevertheless necessary for deci-
sion making to describe the common behaviour of different variables in a model. Imprecisely
defined relationships influence the “right” choice, why it is important to find a good approxima-
tion of the real circumstances. In financial science, copula functions are frequently used instead
of correlation coefficients to model joint price behaviour, because of the possibility to link the
marginal distributions on multifarious ways. By now, agricultural science makes less use of this
method. This research uses the concept of “partly nested Archimedean copula” to model the
relationship between different crop yields and compares it with a correlation based approach.
The analysis focuses the differences of the approaches in the context of production planning
and the use of weather derivatives.

Keywords: Copula, risk, weather derivatives

1 Introduction
The way variables are connected significantly influences the results of a model. Many authors
use correlations to link variables (cf. Berg 2003, Hirschauer, Mußhoff 2009), assuming an
elliptical structure of the scatter plot. However, in real world often extreme events occur si-
multaneously, e.g. the collective loss of stocks in crises. In such situations there is a strong
dependence in one tail, which cannot be modelled by correlation. This illustrates, among oth-
ers (e.g. linearity, exact only for symmetric distributions), one problem of correlation concept,
related to the joint marginal distribution (cf. Schulz 2008, p. 241). SAVU and TREDE con-
sider the copula-concept as a “[. . . ] powerful tool to create more flexible and more realistic
multivariate distributions [. . . ]” (Savu, Trede 2006, p. 1) e.g. compared to multivariate normal
distributions or t-distributions. The concept allows to separate the dependency structure from
the marginal distributions of the random variables, witch overcomes some of the disadvantages
related to the use of correlations (Härdle 2009, p. 3). Many families of copulae are available, to
describe the dependency structure, differentiated in simple, elliptical and Archimedean copulas
(Härdle 2009, p. 6).

Several studies using the copula concept have been conducted in the finance sector. For
instance, SAVU and TREDE applied this method to a portfolio consisting of a subset of Euro-
Stoxx-50 stocks (Savu, Trede 2006). KOZIOL analyses the ability of different copulae to model
basket credit derivatives (Koziol 2006). In agricultural science copulae are used by XU ET AL.
to describe the relationship between weather data related to different weather stations (Xu et
al. 2010) and LIU ET AL. to diversify the yield risk on a global level (Liu et al. 2010).
BOKUSHEVA did some research about the aptitude of copulae to link a weather index and an
index related to an underlying used for weather derivatives (Bokusheva 2010).

For the purpose of this research two farm models are constructed. The only difference is
the way the relationship between variables is represented. One approach uses correlation ma-
trices, the other one copula functions. To reduce the complexity, only yields and precipitation
are assumed to be random. To compare the models, one part of the analysis deals with the gen-
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eral difference in the cropping plans. The second part investigates the influence of a weather
derivative for risk reduction. The construction of a correlation model is assumed to be widely
known, so that the paper focuses on the less common copula approach. The next section of this
paper describes the basics of copula functions. This includes the construction, the estimation
of the parameters and the simulation of realisations for a given function. In the third section
copula functions are used to link crop yields and precipitation and an introduction to the con-
cept of partly nested Archimedean copulae is given, which links variables at different levels.
This enables to construct a “more realistic” dependency between variables compared to “sim-
ple” copula functions. In the fourth section, the optimisation model is set up and the optimal
production plan for given risk aversion is shown. Adding weather derivatives to the model and
showing the potential of the instrument in the context of the different models is done in section
five. The last section gives a short conclusion and discusses further research questions.

2 Functionality of copulae
Copula functions generate the dependence between variables, so they are an alternative to corre-
lation. The basis of the copula concept is an n-dimensional (joint) distribution function (Fn (x)).
If X′ = (X1, ...,Xn) is a random vector, the joint distribution function is given by:

Fn (x) = F (x) = P(X1 ≤ x1, ...,Xn ≤ xn) = P(X≤ x) (1)

where P is the probability that X′ is smaller or equal to x′. Given by SKLAR’S theorem
(Sklar 1973, p. 449) a (copula) function Cn exists, representing the distribution function (Fn(x))
with the margins F1,F2, . . . ,Fn – defined as Fi(xi)=P(Xi≤ xi)=P(X1≤∞, . . . ,Xi≤ xi, . . . ,Xn≤
∞) – such that:

Fn(x) =Cn(F1(x1),F2(x2), . . . ,Fn(xn)) =Cn(u1,u2, . . . ,un) (2)

with ui = Fi(xi)
Equation (2) says that each multivariate distribution function could be represented by the

cumulative marginal distributions – which are uniform on [0,1] – and a structural relationship
given by the functional form (Härdle 2009, p. 4f.)

In this article the family of Archimedean copulae is used. This copula function discribes the
dependency by generators (r), such that:

C(u1,u2, . . . ,un) = r[−1](r(u1)+r(u2)+ ...+r(un)) (3)

r is a continuous, strictly decreasing function with r(1) = 0 and r(0) ≤ ∞. The range is
given by [0,1] and the domain by [0,∞]. The pseudo-inverse1 of r is the function r[−1], given
by (Nelsen 1999, p. 90):

r[−1](x) =

{
r−1 ,0≤x≤r(0)
0 ,r(0)≤x≤ ∞

(4)

Reasons for applying Archimedean copulae are e.g. the easy way of construction, the great
variety of families of copulae which belong to this class, and the useful properties possessed
by the members of this class (Nelsen 1999, p. 89). One of the properties of a Clayton copula
(one special family) is the lower tail dependence and a weight distribution of the values at the
upper part (if α is chosen greater than 0). In principle, this seems to fit the behaviour of crop

1In case of ρ(0)=∞ the inverse, because ρ[−1] = ρ−1
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Figure 1: Density functions for different Clayton copulas

The density functions are generated by 10,000 simulated values

yields depending on a precipitations index. Without any water, there would be no yield at all,
with enough water the yield would increase, but the influence of other factors leads to more
variation2 . The generator function in the case of a Clayton copula is:

r
a
(u) =

1
a
(u−a−1) ,with α ∈ [−1;∞)\{0} (5)

α is a parameter which determines the strength of the relationship between the two variables.
In case of n dimensions the Clayton copula is given by (Schulz 2008, p.522):

Cn(u1, . . . ,un) = max
(
[u−a1 + ...+u−an −n+1]−1/a;0

)
(6)

To get a feeling for the behaviour of the Clayton copula and its properties, figure 1 shows
two functions, with different values of α and standard normal marginal distributions F i(xi).
Using asymmetric marginal distributions could lead to a kink in the scatter plot. This would be
a usefull property to model a behaviour related to non-linear production functions, but for better
comparison to the correlation model, normal distributions are chosen for this example.

2.1 Estimation of copula parameters
A common approach to estimate parameters of a copula function (α) is the canonical maximum
likelihood method (cf. Savu, Trede 2006, Xu 2010). This method, presented in equation (7)
for two dimensions, maximizes the sum of the logarithm of the copula density functions (c) by
adjusting α (Savu, Trede 2006, p. 12)

α̂ = argmax
T

∑
t=1

ln c2
a

(
ut

1,u
t
2 a
)

,with c2
a

(
ut

1,u
t
2 a
)
=

d2C2
a(u

t
1,u

t
2)

dut
1dut

2
(7)

For small datasets this method is fragile against outliers. Time series for agricultural yields
are in most cases either short or the influence of technical progress is hard to measure, why
the non-parametric method by GENEST und RIVEST is used. This method is robust against
outliers, better adapted to small sample sizes and does not require exact knowledge about the
marginal distributions (Schulz 2008, p. 294).

2E.g. Mitcherlich (1922, S. 53ff.) uses the logarithm for two factor production functions. This leads in principle
to this behaviour.
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To estimate α by this method, the value of Kendall’s tau(t) calculated from the dataset (8)
has to be equal to the t resulting by the functional form of the copula (9) (Schulz 2008, p.
285f.). The solution for (9) using a Clayton copula is given in (10). Kendall’s t is a method
for the measureing dependency between random variables, in the case of two random vectors
(X′,Y′) calculated as the difference between the probability of concordant pairs and discordant
pairs3 (Nelsen 1999, p. 126ff.).

t= P[(Xi−X j)∗ (Yi−Yj)> 0]−P[(Xi−X j)∗ (Yi−Yj)< 0] (8)

t= 1+4
∫ 1

0

r
a
(u)

r′a(u)
du (9)

t=
a

a+2
(10)

2.2 Simulation of realizations
An approach to obtain realizations for the n random variables of a given (Archimedean) copula
(C =Cn(u1, . . . ,un)) is the conditional inversion method. It is Ck(u1, . . . ,uk)=Ck(u1, . . . ,uk,1, . . . ,1)
, with k = 1, . . . ,n, and for k = 1 the resulting copula is C1(u1) = u1, Cn(u1, . . . ,un) for k = n.4

Then the conditional distribution function for Uk with known U1 to Uk−1 is given by:

Cn
a,k(uk u1, . . . ,uk−1) = P(Uk ≤ uk U1 = u1, . . . ,Uk−1 = uk−1) =

d
k−1Cn

a,k(u1,. . . ,uk)

du1. . . duk−1

d
k−1Cn

a,k−1(u1,. . . ,uk−1)

du1. . . duk−1

(11)

with k = 2, . . . ,n
The simulation algorithm involves the following steps:

• Generating n independent, uniform distributed random variables (v)

• Setting u1 equal to v1

• building the conditional distribution function (11) with k = 2, . . . ,n and solving step by
step the equation uk =C−1

k (vk u1, . . . ,uk−1)

The inverse function can either be obtained analytically or numerically (Savu, Trede 2006, p.
10f.)

3 Farm structure modelled by copulae
The dependence between variables is often simulated by correlation matrices (cf. Berg 2003,
Hirschauer, Mußhoff 2009). This approach has several disadvantages, e.g. tail dependence can-
not be modelled appropriately, because linear correlation leads to elliptically spread realizations
(Schulz 2008, p. 243). But it seems to be realistic that missing precipitation certainly leads to
low yields, whereas higher yields, however with increasing uncertainty occur if precipitation
is sufficent, because of other yield generating factors. Since the amount of precipitation is the

3Concordant: pairs of two vectors (X′,Y′) for which either xi < x j and yi < y j or xi > x j and yi > y j. discordant:
pairs of two vectors (X′,Y′) for which either xi < x j and yi > y j or xi > x j and yi < y j

4Because Ck(1, . . . ,1,um,1, . . . ,1) = um (Sklar 1973, p. 451); ui = 1 = F(∞) = P(xi ≤ ∞)
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Figure 2: Comparison of dependency structures

Absolute frequency given 10,000 simulated values

Figure 3: Structure of (left) FNA and (right) PNA Copula

similar to: Köck 2008, p. 68–69

same for all plants in a given small area, the relationship between different crops is similar, so
that the Clayton copula5 is also suitable to connect the different crops in this model. The impact
of the chosen model is shown exemplarily in fugure 2, connecting precipitation and potato yield.
The parameters are calculated from the same dataset assuming a normal distribution to describe
the margins. The distribution parameters are placed in table 1, the correlation coefficient is 0.65,
the copula parameter 2.9.

A disadvantage of Archimedean copula is, that the position (i) of a marginal distribution (ui)
in the copula function is unimportant, because the dependence is simply given by the chosen
generator and the copula parameter. To overcome this problem, the concept of hierarchical
Archimedean copulae is used (Köck 2008, p. 67).

The literature distinguishes between the concept of “fully nested Archimedean” (FNA) and
“partially nested Archimedean” (PNA) Copula. The principle structure is given in figure 3.
With both concepts the marginal distributions (ui) are linked at different levels, and for each
copula a new family and parameter could be chosen (Härdle 2009, p. 14).

The dependence between the cultures and the weather index (precipitation) shall be mod-
elled by PNA-copula. Cl, j describes a copula, with l = 1, . . . ,L the number of levels and
j = 1, . . . ,nl the number of copulae on each level. The variables (ui) of the lowest level (l = 1)

5Also other copula families have similar properties, clayton copula is simply chosen to show general effects of
the applied method.
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are connected with nl copulae, each copula (equation 12) connects dl, j variables with the copula
parameters (al, j) and the generators (rl, j).

C1, j(u1, j,1, . . . ,u1, j,dl, j) = r−1
1, j

(
∑

dl, j
m=1r1, j(u1,m)

)
(12)

This procedure continues, connecting copulae of the different levels (l) with copulae of the
level (l−1) below (see equation 13), until the highest level (L) is achieved.

CL,1
(
CL−1,1, . . . ,CL−1,dL, j

)
= r−1

L, j

(
∑

dL, j
m=1rL, j(CL−1,m)

)
(13)

It is a condition for the hierarchical copula that the parameters for each level satisfy al+1,i <
al, j for all l = 1, . . . ,L , j = 1, . . . ,nl and i = 1, . . . ,nl+1 (Savu, Trede 2006, p. 5ff.). Following
this rules, the model with the variables precipitation (cumulated over the period May to August)
(u1), potatoes (u2), silage maize (u3), grain maize (u4), winter barley (u5) and winter rye (u6)
is build up with data of a farm located nearby Bremervörde (Germany). The copula parameters
are calculated by equation (8) and (10), connecting the highest realisations before calculating
the parameters of the next level. It is a useful property, if the structure of the copulae results in
a naturally interpreation (cf. Savu, Trede 2006, S. 2). In this dataset potatoes and precipitation
are paired because the time horizon for precipitation is chosen to fit best for potatoes, according
to the correlation coefficient. Maize (C1,2) and cereals (C1,3) are also paired, so that there is a
relation between the variables. This leads to the hierarchical structure shown in equation (14).

C2,1 =

([
(u−a1,1

1 +u−a1,1
2 −1)

−1
α1,1

]−α2,1

+

[
(u−a1,2

3 +u−a1,2
4 −1)

−1
α1,2

]−α2,1

+

[
(u−a1,3

5 +u−a1,3
6 −1)

−1
α1,3

]−α2,1

−2

) −1
α2,1

(14)

with a1,1 = 2,2, a1,2 = 2,9, a1,3 = 1,2 and a2,1 = 1,1

4 Model optimisation
The model represents a hypothetical 100 hectare arable farm with the crops named before.
Rotational restrictions are set at a 25% share of potatoes (u2) and 60% share of cereals (u5+u6).
The workload for fieldwork is limited at 1,500 hours, as well as by the monthly available days
for fieldwork (lm) (cf. Betriebsplanung Landwirtschaft, 2006). The yields are assumed to be
normally distributed (table 1) and the parameters are calculated from historical data. Normal
marginal distributions are not necessary in principle, but they are used in the example because of
better comparison to the correlation based model. Recognize that the assumption of normally
distributed margins does not mean that the whole distribution is described by a multivariate
normal distribution. The prices (pi) in table 1 are arbitrary chosen, not listed working hours
per crop, month and hectare (lm,n) are based on the “KTBL Betreibsplanung Landwirtschaft”
(Betriebsplanung Landwirtschaft, 2006) database. The area payment (PL) in 2010 for Lower
Saxony was 266 C/ha arable land.

The optimisation is based on 1,000 (k) realisations for each crop yield (yi,n) and the re-
spective precipitation. The common behaviour of the variables is generated by copulae on one
hand (see equation 14; section 2.2), and by correlation matrices (table 2) on the other hand.
For each realised yield the gross margin per hectare is calculated using the figures given in ta-
ble 1. This leads for a given production plan to a sample of 1,000 whole farm gross margins
(GMi). The optimisation of the cropping plan is based on the lower partial moment 1 (LPM1),
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Table 1: Basis data for the optimised farm
Precipitation
(may-aug)

Potatoes
(u2)

Silage
maize (u3)

Grain
maize (u4)

W. barley
(u5)

W. rye
(u6)

Distribution- Mean 279 mm 517 dt/ha 453 dt/ha 98 dt/ha 74 dt/ha 84 dt/ha
parameters Standard derivation 66 mm 73 dt/ha 80 dt/ha 17 dt/ha 15 dt/ha 9 dt/ha
Production Price / dt 7.00 C 2.80 C 13.50 C 11.00 C 9.00 C

Variable costs / ha 1,176 C 715 C 725 C 457 C 457 C
Farm labour year(ly) / ha 24.7 h 16.1 h 7.6 h 6.4 h 6.4 h

Table 2: Correlation matrix
Precipitation (may-aug) Potatoes Silage maize Grain maize W. barley W.rye

Precipitation (may-aug) 1 0.65 0.50 -0.22 0.16 -0.09
Potatoes 1 0.57 -0.01 0.31 0.09
Silage maize 1 0.64 0.12 0.08
Grain maize 1 0.08 0.22
W. barley 1 0.68
W.rye 1

which represents the shortfall expectation (cf. Starp 2006, p. 62ff.). The results are presented
in an expected value- shortfall expectation diagram. In both models the optimisation is done
by maximising the expected gross margin (E(GMopt))subject to an upper limit on the shortfall
expectation (SE) by means of varying the crop mix (un):

E (GMopt) =
1
k
·argmax

k

∑
i=1

GMi

=
1
k
·argmax

k

∑
i=1

[
6

∑
n=2

(yi,n · pn− cvar
n +PL)un

+ (max(SL− pri,0)−P) ·uWD]

(15)

s.t.

LPM1(TGM) =
k

∑
i=1

ϕi(TGM−GMi) ·a ,with a

{
1, i f GMi ≤ TGM

0, i f GMi > TGM

un ≥ 0 , f or each n ∈ {2, ...,6} ; uWD = 0
6

∑
n=2

un ≤ 100;
6

∑
n=2

lyn ·un ≤ 1,500

6

∑
n=2

lm,n ·un ≤ lmn , f or each n ∈ {2, ...,6}

u2 ≤
u2

∑
6
n=2 un

; u5 +u6 ≤
u5 +u6

∑
6
n=2 un

The second term of the objective function in (15) is zero as long as uWD = 0, which excludes
the use of derivatives. To obtain the shortfall expectation, the difference between a target gross
margin (TGM) and all realisations (of the gross margin; GMi) below this target are calculated,
multiplied with their associated probabilities (ϕi) and summed up. In principle, the target value
could be chosen free. In the example it seems to be realistic to choose a value of 100,000 C,
which is needed to cover the fixed cost as well as the personal living expenses of the farm fam-
ily. In this model the shortfall expectation is used to describe the risk component in the model,
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Figure 4: a-d: Optimal production programme by fixed shortfall expectation

Crops from bottom to top: potatoes, silage maize, grain maize, winter barley, winter rye; white line: weather
derivatives (WD)

Table 3: Comparison of the models
for both without WD with WD

max min dif. to max min dif. to max

Correlation SE / C 2,341 1,738 603 1,715 626
E(GMopt)/ C 115,507 112,167 3,339 111,637 3,870

Copula SE / C 4,168 3,515 654 2,426 1,742
E(GMopt)/ C 113,624 110,837 2,786 107,365 6,259

so only downside risk is taken into account (cf. Starp 2006, p. 63). This instrument seams to fit
quite well because of the later introduced weather derivates, which aim at compensating short-
falls in crop yield. Variance based instruments would be less appropriate, because increasing
skewness of the outcome distribution would bias the risk measure (Starp 2006, p. 60). An opti-
mally constructed weather derivate should cut the lower part of the distribution, thus resulting
in asymmetry (cf. Berg et al. 2005, p. 164).

A risk neutral farmer will maximise the expected profit and would not care of the shortfall
expectation. That leads in both models to ca. 25 ha potatoes, 20 ha silage maize, 15 ha grain
maize and 40 ha winter barley as the optimal production program. The shortfall expectation in
the copula model case amounts to 4,168 C, in the correlation model to 2,341 C. The possible
reduction of the shortfall expectation (i.e. the potential risk reduction) is approximately equal
in both models, the amount in the correlation model is 603 C and in the copula model 653 C.
This reduction comes at a price of a 3,339 C (2,786 C) reduction of the expected gross margin
in the correlation (copula) model (cf. table 3). Interpreting the E(GMopt) in table 3, an amount
of 100,000 C must be subtracted to obtain the surplus after living costs. The impact of risk
reduction on the optimal crop mix of both models is shown in figure 4 a-b. In both models the
production programme changes similarly. With increasing accepted shortfall expectation the
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Figure 5: Expected gross margin- shortfall expectation diagrams for the copula and correlation
model

using 100,000 C as traget value

crops with lower variance are reduced (grain maize and rye) and subsituted by the crops with
higher variance (silage maize and barley). Figure 5 shows the expected gross margin -shortfall
expectation diagram. It can be seen, that the correlation model always exhibits higher expected
values for given shortfall expectations.

5 Implementation of a weather derivate
In this section a risk management instrument is added to the model. A weather derivative (WD)
is implemented, paying a compensation if an index value (pr), measured as the cumulated
precipitation, falls below a fixed level (strike level). The derivative provides a compensation of
one C per index point below the strike level, the expected indemnity (fair premium plus 10%)
are charged as premium (P) for each weather derivative. The strike level (SL) is set at 279 mm
cumulative precipitation (the mean of the distribution). This leads to a premium of ca. 29 C per
weather derivative. The optimisation is done as described in section 4, the only difference is the
opportunity to buy weather derivatives (now uWD ≥ 0) to stabilise the gross margin. Not least,
this leads to an asymmetric - and thus not normally - distributed gross margins in both models,
making variance based risk measures inappropriate. The model results are presented in figure
4 c-d. In the correlation model a maximum of 31 weather derivative contracts are purchased.
This small number of derivatives is caused by diversification effects of the cropping program
caused by the partly negative correlation between crops and precipitation (cf. table 2). The
purchased weather derivatives causes only minor changes in the risk behaviour, presented in
figure 6 b, and hardly any modification of the production programme. This leads only to (little)
higher expected values of gross margin in the area below 1,800 C shortfall expectation. A
boundary value is given in this point, where no weather derivative is bought any more, because
higher expected shortfall expectations lead to the same results as in the model without weather
derivatives. The possible reduction of the shortfall expectation is 626 C. Compared to 603 C in
the model without weather derivatives, there is only little risk reduction. This causes an extra
decrease of expected gross margin by 531 C compared to the model without derivatives.

The copula model shows a different behaviour. Using weather derivatives, the shortfall
expectation could be reduced to 2,426 C (from 3,515 C). This is an absolute reduction of
1,742C, which is a high amount compared to 653C in the model without weather derivatives.
At the point of lowest shortfall expectation 275 weather derivatives are bought. This leads to
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Figure 6: a-b: Expected gross margin - shortfall expectation diagrams with and without weather
derivatives

using 100,000 C as traget value; gray lines (black lines with squares) model with (without) weather derivatives

an expected gross margin of 107,365 C. Figure 6a shows, that the shortfall expectation below
3,860 C (boundary value with no weather derivatives) are clearly below the values of the model
without weather derivatives.

6 Conclusions
The comparison of the two models illustrates the differences between the applied methods of
connecting random variables. Without weather derivatives, the general pattern of crop mix
changes in the course of risk reduction (i.e. reduction of accepted shortfall expectation) is
similar in both modes: crops with higher variability of gross margins are reduced and substi-
tuted by those with lower variability. The main difference occurs with respect to the estimated
level of risk exposure. If the underlying assumptions used in the copula approach approximate
the reality reasonably well, a model based on correlations significantly underestimates the risk
embedded in the production program. Consequently, the potential risk reducing effect of an
instrument like weather derivatives is also underestimated by a correlation based approach.

In modeling weather related crop yield uncertainty, copula based models appear advanta-
geous because they allow incorporating prior knowledge about nonlinearities and relationships
between crops by selecting the appropriate type of copula function. Particularly the tails of yield
distributions can be represented more accurately, which is highly relevant if it comes to assess-
ing the potential benefits of index based risk management instruments like weather derivatives
or index based insurance policies.

In our example correlation model showed hardly any risk reduction through the use of
weather derivatives, due to the significant basis risk implied by the correlation matrix. Con-
trary to this, the copula model indicated a high risk mitigation potential of the same instrument,
due the presumably more appropriate modeling of existing tail dependency. Since the impacts
of weather derivatives so far have mainly been assessed through correlation based models, the
results of our paper indicate that the potential benefits of these risk management instruments
might often be underestimated.

In summary, copula based modeling approaches appear quite promising. Because of the vast
variety of possibilities provided by the copula approach in general, further research is needed
to identify ten most suitable types. Further studies could use modified copula models, e.g. con-
sidering skewed marginal distributions to capture nonlinear structures or adding more random
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variables (e.g. prices) to the model. Incorporating weather forecasts along with conditional
distributions could be another useful direction to expand the models.
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