

Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

The Stata Journal (2002)
2, Number 2, pp. 202–222

Speaking Stata: How to face lists with fortitude

Nicholas J. Cox
University of Durham, UK

n.j.cox@durham.ac.uk

Abstract. Three commands in official Stata, foreach, forvalues, and for,
provide structures for cycling through lists of values (variable names, numbers,
arbitrary text) and repeating commands using members of those lists in turn.
All these commands may be used interactively, and none is restricted to use in
Stata programs. They are explained and compared in some detail with a variety
of examples. In addition, a self-contained exposition is given on local macros,
understanding of which is needed for use of foreach and forvalues.

Keywords: pr0005, foreach, forvalues, for, lists, local macros, substitution first

1 Working through lists

Have you ever typed a series of very similar Stata commands one after the other and
wondered whether there was a quicker way to do what you just did? Or have you ever
heard that Stata has a cluster of commands for cycling through lists, but put off learning
about them until some future day? Or have you struggled to get any of the foreach,
forvalues or for commands to do what you want? If you answered “Yes” to any of
these questions, then this column should be of some interest to you. What it attempts is
an overview of those three commands with sufficient explanation and examples to help
you see your way to solving some of your own problems. Working your way through a
list is a very common experience in data management and analysis. Being able to face
that list with fortitude cuts your typing, and thus imparts extra speed. Perhaps even
more importantly, it also helps you work systematically and logically on your projects.

In all this, I am not going to assume that you know about Stata programming,
or indeed about programming in any computer language. (If you do, you may well
see family resemblances between Stata’s syntax and that of other languages you know
already.) Readers who have been following this series (previous columns in Cox (2001,
2002)) will recall a recurrent theme: I am trying to explain ways of using Stata which
I call “programming without programming”. The air of paradox is only superficial:
a program in Stata, after all, is defined strictly by the fact that you start by typing
program define, then type a series of Stata commands, and end by typing end, and
we are not going to do that. But programming in a broader sense includes all ways
of making the computer do almost all of the work, which you achieve by defining your
problems in a language that the computer can understand. And Stata has structures for
defining problems in which you cycle through lists, which are our concern here. They
are extremely useful within Stata programs, but they can also be used interactively, and
that is the emphasis in this column. Do not read too much into the fact that foreach

c© 2002 Stata Corporation pr0005

N. J. Cox 203

and forvalues, introduced in Stata 7, are documented in the Programming Manual1.

There is just one piece of Stata arcana which you need first: the idea of a local
macro. The next section goes over that ground. As it happens, this is also one of the
key ideas in understanding Stata programs.

2 Local macros

2.1 A character string given a special name

A macro in Stata is just a character string given a special name, so that you can then
use that name, and Stata can understand that name, to refer to the contents of the
character string. It is a way of setting up a mutually understood code.

If I type in Stata

. local rhsvars "trunk weight length turn displacement"

then what I have done is assign the name rhsvars to the character string

"trunk weight length turn displacement"

The quotes here, " ", delimit the string. In fact, " " often are not necessary,
although I do recommend that you use them, at least until you know when you can
omit them without ensuing difficulty. The " " do make clear exactly where the string
starts and ends, but they are not part of the string themselves.

But what if you did want to include one or more " characters in a character string?
We will examine this point later.

The name of the string is usually much shorter than the string to which it refers. Put
differently, the most obvious reason for defining a macro is so that you can refer to it
later, often repeatedly, and save yourself some typing. In this example, you will probably
recognize that the string includes names of variables from the auto data bundled with
Stata. We can imagine these variables as appearing on the right-hand side of some
model equations, hence our name rhsvars. We refer to it by using single quotes ‘ ’,
say

. regress mpg ‘rhsvars’

Note carefully that the opening or left quote or backtick ‘ differs from the closing or
right quote or apostrophe ’. On my keyboard, and on many others, the corresponding
keys occur some distance apart: the ‘ key towards the top left, near Esc, and the ’
key towards the right of center, nearer Return. (Some Unix users may find that the
backtick key has been mapped to something else. If so, using this stuff in Stata will be
unnecessarily difficult until you find out how to undo that mapping.) Whatever your

1References to Stata manual entries clearly presuppose that you have access to a copy. If not, the
advice is to use search and help within Stata to find help online.

204 Speaking Stata

keyboard, using a pair of ’ ’ (or for that matter ‘ ‘) will not work in Stata to indicate
macro names. Here it is possible to be misled by several of the fonts which may be used
within Stata: many represent closing quotes by a character more like ', which looks as
if it might legitimately occur as one of a pair.

2.2 How Stata processes macro names: substitution first

We need to understand a little of how Stata interprets a command line like that just
given. Essentially, all macro names are substituted by their contents before Stata at-
tempts to execute any command. This fact is crucial to avoiding, or to debugging, some
of the more subtle mistakes in using these commands. It is so important that I am
going to single it out as the substitution first rule.

Let us go through that more slowly. Whenever you type a Stata command, Stata
has two main things to do. The first task is to receive your command and to translate it
into its own private terms. The second task is to try to execute your command. What
is crucial here is that the first task includes substitution (sometimes called expansion)
of any macro names which you used in the command line. In the example just given,
Stata sees the left quote symbol ‘, a name, and the right quote symbol, ’, and thinks
“Aha! a macro name!”. It then looks to see whether that macro name has been
defined. In this case, rhsvars has previously been defined as "trunk weight length
turn displacement". Hence Stata substitutes (expands) the macro name, so that it
now sees the line

. regress mpg trunk weight length turn displacement

Trying to execute this command is then the second task which it has to do. With the
auto data loaded in memory, it should be straightforward.

But what could go wrong in handling a macro? The main pitfall is just getting
the name slightly wrong. With local macro names, as with other names, Stata is case
sensitive, so that upper and lower case letters are different: ‘RHSVARS’ and ‘rhsvars’
will mean different things, unless—exceptionally—you deliberately defined two macros
with different names and the same contents. In addition, as is true almost everywhere
else in Stata, Stata makes no attempt to correct your spelling.2

Suppose that by mistake you typed the name of some macro which does not exist.
For example, suppose you typed ‘rhsvar’ when you should have typed ‘rhsvars’, and
you have not defined ‘rhsvar’. In general, Stata does not mind you doing this. It may
complain about the consequences, which are indeed unlikely to be what you want, but
referring to a nonexistent macro is not, in itself, an error. In fact, Stata programmers
often do this, and properly used, it turns out to be a very useful feature. Moreover, as
this example implies, Stata does not allow you to abbreviate macro names.

2There is at least one exception to this, but it is as much by way of a little joke as anything else.
When the separate command was being written, one objection to its name was that even some people
very good at spelling in English have difficulties spelling this word correctly. Thus, as you may have
found, there is also an undocumented seperate command, which issues a peremptory message about
your spelling, but then passes the instructions to separate anyway. Stata is not usually so forgiving.

N. J. Cox 205

Stata’s attitudes on macro names may be a surprise to you. After all, Stata com-
plains vigorously whenever it expects names of existing variables, and you refer to a
variable name which is not included in your data, a mistake which, once again, is most
likely to be just a typo, as in typing summarize npg for summarize mpg. But it is the
way Stata works. The rule is that a macro name which refers to nothing is substituted
by nothing, that is, the empty string "". So

. regress mpg ‘rhsvar’

would be seen by Stata as

. regress mpg

which happens to make perfect sense as a way of getting the mean of mpg and a t-based
confidence interval, but is unlikely to be what you wanted.

The macros you have defined are not set in stone. They will fade away at the end of
a session; exit Stata, and all your defined local macros vanish. Less existentially, you
can redefine macros at will. Suppose you wanted to add the variable name gear ratio
to rhsvars. Here is one way to do it, just overwriting the old definition:

. local rhsvars "trunk weight length turn displacement gear ratio"

and here is a better way of doing it, amending the old definition by adding to it:

. local rhsvars "‘rhsvars’ gear ratio"

How does that work? It is another example of the substitution first rule; all macro names
are substituted by their contents before Stata attempts to execute any command. So,
Stata first substitutes ‘rhsvars’ by its definition. It now sees

. local rhsvars "trunk weight length turn displacement gear ratio"

and it then executes the command which that specifies, which happens to redefine the
macro. This looks exactly the same as the first way of doing it, so why did I say that
the second was better, as we obliged Stata to do the extra work? One reason is that
Stata will be far faster than you are at substituting the contents for the name, and less
error prone. An even more compelling reason is that it is a natural and helpful way of
writing any operation in which we accumulate results step by step.

What often happens somehow—and more will be explained later—is that we loop
around a statement like

. local results "‘results’‘new’ "

where ‘new’ refers to some new result. If the macro results is undefined when Stata
comes to this statement, that is not a problem. The local macro results would then
be created with the value of local macro new, followed by a space. Note the detail of the
space, usually needed to separate elements of the list of results. This is useful even

206 Speaking Stata

for accumulating simple lists like 1 2 3 4 5, even though there are other ways of doing
that, principally through numlist (see [P] numlist).

If the macro results is already defined when Stata comes to this statement, then
whatever is in new will just be appended to the existing value of results. Either way,
we are seeing a method of accumulating results one by one.

Not only can macros be redefined readily, a key special case of that is redefining
them as empty. To reverse a previous notion, a macro redefined as empty by

. local whatever

or by

. local whatever ""

ceases to exist.

2.3 What does ‘local’ mean?

We have yet to explain the jargon local. As its geographical counterpart implies,
macros are visible within some space, a name space: that is, local macros are visible
only within the Stata program in which they are defined. An interactive session counts
as a Stata program, as does any other program, whether one that is defined as such
(given its inclusion between program define and end), or one that is so by courtesy
(that is, a do-file, or a set of commands in Stata’s do-file editor).

What does this mean? Suppose again that you have defined local macro rhsvars.
What would happen if you run a Stata program written by Stata Corp programmers,
or by a Stata user, or—if you are a programmer yourself—by you on some previous
occasion, and that program also uses some local macro rhsvars? This is more likely
than you might think, even if you do not program yourself, and you never use anything
not in official Stata, because the majority of commands in official Stata are defined
by Stata programs. But even if, by sheer coincidence, another program includes the
same name, it is not a problem at all, as the two macros are totally distinct, and
never confused by Stata. And this is precisely what local means: visible only locally,
within a program. While somebody else’s program is running, Stata sees and works
with their rhsvars. Even if it is changed during the running of a program, that has
no effect on your rhsvars. That principle is vital for using local macros, because
otherwise you would need to look inside every program you used and check for possible
incompatibilities.

2.4 Global macros

There are, in contrast to local macros, macros in Stata which are visible everywhere, ir-
respective of what program is running, Stata itself (an interactive session), or a program
so defined, or a do-file. These are called global and defined similarly:

N. J. Cox 207

. global rhsvars "trunk weight length turn displacement gear ratio"

They are referred to in a slightly different way, for example,

. regress mpg $rhsvars

The single $ flags the start of a macro name. Very occasionally, you may need to avoid
possible confusion by using braces as well, as in ${rhsvars}. Although global macros
have important uses, and quite possibly you may have used some already, I will say very
little more about them in this column. What we are discussing needs only local macros,
and even though global macros could be used for some of the same purposes, there is
a risk that your global macros and somebody else’s global macros could get confused.
Indeed, the whole point about global macros is that multiple definitions cannot coexist.

2.5 Macros can contain numeric characters

Although we have defined macros as character strings, those strings in Stata are very
often numeric characters, and so we frequently think of such macros as having numeric
values. That piece of news may have been another surprise. You may be accustomed
to the sharp division between string and numeric variables, as shown by the special
methods you need to cross it, such as the encode, decode and destring commands.
In fact, this double aspect of macros is largely a useful illusion, one which turns out to
be yet another example of the substitution first rule. In other words, macros really are
just strings: it is just that the rest of Stata is happy to treat their contents as numeric
whenever that makes sense.

For example, given the definitions

. local i 1

or

. local i "1"

Stata does the same thing: sets the local macro i to the character "1". As mentioned
previously, the delimiters " " are usually optional. The character concerned happens to
be a numeric character, but that causes no problem. Now suppose we want to redefine
the macro by incrementing by 1. If we are thinking numerically, what is most natural
to us, and perfectly acceptable to Stata, is to write this as an evaluation:

. local i = ‘i’ + 1

To be precise, the equals sign flags to Stata that the expression which follows should be
evaluated and it should feed the result of that evaluation to what precedes it. This is a
new syntax compared with any examples we have seen so far, but a syntax that is very
useful. Following the substitution first rule, what Stata sees is

. local i = 1 + 1

208 Speaking Stata

It then evaluates the expression 1 + 1 and redefines the macro i as the result of the
expression, namely the number 2, which it is happy to treat as the numeric character
"2". (That is a little more of a leap than you might think: remember that computers
do their calculations in binary, not decimal.) The evaluation is nothing to do with the
macro: it is part of the rest of Stata. That rest of Stata from context takes you to want
+ to be, as usual, the numeric operation addition. But suppose the expression was

. local i = "1" + "1"

Here the quotes " " insist to Stata that the macros are to be treated as strings, for which
purpose those quotes are essential. The rest of Stata from context takes you to want +
to be the string operation concatenation, that is, adding the strings by juxtaposition.
As a result, i will now contain the string "11". Again, they happen to be numeric
characters, but "April" + " " + "2002" or "Stata " + "Corp" would have worked
just as well.

Evaluations are also often used to produce the results of string expressions, as in

. local lcstring = lower("‘string’")

If you want to know more about string functions like lower(), see [U] 16.3.5 String
functions.

Note finally that

. local i "‘i’ + 1"

is different again. Given i of "1", what ends up as the new local i is just the string "1
+ 1". Without the equals sign, no evaluation will take place, just substitution of the
macro name by its existing contents. The same result would be produced by

. local i = "‘i’ + 1"

as, given the surrounding quotes, the + character is treated as just another character
and not an operator. Here there would be evaluation, but it makes no difference to the
contents of the macro.

2.6 Compound double quotes

We left one point hanging in the air, namely, how to get the " character into a macro.
The answer is to use so-called compound double quotes, ‘" and "’, as delimiters. The
first marks the start and the second marks the end of a macro. What is more, they
themselves can be nested within a macro definition as in

. local saying ‘"She said "Quotes can be tricky""’

. local metasaying ‘"He said ‘"She said "Quotes can be tricky""’"’

For more on this, see [U] 21.3.5 Double quotes.

N. J. Cox 209

3 The three commands foreach, forvalues, and for

After such a long preamble, we can now move directly to the heart of the matter. Three
Stata commands, foreach, forvalues, and for, make up a trio for cycling through lists.
for has the longest history, going back to Stata 3.1 in 1993, with redesigns in Stata
5.0 (1997) and then in Stata 6.0 (1999). That bare summary hides a difficult search for
a good compromise between simplicity and power. for was made more powerful (but
more complicated) in 5.0, and then simplified again in 6.0, and even now it is arguable
that for remains a command very useful when you understand it, but too easy to get
wrong. For that reason alone, I would advise anyone new to the topic to start with
foreach and forvalues. Note that while forvalues can be abbreviated all the way
down to forv, forval appears to be the most widely used abbreviation, presumably
because it is more nearly pronounceable, and I will adopt that in examples.

Let us start with a simple problem. Suppose we wish to generate a series of powers
of a variable y. The slow but sure way of doing it

. gen y 2 = y^2

. gen y 3 = y^3

. gen y 4 = y^4

cries out for a simpler structure, even if you go no higher than y4 and you are familiar
with Stata’s use of the PageUp key.

4 foreach

4.1 A first example

One way to do it is with foreach, and provides us with our first example:

. foreach i in 2 3 4 {

. gen y ‘i’ = y^‘i’

. }

Now that we know that ‘i’ refers to a local macro name, the structure should seem
less mysterious. More precisely, this is an example of one possible syntax with foreach,
so we will back up and explain that more generally.

4.2 First syntax

Using more ordinary words, yet also a little abstraction,

. foreach macro name in list of values {

. one or more statements defined in terms of that macro name

. }

The structure concisely encapsulates several features:

210 Speaking Stata

• A macro name must be given in the first part of the foreach structure.

• A list must be specified immediately after. In the syntax given here, in list , the
keyword in specifies that you are going to spell out all the individual elements of
the list. (That wording is a bit strained, but I find it helps me to remember the
syntax.) There is another syntax, which we will see in a moment.

• One or more statements, at least one of which refers to the macro name, must be
given within braces { }. Quite how you space them out between those braces is
up to you, so long as each statement occurs on a separate line. I like to indent
commands by one tab, which in Stata is always set to a width of 8 characters,
but that is partly a matter of taste. Stata does not care about indenting, but
you should: poorly laid out code is more difficult to read, to understand, and to
modify than well laid out code. (For one very helpful general statement on code
style, see Chapter 1 of Kernighan and Pike (1999).)

• The foreach structure automatically defines the macro in turn as each of the
members of the list and then substitutes the contents in the commands within the
braces. In our case, the result is the three commands given earlier.

• The macro disappears at the end of the foreach structure. Thus you will lose any
preexisting macro with the same name. If you are in the habit of using many local
macros interactively, you may want to devise your own conventions for names to
be used only with structures such as foreach.

Let us look at another problem: producing transformations of several variables, sup-
posing say that positive skewness is our main concern, and we are considering square
root, logarithmic and reciprocal transformations. Given three transformations and pos-
sibly many more variables than that, you should prefer to loop through a list of variables:

. foreach x in list of variables {

. gen log‘x’ = log(‘x’)

. gen sqrt‘x’ = sqrt(‘x’)

. gen rec‘x’ = 1 / ‘x’

. }

However, Stata allows several ways of giving abbreviated variable lists (varlists in
Stata jargon), especially wildcards and variable ranges, as detailed at [U] 14.4.1 Lists
of existing variables. Such features can be exploited with foreach by using the
second syntax referred to just now.

4.3 Second syntax
. foreach macro name of listtype list of values {
. one or more statements defined in terms of that macro name
. }

The keyword of specifies that you are going to give a list of the type to be named.
(That wording may also serve as a mnemonic.) In our last example, the listtype is

N. J. Cox 211

varlist, so, if we had just been inspired by reading Tukey (1977) to try transforming
everything numeric, we could try

. foreach x of varlist * {

. capture gen log‘x’ = log(‘x’)

. capture gen sqrt‘x’ = sqrt(‘x’)

. capture gen rec‘x’ = 1 / ‘x’

. }

The capture here is a device to catch the occasions when a command will not work. It
has many uses in this territory. The notion is easy to grasp: if the following command
does not work, then just digest the output (including the error) and carry on regardless.
The alternative, without capture, is that foreach will stop at the first statement which
does not work, leaving you very often with a partly completed task. See [P] capture
for more examples.

Why might the generate commands not work? Suppose in our case that the vari-
ables in memory included some string variables, so that any attempt to take logarithms
or square roots or reciprocals of those variables would fail. The solution is to say, by
means of capture, “unless this will not work”.

Another reason they might not work is whenever you have variable names very near
the 32-character limit on length (in Stata 7), such that the new name implied by log‘x’
or sqrt‘x’ causes an error message. In this case, and in others, we might want to carry
on regardless, but still get an informative message, to see if we need to sort out any
problems afterwards. There are several ways of doing this, but here is one, for simplicity
shown with only the logarithmic transformation:

. foreach x of varlist * {

. capture gen log‘x’ = log(‘x’)

. if rc { di "‘x’: " rc }

. }

As the documentation for capture explains, Stata commands which fail produce a so-
called return code which is not zero. capture puts the return code in rc, so that it is
accessible. The second line of code in this example displays the name of the offending
variable and the return code whenever that is not zero, using the command if (see
[P] if) and also the fact that if rc is always equivalent to if rc ~= 0, as explained
in my previous column (Cox 2002, Section 5).

We have seen a listtype which is a varlist. foreach also allows four other types
of list: those given within a local, a global, a newlist (that is, a list of new variable
names; see [U] 14.4.2 Lists of new variables) or a numlist (that is, a list of numbers;
see [U] 14.1.8 numlist or [P] numlist). So an earlier example could be written in terms
of a numlist:

. foreach i of num 2/4 {

. gen y ‘i’ = y^‘i’

. }

212 Speaking Stata

with no real gain in this case, beyond showing the principle. In passing, note that
three-letter abbreviations like num are permissible for each listtype.

In general, this second syntax is much more powerful and more useful than the first:
if your list contains tens, hundreds, or thousands of elements, you clearly do not want
to be obliged to specify all of them, and the indirection made possible by (say) varlist
or numlist notation is extremely helpful. What is more, Stata is often faster at cycling
through lists given in this second syntax.

One very common application of foreach is just to produce univariate results for
each of several variables. Sometimes a Stata command producing univariate results
permits a varlist containing several variable names, while sometimes such a command
may only be used with a single varname. foreach can be used as a wrapper to cycle
through a varlist whenever only a single varname is acceptable. For example, let us
imagine that we are drawing normal probability plots (also known as normal quantile
plots or probit plots) using qnorm. See [R] diagplots if more information is needed.
The syntax diagram of qnorm shows that it allows only the varname syntax, so we wrap
a generic call inside a foreach:

. foreach x of var varlist {

. qnorm ‘x’

. more

. }

more here ensures that each graph remains visible for as long as we wish to scrutinize
it (see [P] more). As before, the capture device is available should it be needed. In
this case, we would need capture noisily because capture alone would swallow the
graph as well as any error message (see [P] quietly). Naturally, an alternative is just to
make the effort to be sure that the varlist supplied contains only appropriate variables,
in this example, only numeric variables which we wish to check for normality.

4.4 Do not confuse the two syntaxes

The in and of syntaxes are distinct and should not be confused. In particular, it is
legal in Stata to have a structure which begins something like

. foreach q in numlist 1/3 {

Any kind of list may follow in, so Stata will not pick up that this is almost certainly
an attempt at

. foreach q of numlist 1/3 {

although you will learn from the consequences of the first that it was not what you
wanted. For this reason, any way of keeping the in and of syntaxes separate in your
mind, such as the mnemonics suggested earlier, may be of help.

N. J. Cox 213

5 forvalues

forvalues is complementary to foreach. It can be thought of as an important special
case of foreach, for cycling through certain types of numlist, but presented a little more
directly.

. forval macro name = range of values {

. one or more statements defined in terms of that macro name

. }

Here the range of values specifies a sequence of numbers and takes one of two main
forms, exemplified by 1/10 and 10(10)100. The first is short hand for 1 2 3 4 5 6 7
8 9 10, that is, integers from 1 to 10. The second is short hand for 10 20 30 40 50
60 70 80 90 100, that is, integers from 10 to 100 in steps of 10. Clearly 1(1)10 would
be another way of specifying the first example. For decreasing sequences, use a form
like 25(-1)1.

There are yet more possible ways of specifying ranges. 10 20 : 100 and 10 20 to
100 are equivalents to 10(10)100, which you may use if you prefer.

In short, whenever you want to cycle over a simple sequence of integers, forvalues
is an alternative to foreach. foreach must store the integers, whereas forvalues
calculates them one by one, giving it an edge in speed of execution.

Using forvalues gives a possible alternative to our first example with foreach,
generating powers of a variable:

. forval i = 2/4 {

. gen y ‘i’ = y^‘i’

. }

For a new example, let us again imagine that we are drawing normal probability
plots using qnorm. One key issue in assessing the variability on such plots is how much
variability would be expected even if the parent distribution really were exactly normal
(Gaussian). Suppose our variable’s normal plot were saved in a gph-file by a line such
as

. qnorm ourvar, saving(ourvar)

It is helpful to be able to compare such a plot with a reference portfolio of plots for
normal samples of the same size. Such a procedure is suggested, for example, by
Wild and Seber (2000) in their excellent text (p. 413). This qnorm command would
use every value of ourvar (so long as no values were missing; we will set that possible
complication on one side). Knowing Stata’s predilection for showing multiple graphs in
a k × k array, we will go for 5 × 5 as a modest number of graphs which remain fairly
legible individually. Given the existing plot already in ourvar.gph, we need 24 random
samples and their normal probability plots:

214 Speaking Stata

. forval i = 1/24 {

. gen v‘i’ = invnorm(uniform())

. qnorm v‘i’, saving(v‘i’)

. local G "‘G’ v‘i’"

. }

As the local macro i goes from 1 to 24, at each step we get a new sample from a standard
normal N(0, 1) by using first the uniform() function and then the invnorm() function.
We then use qnorm to draw a normal probability plot, which will flash by, but we save
the graph image in a file with the same name as the variable. As a further small but
useful flourish, we accumulate the names of the variables (and thus the gph-files) in a
local macro G.

Now all the ingredients are ready. We can just redraw our saved graphs:

. graph using ourvar ‘G’

To recap on the forval structure: the macro created, namely i, runs through the
values 1 through 24. It is substituted in turn as a part of a new variable name (e.g.,
v‘i’ becomes v1) and as part of a new filename (same example, different context). We
see also an illustration of an important principle: such a structure can be as valuable
for its side effects—in this example, the graph files left behind—as for its immediate
and obvious effects. But most clearly of all, typing this is a large saving on repeating a
generate command and a qnorm command for each of 24 variables. And the reference
graphs remain of use if we want to look at other variables in this way.

This is not the only way to do it. You might prefer to use foreach:

. foreach v of new v1-v24 {

. gen ‘v’ = invnorm(uniform())

. qnorm ‘v’, saving(‘v’)

. local G "‘G’‘v’ "

. }

which has at least one advantage: a side effect of declaring listtype to be newlist is
that Stata would check before entering the loop that no existing variables had any of
the variable names v1-v24.

6 Initializing before foreach or forvalues

In all the examples so far we have been able to set up our foreach or forvalues loop
straight away. There are many problems, just a little more complicated, in which we
need one step more, namely, to initialize one or more things before we enter the loop.
This can arise in various ways, and we will look at two. We might want to create a new
variable, but the recipe for creation is too complicated for a single command. (The limit
is likely to be inherent not so much in Stata’s syntax as in our own need to keep things
simple, but therein is no shame and much benefit.) Or we might want to populate a
matrix with entries from separate calculations.

N. J. Cox 215

6.1 Initializing a variable

Such tasks often arise in cleaning up fairly large datasets containing string variables,
say names of countries or companies or diseases. If the dataset has been produced by, or
from the responses of, several people, or even by one person, there may be various small
inconsistencies. To be safe, we keep the original variable, but work first at producing
a more consistent version. If we are happy with our work, we might be bold and drop
the original.

Imagine a survey with a question on vacation destinations. Respondents were asked
to state countries they wished to visit. Initial inspection reveals, among many other
details, a multitude of near synonyms for Britain: Britain, Great Britain, UK, United
Kingdom, and so forth3. We decide to combine these all into Britain.

A constraint on this is that we can only use generate once: thereafter we can make
any number of changes, but they must be done through replace. It is often advisable
therefore to put a generate statement outside the loop as in

. generate str1 Destination = ""

. replace Destination = destination

. foreach c in "Great Britain" "UK" "United Kingdom" {

. replace Destination = subinstr(Destination,"‘c’","Britain",1)

. }

Three extra details arise here. First, in producing a copy of a string variable, we could
specify the same variable type as the original: describe or codebook, say, will tell
us what that is. But I usually generate an empty str1 variable and follow with a
replace, thus getting Stata to promote the variable automatically. This saves the time
(person time, not computer time) of the describe and exploits the fact that Stata will
be economical in choosing the string variable type needed. Moreover, on occasion you
might recall or guess that a variable is (say) str11 when it is really str12. Stata will
take you quite literally if you specify a string variable type and will quietly ignore what
it takes to be superfluous characters. You may be some distance further on before the
damage is spotted.

Second, note how strings with embedded spaces such as "Great Britain" need
delimiting quotes.

Third, the subinstr() function is explained at [U] 16.3.5 String functions.

6.2 Populating a matrix

Many bivariate commands produce single-number statistics which we might want to dis-
play in the form of a two-way table. correlate does this automatically: given a varlist
of numeric variables, it will produce a correlation matrix. However, other commands
are not set up to do this automatically. foreach makes it possible to overcome that in
a relatively straightforward way. This example is a little more complicated than any so

3Perhaps even England, despite facts revealed by any good atlas.

216 Speaking Stata

far. If you are trying to copy this in your own Stata, or to modify it to fit a related
problem of your own, you will probably want to make use of a text editor, which could
be Stata’s own do-file editor4.

Consider ktau, which takes only a pair of variables varname1 and varname2, and
calculates Kendall’s tau. (See [R] spearman.) Having read Newson (2002) on the many
virtues of τa in particular, we might like to look systematically at results for the auto
data. We will set aside the string variable make and the binary variable foreign and
look at those ten variables on at least an ordinal scale, price-gear ratio.

To grind through all the possibilities, we need two foreach loops, one nested inside
the other. Here is our first attempt:

. foreach v of var price-gear ratio {

. foreach w of var price-gear ratio {

. ktau ‘v’ ‘w’

. }

. }

The nested loops look like a new idea, but the new idea is only a little one. Follow
Stata as it goes through the structure. It extracts price as the first variable of the
varlist price-gear ratio and sets that as the first instance of local macro v. Then
it extracts price as the first variable of the (same) varlist price-gear ratio and
sets that as the first instance of the local macro w. Note that it is vital that we have
two distinct macros for referring to the two variable names, as only occasionally will the
two variables be identical. Even in those cases we should really do the calculation, as
τa will only be equal to 1 if there are no tied values. Then Stata substitutes the macro
names by their contents, and executes ktau price price. So at this point Stata has
completed one step through the outer loop and one step through the inner loop. Here
now is the crucial rule: the innermost loop is completed first. Stata therefore resets
local macro w to the second variable of price-gear ratio, which happens to be mpg,
and executes ktau price mpg. It continues cycling through the varlist until the last
variable, executing ktau price gear ratio. At this point the inner loop, for macro w,
is complete, so Stata returns to the outer loop, for macro v. That is reset to mpg. The
inner loop then restarts all over again, with w reset to price, so we get ktau mpg price.
The inner loop then continues until finished, the outer loop restarts, and so on and so
forth, until for 10 variables in each list, all 100 pairwise correlations are calculated.

You may have noticed that we have been a little extravagant in our use of computer
time. We made Stata calculate both ktau x y and ktau y x even though the results
are identical. In general, given p variables, there are at most p(p + 1)/2 values of τa
of substantive interest, and obliging Stata to calculate all p2 values is wasteful by a
factor of almost 2. However, for a small dataset and a modest number of variables,
the extra time is trivial, and less than it would take to modify the code. If we wanted

4Helpful advice to Stata users on text editors is made difficult by the very large number which exist
and the diversity of platforms—Windows, Macintosh and Unix—on which Stata runs. Nevertheless, the
FAQ at http://fmwww.bc.edu/repec/docs/textEditors.html gathers detailed notes from several Stata
hands.

N. J. Cox 217

an efficient program to run repeatedly on a variety of problems, including those with
greater numbers of observations, making savings would be important, but it is less so
in interactive code.

But there is a more important detail we have glossed over, the treatment of missing
values. Left to its own devices, Stata will use as many observations as possible in
calculating τa. With the auto data, this will be 74, unless one of the variables is rep78,
for which 5 values are missing, so that it will be 69. This behavior may be what you
want, but it is more likely that you would prefer casewise deletion, meaning that the
same observations are used in every calculation. One way to achieve this is to use egen,
see [R] egen, to count missing values across variables:

. egen nmiss = rmiss(price-gear ratio)

and then to stipulate that the ktau is calculated if nmiss == 0, that is, only if all
variables specified are nonmissing in each observation.

Results from these calculations are still produced in a long and awkward list. It
would be much more practical to have them in a table. One of the easiest ways to do
this is to populate a matrix with the correlations, and then use matrix list to take
care of all display matters. A first step is to set up, before the foreach loops, a matrix
of the right size, which we can fill arbitrarily. Each element of the matrix will then be
replaced in turn within the foreach loops. The matrix function J(r,c,z) creates an
r × c matrix, all of whose elements are z (see [P] matrix define). 10 variables give a
10 × 10 correlation matrix:

. matrix tau = J(10,10,10)

I have also used 10, an impossible result for τa, as the typical element in the initial
matrix as a check that the code cycles through all the possibilities intended. Any 10
lurking in the final result would signify an error in my code.

Now what we need to do is pick up the result left behind in memory after each time
ktau is executed. The manual entry on each command, in a Saved Results section,
will document any results which are temporarily accessible in Stata’s memory after a
command is executed. “Temporarily” means until you exit Stata, or until the next
command of similar type is executed, whichever happens sooner. If the manual entry
is not accessible, typing either return list or estimates list immediately after a
command will show what is saved where. The rule of thumb is to try return list
first unless the command can be thought of as estimating a model, in which case try
estimates list first. In our case, using either the manual or return list, we find
that we need to pick up r(tau a).

Next we need to cycle through row and column indexes. One way is to initialize
a row index i and a column index j to 0 just before the corresponding foreach loop
starts, and then increment by 1 every time we set v or w, as appropriate. Then the
replacement of each matrix element is to tau[‘i’,‘j’].

218 Speaking Stata

Putting the code together:

. egen nmiss = rmiss(price-gear ratio)

. matrix tau = J(10,10,10)

. local i = 0

. foreach v of var price-gear ratio {

. local i = ‘i’ + 1

. local j = 0

. foreach w of var price-gear ratio {

. local j = ‘j’ + 1

. ktau ‘v’ ‘w’ if nmiss == 0

. mat tau[‘i’,‘j’] = r(tau a)

. }

. }

. matrix list tau, format(%4.3f)

I will flag again how systematic indenting is an aid to understanding the code. Notice
how each right brace } marks the end of each foreach loop.

There is still one thing missing, intelligible labeling of the rows and columns of
the tau matrix. It is worth knowing how to do this, as it makes the result so much
easier to read. Another command usually billed as a programming command, unab
(see [P] unab), saves your typing. It “unabbreviates” (ugly word, but useful action) a
variable list into a local macro, after which you can attach the names to the tau matrix
(see [P] matrix rownames):

. unab vars : price-gear ratio

. matrix rownames tau = ‘vars’

. matrix colnames tau = ‘vars’

. matrix list tau, format(%4.3f)

7 The for command

for is the third of our trio of commands for cycling through lists. Treating it last inverts
the historical order: as mentioned previously, for was introduced in Stata in version
3.1 in 1993 and thus long predates foreach and forvalues, introduced in version 7 in
2001. Explaining it this way reflects my experience that while very useful for easy tasks,
for all too often becomes awkward or problematic for slightly more difficult tasks. That
aside, let us first revisit some of our examples and see how they would be done with
for.

7.1 Examples

For our powers of a variable example, we could use

. for any 2 3 4 : gen y X = y^X

or (better)

. for num 2/4 : gen y X = y^X

N. J. Cox 219

For our transformations of a variable example, we could use

. for var varlist : gen logX = log(X) \ gen sqrtX = sqrt(X) \ gen recX = 1 / X

For the normal probability plots,

. for var varlist : qnorm X \ more

or

. for var varlist, pause : qnorm X

7.2 Discussion

The pattern underlying these examples of for is, with more details to be explained
shortly,

. for listtype list of values : one or more commands separated by backslashes

Looking at the examples just given in this light shows both similarities and differences
compared with foreach and forvalues.

• for has a notion of listtype, just like foreach, except that the possible types
are varlist, newlist, numlist and anylist. Arbitrary lists can—and indeed
must—be specified as type anylist. Three letter abbreviations of each listtype
are allowed.

• for does not use local macros to hold successive members of lists. Instead, you
indicate by a placeholder (by default X) where the member of the list belongs in
the command(s) to be executed. The principle is similar, but not identical.

• for does not use braces, nor does it allow the use of separate lines, in specifying
the commands to be executed. The syntax is that commands follow a colon : and
that multiple commands are separated by backslashes \.

• for has a few special options of its own. pause is one such option used in the
previous set of examples.

This is not the whole of the story, and further options and features, especially the use
of multiple lists to be processed in parallel, are explained at [R] for. But immediately
you may be able to sense why for divides experienced Stata users into rival camps, say
the “for” and “against” factions. On one side, many users appreciate its conciseness.
With a little experience, you can often encapsulate a series of commands in a single
and fairly short command line with for. On the other side, while the structure may
include repetition of several commands for each member of the list, separation of those
commands by backslashes means that such code can be difficult to read, and thus

220 Speaking Stata

difficult to understand and above all to debug. Naturally, readability depends also on
other practices. It helps a great deal to have personal rules such as always surrounding
backslashes with spaces.

One key difference is not obvious from these examples, or indeed otherwise. Struc-
tures using foreach and forvalues are best thought of as a series of commands under
the control of a specified loop. A notable consequence is that any local macros will be
substituted just before each command is executed. Therefore, their contents may vary
through the loop. We have seen this principle in operation: it is what makes possible
the accumulation of results one by one into local macros, as in the normal probability
plot example. In contrast, for is best thought of as a single command at the time it is
issued, no matter how many command lines follow the colon. Thus any local macros will
be substituted just once, immediately before Stata tries to execute the for command
as a whole.

There is no contradiction here, nor any special behavior. Everything in the last
paragraph follows from the substitution first rule. But what this rules out for for is
any use of local macros whose contents vary through the loop5. Attempting to try
to manipulate local macros within for is thus almost always problematic. That does
not rule out use of local macros to specify part of the command line, which from the
substitution first rule (yet again) is no part of for’s concern. So, to give a simple
example, if the local macro myvars contained a varlist, then

. for var ‘myvars’ : qnorm X \ more

is perfectly acceptable. Stata will substitute the contents of myvars, and only then does
it try to execute the for code.

In addition, although we will not explore the point in detail, it can be difficult or
even impossible to nest for commands, such that one for calls another for. On the
whole, do not even try, as the equivalent code with foreach and/or forvalues will be
much easier to write.

One less subtle pitfall with for is that the placeholder (by default X) might occur as
part of the command line. As you will be aware, Stata command syntax is based almost
uniformly on names composed of lower case letters. There are several exceptions, such as
xi, see [R] xi, which produces variable names including characters such as I and X, and
indeed it uses them partly because Stata users are exhorted, by precept and by example,
to use lower case for the most part. In addition, it might be that X occurs as part of
some other text. Not surprisingly, Stata has no way of distinguishing occurrences of the
placeholder from occurrences of the same symbol(s) which are intended literally, and
all occurrences of those symbols would be treated as placeholders, producing typically
either an error message or bizarre results.

Very simply, when this happens, or if you want to do it anyway, you need to specify
another placeholder, as in

5There is at least one trickier way of doing it, in which the series of commands is bundled into a
do-file, and the local manipulations kept out of sight (and thus out of mind) of for. In my view, that
way has no advantages over a more direct approach using foreach or forvalues.

N. J. Cox 221

. for P in num 2/4 : gen y P = y^P

or

. for POWER in num 2/4 : gen y POWER = y^POWER

The second example should make it plain that a placeholder need not be a single symbol.

The in syntax here is the reverse of that of foreach. That is just the way it is. It is
of course equally true that the alternative placeholder should not appear as itself within
the command line. Use of upper case letters is not mandatory, but rather a strongly
recommended convention. An alternative is to use a character otherwise unlikely to
occur, the leading candidate being @.

A similar detail is that you will need to protect text including backslashes, say
Windows filenames, by inclusion within quotes against the inclination of for to treat
those backslashes as command separators.

There is a further point of interest to anybody who wishes to embed structures like
this into do-files (and, especially, Stata programs) to be used many times over. for is
implemented as a Stata program defined in an ado-file, which is at present a few hundred
lines long. In contrast, foreach and forvalues are implemented in C code as part of
the Stata executable. That implementation as a Stata program poses an overhead of
interpretation. As it executes the program defining for, Stata needs to interpret each
successive command line and thus will be much slower than would be the case with
foreach or forvalues. Often you will find this difficult to detect, but in principle the
latter structures are much to be preferred in code to be reused frequently.

8 Summary

What is my “take home” message from this column? The effort needed to master these
commands is rewarded by the payoff in efficiency and system in going beyond what is
easy to do directly in Stata. Even the apparently esoteric notion of local macros is not
as bizarre as it may first seem: their name is perhaps their strangest feature. Grasping
that notion is like the first steepish climb out of the valley on many a mountain walk.
Once upon the first ridge, the view justifies the puff and the perspiration, and you can
walk more easily. If you know for and like it, then stick with it. Whether or not you
know for, do check out foreach and forvalues and add them to your repertoire.

9 What’s next?

In my next column I will look at the contrast between string and numeric variables. As
briefly mentioned in section 2.5 above, the difference between them marks a great divide
between kinds of data in Stata. However, many datasets are in some sense problematic
in this respect, leading to difficulties in input, management and analysis. I will focus
on the logic and uses of the several ways which now exist for crossing that divide.

222 Speaking Stata

10 Correction to previous column

In my previous column Cox (2002), the description of ASCII order on page 87 contains
a mistake. In ASCII order, lowercase letters such as "a" go after uppercase letters such
as "A".

11 Acknowledgments

For various helpful comments, I am grateful to Kit Baum, David Kantor, Scott Long,
Roger Newson, and Joe Newton.

12 References
Cox, N. J. 2001. Speaking Stata: How to repeat yourself without going mad. Stata

Journal 1: 86–97.

—. 2002. Speaking Stata: How to move step by: step. Stata Journal 2: 86–102.

Kernighan, B. W. and R. Pike. 1999. The Practice of Programming. Reading, MA:
Addison–Wesley.

Newson, R. 2002. Parameters behind “nonparametric” statistics: Kendall’s tau, Somers’
D and median differences. Stata Journal 2: 45–64.

Tukey, J. W. 1977. Exploratory Data Analysis. Reading, MA: Addison–Wesley.

Wild, C. J. and G. Seber. 2000. Chance Encounters: A First Course in Data Analysis
and Inference. New York: John Wiley & Sons.

About the Author

Nicholas Cox is a statistically-minded geographer at the University of Durham. He contributes
talks, postings, FAQs, and programs to the Stata user community. He has also co-authored
eight commands in official Stata. He was an author of several inserts in the Stata Technical
Bulletin and is Executive Editor of The Stata Journal.

