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1 Introduction

In this article, we describe the use of G-estimation to estimate causal effects. This
method is used in studies where subjects are studied over a period of time, and the sub-
ject characteristics are measured at the start of the study (the baseline measurements)
and on a number of subsequent occasions. Such studies are known as cohort studies
by epidemiologists and as panel studies by social scientists. Subjects are followed-up
until the occurrence of the outcome event, or until they are censored (e.g., because they
reach the scheduled end of follow-up or because they withdraw from the study). The
outcome event could be death from a particular cause, or the occurrence of a particular
disease or other life event (e.g., the first successful job application for a panel of job
seekers). The time between the start of follow-up and the occurrence of the outcome
event is called the failure time.

Our aim is to identify factors associated with the occurrence of the outcome event.
We will call such factors exposures; these could be risk factors for disease (such as
alcohol consumption) or treatment interventions (e.g., antiretroviral therapy for HIV-
infected patients). We will deal only with binary exposure variables, for which subjects
can always be classified as exposed or unexposed to the risk factor or treatment. The
control of confounding is a fundamental problem in the analysis and interpretation of
such studies. A confounding variable (confounder) is one that is associated with both
the occurrence of the outcome and with the exposure of interest. For example, smoking
will usually confound the association between alcohol consumption and the occurrence
of cancer. Variables on the causal pathway between exposure and the outcome event
should not be treated as confounders. For example, when estimating the effect of an
antihypertensive (blood pressure-lowering) drug on the occurrence of heart disease, we
should not control for blood pressure after the start of treatment. Controlling for
a covariate that is intermediate on the pathway between exposure and outcome will
estimate only the direct effect of the exposure (ignoring the effect mediated through the
covariate).

c© 2002 Stata Corporation st0014
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Exposure effects controlled for confounding may be estimated via stratification (e.g.,
using Mantel–Haenszel methods) or by using regression models that include both the
exposure and the confounder(s) as covariates. We will focus on Cox and Weibull re-
gression models for the analysis of cohort studies. When exposures and confounders
are measured repeatedly, we may estimate their association with the outcome by split-
ting follow-up time into the periods between measurements, and assuming that the
values measured at the start of the period remain constant until the next measurement
occasion. We will refer to such estimates as time updated effects.

The problem addressed here is that standard methods for the analysis of cohort
studies can lead to biased estimates of time-updated exposure effects. This is because
of time-varying confounding. As defined by Mark and Robins (1993), a covariate is a
time-varying confounder for the effect of exposure on outcome if

1. past covariate values predict current exposure, and

2. current covariate value predicts outcome.

If, in addition, past exposure predicts current covariate value, then standard survival
analyses with time-updated exposure effects will give biased exposure estimates, whether
or not the covariate is included in the model.

For example, consider a study to estimate the effect of antiretroviral therapy (ART)
on AIDS-free survival in patients infected with HIV. Markers of disease progression (e.g.,
CD4 counts) are used to decide when to administer ART, but are also affected by ART.
CD4 count is a time-varying confounder for the effect of ART on survival times because

1. past values of CD4 count predict whether an individual is treated (condition 1),
and

2. CD4 count predicts survival time (condition 2).

In addition, ART affects subsequent CD4 count, and so standard approaches to the
analysis of time-updated exposure effects will give biased estimates of the effect of ART.
For example, analyses of the effect of ART on survival times could employ three possible
strategies:

1. The crude estimate (not controlled for confounding) of the effect of ART will be
biased, because ART tends to be given to individuals who are more immunosup-
pressed (their CD4 count is low) and who therefore tend to experience higher rates
of AIDS and death.

2. Controlling for the baseline values of confounders such as CD4 count will still give
biased estimates of the effect of ART, because this ignores the fact that individuals
who started treatment after the start of the study will tend to be those who became
immunosuppressed.
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3. Controlling for time-updated measurements of confounders such as CD4 count will
still give biased estimates of the effect of ART, because ART acts at least partly by
raising CD4 counts. Such models would therefore ignore the effect of ART, which
acts through raising CD4 count.

2 Methods

The method of G-estimation of causal effects in the presence of time-varying confound-
ing was introduced by Robins; see, for example, Robins et al. (1992), Witteman et al.
(1998), or Tilling et al. (2002). We briefly outline the method here.

The concept of the counterfactual failure time is fundamental to G-estimation. For
subject i, the counterfactual failure time Ui is defined as the failure time that would
have occurred if the subject had been unexposed throughout follow-up. Ui is called the
counterfactual failure time because it is unobservable for subjects who were exposed
at any time. For subjects who were unexposed throughout follow-up, Ui is equal to
their observed failure time. We assume that exposure accelerates failure time by a
factor exp(−ψ), which we will call the causal survival time ratio. The purpose of the
G-estimation procedure is to estimate the unknown parameter ψ.

If ψ were known, then for a subject who experienced the outcome event and who
was exposed throughout follow-up, Ui would be equal to their observed failure time
multiplied by exp(ψ), since

Failure time if continuously exposed = Failure time if unexposed × exp(−ψ)

and so

Ui = Failure time if continuously unexposed
= Failure time if continuously exposed × exp(ψ)

Similarly, for any subject who experienced the outcome event at time Ti, the counter-
factual failure time Ui,ψ could be derived from the observed failure time by

Ui,ψ =
∫ Ti

0

exp(ψei(t))dt (1)

where ei(t) is 1 if subject i is exposed at time t and 0 if subject i is unexposed. As
explained earlier, we assume that exposure is constant between measurement occasions.
For example, if subject i experienced the outcome event at 5 years and was exposed for
three of these, then

Ui,ψ = 3 exp(ψ) + 2

However, for the reasons given in the introduction, in the presence of time-varying
confounding, ψ cannot be estimated from the data using standard methods (e.g., using
a Weibull or other accelerated failure time model).
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G-estimation provides estimates of ψ, allowing for time-varying confounding. The
main assumption underlying the procedure is that there is no unmeasured confound-
ing, which means that we have measured all variables that contribute to the process
that determines whether a subject is exposed at each measurement occasion. If this
assumption holds, then providing that we can account for the time varying confound-
ing, associations between exposure and the outcome can be attributed unambiguously
to the effect of the exposure. Conditional on this assumption (which cannot be tested
using the data), individuals’ exposure status at each measurement occasion will be inde-
pendent of their counterfactual failure time Ui. An example of this assumption is that,
conditional on past weight, smoking status, blood pressure and cholesterol measure-
ments (the confounders), the decision of an individual to quit smoking (the exposure) is
independent of what his/her survival time would have been had he/she never smoked.
Exposure does not have to be independent of subjects’ actual life expectancy (smokers
may choose to quit precisely because they recognize that smoking has already affected
their health, and thus reduced their life expectancy).

The assumption of no unmeasured confounders implies that exposure at each mea-
surement occasion is independent of Ui. The G-estimation procedure therefore searches
for the value ψ0 for which exposure at each measurement occasion is independent of
Ui,ψ0 . This is done by fitting a logistic regression model relating measured exposure eit
at each measurement occasion t to Ui,ψ, controlling for all confounders {xijt}:

logit(eit) = αUi,ψ +
∑
j

βjxijt (2)

The confounders in this regression model will typically include the other covariates at
the current time point t, the values of the exposure and the other covariates at previous
time-points and the values of the exposure and the other covariates at baseline. Subjects
contribute an observation for each occasion at which the exposure and confounders were
measured.

A series of logistic regression models defined by equation 2 are fitted for a range of
different values of ψ. The G-estimate ψ0 is the value of ψ for which the Wald statistic
for α is zero; that is, the p-value is 1, meaning that there is no association between
current exposure and Ui,ψ0 . The upper and lower limits of the 95 percent confidence
interval for ψ0 are the two values for which the two-sided p-values for the Wald statistic
of α are 0.05.

The G-estimate ψ0 is minus the log of the “causal survival time ratio”. Thus,
exp(−ψ0) estimates the ratio of the survival time of a continuously exposed person to
that of an otherwise identical person who was never exposed. This ratio is the amount
by which continuous exposure multiplies time to the outcome event. If exp(−ψ0) > 1,
then exposure is beneficial (i.e., exposure increases time to the outcome event). The
causal interpretation is justified because (i) changes in exposure precede the occurrence
of the outcome, and (ii) providing the assumption of no unmeasured confounders is
valid, the estimated association between exposure and outcome can be attributed to the
effect of exposure rather than to any confounding factor. Similar causal interpretations
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can be made from randomized controlled trials, in which criterion (i) is justified by
the experimental design, and criterion (ii) by the randomized allocation of exposure
(treatment).

Censoring

The counterfactual survival time, Ui,ψ, can only be derived from the observed data for
a subject who experiences the event. If the study has a planned end of follow-up (at
time Ci for individual i) that occurs before all subjects have experienced the outcome
event, then some subjects’ counterfactual failure times will not be estimable. If Ci is
independent of the counterfactual survival time, then this problem can be overcome
by replacing Ui,ψ with an indicator variable ∆i,ψ that takes the value 1 if the event
would have been observed both if individual i had been exposed throughout follow-up
and if they had been unexposed throughout follow-up, and the value 0 otherwise; see
Witteman et al. (1998),

∆i,ψ = ind(Ui,ψ < Ci,ψ) (3)

where Ci,ψ = Ci if ψ ≥ 0 and Ci,ψ = Ci exp(ψ) if ψ < 0. Thus, ∆i,ψ is zero for all
subjects who do not experience an event during follow-up, and may also be zero for some
of those who did experience an event. Unlike Ui,ψ, ∆i,ψ is estimable for all subjects.

Competing risks

Subjects may also be censored by competing risks. For example, in the study of the
effect of ART on AIDS-free survival, subjects could withdraw from the study because
they felt too ill to participate in further follow-ups, or be withdrawn from the study
because they were prescribed an alternative treatment. In each of these cases, censoring
is not independent of the underlying counterfactual survival time. Thus, the above
method for dealing with censoring by planned end of study cannot be used to deal with
censoring by competing risks.

As outlined by Witteman et al. (1998), censoring due to competing risks is dealt with
by modeling the censoring mechanism, and using each individual’s estimated probability
of being censored to adjust the analysis. Multinomial logistic regression (using all
available data) is used to relate the probability of being censored at each measurement
occasion to the exposure and covariate history, and hence to estimate the probability
of being uncensored to the end of the study for each individual. The inverse of this
probability is used to weight the contributions of individuals to the logistic regression
models used in the G-estimation process. This approach means that observations within
the same individual are no longer independent, so the logistic regression models use
robust standard errors allowing for clustering within individuals. This is equivalent to
the procedure suggested by Witteman et al., to use a robust Wald test from a generalized
estimating equation with an independence working correlation matrix. The confidence
intervals obtained using this procedure are conservative.
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Converting survival time ratios to hazard ratios

The parameter estimated by the G-estimation procedure, the causal survival time ratio,
describes the association between exposure and survival using the accelerated failure
time parameterization. In epidemiology, the more usual parameterization for survival
analysis is that of proportional hazards. It is therefore useful to be able to express the
causal survival time ratio in the proportional hazards parameterization. One obvious
way to do this is via Weibull models, the only model that can be expressed in either
parameterization.

The Weibull hazard function at time t is h(t) = φγtγ−1, where φ is referred to
as the scale parameter and γ as the shape parameter. If the vector of covariates xi
does not affect γ, then the Weibull regression model can be written as either the usual
epidemiological proportional hazards model

h(t, xi) = h0(t) exp(βTxi) (4)

or as an accelerated failure time model,

Ti = exp(θTxi + ε) (5)

where Ti is the failure time for individual i, and ε has an extreme value distribution with
scale parameter 1/γ. The Weibull shape parameter γ can thus be used to express results
from the accelerated failure time parameterization as proportional hazards: θ = −β/γ.
If the underlying survival times are assumed to follow a Weibull distribution, the Weibull
shape parameter can therefore be used to express the G-estimated survival ratio as a
hazard ratio for the exposure.

3 The stgest command

stgest estimates the effect of a time-varying exposure variable, expvar, on survival,
accounting for possible confounding by the list of (time-varying or non time-varying)
variables specified in confvars and, optionally, the lagged or baseline effects of one or
more of these variables, specified using the lagconf() and baseconf() options.

Use of G-estimation requires a dataset in which exposures have been measured on
at least two occasions, and the time until the occurrence of outcome of interest, or of
censoring, is also recorded. The data should be in long st format, with subject identifier
specified using the id option of the stset command, and each line of the dataset
corresponding to an examination. We explain how to deal with censoring because of
competing risks later.
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3.1 Syntax

stgest expvar confvars, visit(varname)
[
lasttime(varname) range(numlist)

step(#) tol(#) lagconf(varlist) firstvis(#) baseconf(varlist)

pnotcens(varname) idcens(varname) saveres(filename) replace detail

round(#)
]

makelag varlist, firstvis(#) visit(varname)

makebase varlist, firstvis(#) visit(varname)

gesttowb

4 Options

visit(varname) specifies the variable identifying the measurement occasion (examina-
tion). At least two measurement occasions are needed. If lagged confounders are to
be used, then three measurement occasions are needed, since events occurring be-
tween the first (baseline) and second examinations are not included in the analyses.
The visit option must be specified.

lasttime(varname) must be specified unless all subjects experience the outcome event.
It contains the time at which follow-up would have been completed for each patient,
had they not experienced the outcome event.

range(numlist) provides the lower and upper ends of the range of estimates for the
causal parameter to be considered in the estimation procedure. The default is −5 to
5. Unless the step() option is specified, the program conducts an interval bisection
search for the best estimate of the causal parameter, together with corresponding
upper and lower 95% confidence intervals.

step(#) is the increment to be used in the search for the best estimate of the causal
parameter. If this option is used, the program conducts a grid search instead of an
interval bisection search.

tol(#) is an integer (default 3) specifying the tolerance for the interval bisection search.
The search ends when successive values of the estimate of the causal parameter differ
by less than 10−tol.

lagconf(varlist) gives a list of variables whose lagged confounding effect should be
controlled for in the analysis. The lagged value is defined as the value at the previous
occasion defined by visit(). Corresponding variables with names prefixed by L are
created in the dataset.
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firstvis(#) is the number of the first measurement occasion after which outcome
events contribute to the analysis. If this is specified, then only follow-up from the
examination after the baseline is considered in estimating the causal effect. By
default firstvis() is the minimum value of visit(). If lagged confounders are to
be used, then firstvis() must be at least one greater than the minimum value of
visit().

baseconf(varlist) gives a list of variables whose baseline confounding effect should be
controlled for in the analysis. The baseline value is defined as the minimum value
of visit(). Corresponding variables with names prefixed by B are created in the
dataset.

pnotcens(varlist) specifies a variable containing the cumulative probability of remain-
ing uncensored by competing risks to the end of follow-up, for each individual. If
this is not specified, it is assumed that there is no censoring by competing risks.
This is derived from a logistic regression with censoring at each examination as the
outcome.

idcens(varname) must be specified if pnotcens() is specified. idcens() is an indicator
variable that shows whether the individual was censored due to competing risks (that
is, for reasons other than the occurrence of the event of interest). Where there are
competing risks, robust standard errors are used to take into account the fact that the
probability of being censored is the same for all observations on a given individual.

saveres(filename) requests that the z-statistic for each value in range() be saved in
filename. If this is not specified, no results are saved.

replace allows results previously saved in filename to be overwritten.

detail displays output from the regression model fitted at each iteration.

round(#) is rarely needed. It is used when there are problems in creating the indicator
variable used in the logistic regression of exposure on counterfactual failure time,
allowing for censoring.

5 Example

We will illustrate the use of the stgest command to estimate the effect of smoking on
rates of heart disease, using data from the Caerphilly study, a longitudinal study of
cardiovascular risk factors. Results will be compared with those from standard survival
analyses. Participants (all of whom are men) were recruited between 1979 and 1983
(examination 1), when they were aged 44 to 60. Further examinations took place during
the periods 1984 to 1988 (examination 2), 1989 to 1993 (examination 3), and 1993 to
1997 (examination 4). All subjects were followed until the end of 1998.

The dataset analyzed here is based on a total of 1756 subjects who had complete
data at examinations 1 and 2. The outcome variable (mi) is the occurrence of either
a myocardial infarction or death from coronary heart disease. Variable miexitdt gives
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the exit date for each subject, defined as the first (minimum) of (a) date of occurrence
of the outcome, (b) date of death, (c) date of emigration, and (d) end of scheduled
follow-up (31 December 1998). In the following displays, we will list data for ids 1021,
1022, and 1023. Id 1021 died from coronary heart disease on 18 June 1996, while ids
1022 and 1023 survived until the scheduled end of follow-up.

. gen byte touse=0

. replace touse=1 if id==1021|id==1022|id==1023
(11 real changes made)

. list id visit examdat mi miexitdt onsdod if touse

id visit examdat mi miexitdt onsdod
16. 1021 1 10sep1979 0 18jun1996 18jun1996
17. 1021 2 31jul1984 0 18jun1996 18jun1996
18. 1021 3 17mar1992 1 18jun1996 18jun1996
19. 1022 1 10sep1979 0 31dec1998 14dec1999
20. 1022 2 19sep1984 0 31dec1998 14dec1999
21. 1022 3 20nov1989 0 31dec1998 14dec1999
22. 1022 4 28oct1993 0 31dec1998 14dec1999
23. 1023 1 10sep1979 0 31dec1998 .
24. 1023 2 03oct1984 0 31dec1998 .
25. 1023 3 20nov1989 0 31dec1998 .
26. 1023 4 08nov1993 0 31dec1998 .

Variable exitdate is the date at the end of each time interval, defined as miexitdt
for the subject’s last examination, and the date of the subsequent examination otherwise.

. by id, sort: gen exitdate=examdat[_n+1]

. by id, sort: replace exitdate=miexitdt if _n==_N

. format exitdate %d

Because we wish to control for the baseline effect of smoking and the other covariates,
both standard survival analyses and G-estimation will begin at the date of examina-
tion 2. We therefore define a variable examdat2 containing this date for each id, and
use this to create variable agebase (age at examination 2).

. gen edat2=examdat if phase==2

. egen examdat2=max(edat2), by(id)

. format examdat2 %d

. label var examdat2 "Date of 2nd exam (start of follow up for G estimation)"

. drop edat2

. gen agebase=(examdat2-dob)/365.25

. replace agebase=agebase/10

. label var agebase "Age at baseline (10 year units)"

We can now stset the data and are ready for survival analyses and G-estimation.

. stset exitdate, id(id) failure(mi) origin(time examdat2) scale(365.25)

id: id
failure event: mi ~= 0 & mi ~= .

obs. time interval: (exitdate[_n-1], exitdate]
exit on or before: failure

t for analysis: (time-origin)/365.25
origin: time examdat2
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6377 total obs.
1756 obs. end on or before enter()

4621 obs. remaining, representing
1756 subjects
244 failures in single failure-per-subject data

18547.87 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0

last observed exit t = 14.47502

. list id visit examdat exitdate mi _t0 _t _d _st if touse, noobs nodisp

id visit examdat exitdate mi _t0 _t _d _st
1021 1 10sep1979 31jul1984 0 . . . 0
1021 2 31jul1984 17mar1992 0 0.00 7.63 0 1
1021 3 17mar1992 18jun1996 1 7.63 11.88 1 1
1022 1 10sep1979 19sep1984 0 . . . 0
1022 2 19sep1984 20nov1989 0 0.00 5.17 0 1
1022 3 20nov1989 28oct1993 0 5.17 9.11 0 1
1022 4 28oct1993 31dec1998 0 9.11 14.28 0 1
1023 1 10sep1979 03oct1984 0 . . . 0
1023 2 03oct1984 20nov1989 0 0.00 5.13 0 1
1023 3 20nov1989 08nov1993 0 5.13 9.10 0 1
1023 4 08nov1993 31dec1998 0 9.10 14.24 0 1

Variable cursmoke is an indicator variable that records whether the subject was a
smoker at each examination.

. list id visit examdat cursmok if touse
id visit examdat cursmok

16. 1021 1 10sep1979 0
17. 1021 2 31jul1984 0
18. 1021 3 17mar1992 0
19. 1022 1 10sep1979 1
20. 1022 2 19sep1984 1
21. 1022 3 20nov1989 1
22. 1022 4 28oct1993 0
23. 1023 1 10sep1979 1
24. 1023 2 03oct1984 1
25. 1023 3 20nov1989 1
26. 1023 4 08nov1993 1

In these analyses, we will control for the following variables, which may confound
the association between smoking and heart disease.

storage display
variable name type format variable label

hearta byte %5.0g Previous heart attack reported by subject
gout byte %5.0g Previous gout reported by subject
highbp byte %5.0g Previous high blood pressure reported by subject
diabet byte %5.0g Previous diabetes reported by subject
fib75 byte %8.0g Fibrinogen above 75th centile
chol75 byte %8.0g Cholesterol above 75th centile
hbpsyst byte %5.0g Measured high systolic blood pressure
hbpdias byte %5.0g Measured high diastolic blood pressure
obese byte %5.0g Obese at current visit
thin byte %5.0g Underweight at current visit
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To examine the effects of baseline smoking controlling for the baseline effects of other
variables, we use the utility program makebase (supplied with the stgest package)
to create variables (with names prefixed with B) containing the baseline value of all
covariates:

. makebase cursmok hearta gout highbp diabet fib75 chol75 hbpsyst hbpdias /*
*/ obese thin, firstvis(1) visit(visit)

Baseline confounders
storage display value

variable name type format label variable label

Bcursmok byte %9.0g
Bhearta byte %9.0g
Bgout byte %9.0g
Bhighbp byte %9.0g
Bdiabet byte %9.0g
Bfib75 byte %9.0g
Bchol75 byte %9.0g
Bhbpsyst byte %9.0g
Bhbpdias byte %9.0g
Bobese byte %9.0g
Bthin byte %9.0g

We now use Cox regression to examine the effect of smoking at baseline, controlling
for the baseline values of the covariates. This shows that subjects who were smokers
had a substantially increased hazard of subsequent heart attacks.

. stcox B* agebase

(output omitted )

No. of subjects = 1756 Number of obs = 4621
No. of failures = 244
Time at risk = 18547.87132

LR chi2(12) = 111.72
Log likelihood = -1695.9464 Prob > chi2 = 0.0000

_t
_d Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

Bcursmok 1.605305 .2165014 3.51 0.000 1.232421 2.091009
Bhearta 2.025315 .4094604 3.49 0.000 1.362713 3.010101

Bgout 1.67308 .3970742 2.17 0.030 1.050751 2.663996
Bhighbp 1.210737 .1807883 1.28 0.200 .9035401 1.622377
Bdiabet 1.611559 .6771107 1.14 0.256 .7073046 3.671859
Bfib75 2.139609 .3182323 5.11 0.000 1.598571 2.863762
Bchol75 1.308254 .1816931 1.93 0.053 .9964956 1.717547

Bhbpsyst 1.021101 .1562174 0.14 0.891 .7565613 1.37814
Bhbpdias 1.764604 .2802593 3.58 0.000 1.292579 2.409003

Bobese .8838818 .1801146 -0.61 0.545 .5928422 1.317799
Bthin .3796157 .2220934 -1.66 0.098 .1206009 1.194917

agebase 1.638064 .2384586 3.39 0.001 1.231455 2.17893

A second utility program makelag creates variables (with names prefixed with L) con-
taining the lagged value of covariates (i.e., the value at the previous examination).
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. makelag cursmok hearta gout highbp diabet fib75 chol75 hbpsyst hbpdias /*
*/ obese thin, firstvis(1) visit(visit)

Lagged confounders

storage display value
variable name type format label variable label

Lcursmok byte %9.0g
Lhearta byte %9.0g
Lgout byte %9.0g
Lhighbp byte %9.0g
Ldiabet byte %9.0g
Lfib75 byte %9.0g
Lchol75 byte %9.0g
Lhbpsyst byte %9.0g
Lhbpdias byte %9.0g
Lobese byte %9.0g
Lthin byte %9.0g

To examine the effect of current smoking, controlling for other confounders and for
chronic damage caused by previous smoking, we would fit a model including the current,
lagged, and baseline values of all covariates. Such a model appears to show that there
is no effect of smoking. However, this analysis is not valid because of time-dependent
confounding.

. stcox cursmok agebase hearta gout highbp diabet fib75 chol75 hbpsyst hbpdias
> obese thin B* L*

(output omitted )

_t
_d Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

cursmok 1.057524 .2165462 0.27 0.785 .7079332 1.57975
agebase 1.623111 .2409387 3.26 0.001 1.213372 2.171215
hearta 1.858263 .4145168 2.78 0.005 1.200141 2.877279

gout 1.132199 .2803371 0.50 0.616 .6968859 1.839432
highbp 1.046366 .1853165 0.26 0.798 .7394895 1.480593
diabet 1.525949 .5353171 1.20 0.228 .7672392 3.034936
fib75 1.540378 .2135747 3.12 0.002 1.173836 2.021376

chol75 1.460741 .2412332 2.29 0.022 1.056822 2.019037
hbpsyst 1.021339 .1658041 0.13 0.897 .7429951 1.403957
hbpdias 1.178434 .1849555 1.05 0.296 .8663812 1.602882

obese .7288805 .184787 -1.25 0.212 .4434639 1.197993
thin .7028389 .484119 -0.51 0.609 .1821981 2.711239

Bcursmok 1.115229 .2502954 0.49 0.627 .7183324 1.731421
Bhearta 1.359836 .3645049 1.15 0.252 .8041209 2.299596

Bgout 1.490102 .5008544 1.19 0.235 .7710977 2.879537
Bhighbp .9011563 .1792485 -0.52 0.601 .6102223 1.330798
Bdiabet 1.101382 .6544871 0.16 0.871 .343652 3.52986
Bfib75 1.844116 .3171563 3.56 0.000 1.316425 2.583333
Bchol75 1.170021 .2230618 0.82 0.410 .8052191 1.700095

Bhbpsyst .7803709 .1417425 -1.37 0.172 .5466298 1.114061
Bhbpdias 1.424024 .2592141 1.94 0.052 .9967215 2.034515

Bobese .7065833 .2168224 -1.13 0.258 .387225 1.289328
Bthin .3312229 .2712597 -1.35 0.177 .0665299 1.649012

Lcursmok 1.406188 .3691871 1.30 0.194 .8405529 2.352458
Lhearta 1.354716 .3841175 1.07 0.284 .7771375 2.361559
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Lgout .9615045 .328462 -0.11 0.909 .4922324 1.87816
Lhighbp 1.304913 .274506 1.27 0.206 .864012 1.970803
Ldiabet .9766689 .5128373 -0.04 0.964 .3489727 2.7334
Lfib75 1.01087 .1664976 0.07 0.948 .731975 1.396029
Lchol75 .8578317 .1696318 -0.78 0.438 .5822123 1.263929

Lhbpsyst 1.451487 .2812038 1.92 0.054 .9929002 2.121879
Lhbpdias 1.220062 .2124107 1.14 0.253 .8673395 1.716226

Lobese 1.412592 .4112167 1.19 0.235 .7984086 2.499241
Lthin 1.593853 1.348765 0.55 0.582 .3034844 8.370665

To allow for time-dependent confounding, we use stgest. This first example ignores
censoring due to competing risks, which is dealt with later. This analysis allows for the
effect of current, lagged (option lagconf), and baseline (option baseconf) values of
the covariates. We also supply the names of the variable indexing examination number
(option visit), the first visit from which survival time is counted (option firstvis),
the scheduled end of follow-up for each individual had they not been censored (option
lasttime), the range over which we will search for values of ψ (option range), and the
file in which our results will be saved (option saveres). The program automatically
creates lagged and baseline values of the covariates with names prefixed by L and B,
respectively, and lists these. It then outputs each value of ψ for which it fits the logistic
regression (equation 2) and, finally, lists the values of ψ with their corresponding p-values
and z statistics.

. stgest cursmok agebase fib75 hearta gout highbp diabet chol75 hbpsyst /*
*/ hbpdias obese thin, lagconf(fib75 hearta gout highbp diabet /*
*/ cursmok chol75 hbpsyst hbpdias obese thin) baseconf(fib75 hearta gout /*
*/ highbp cursmok chol75 diabet hbpsyst hbpdias obese thin) /*
*/ visit(visit) firstvis(2) (lasttime(mienddat) range(-1 1) /*
*/ saveres(caergestsmoknocens) replace

confounders: agebase fib75 hearta gout highbp diabet chol75 hbpsyst hbpdias obese
> thin
causvar: cursmok
visit: visit
Range: -1 1, rnum: 2
Search method: interval bisection

Baseline confounders

storage display value
variable name type format label variable label

Bfib75 float %9.0g
Bhearta float %9.0g
Bgout float %9.0g
Bhighbp float %9.0g
Bcursmok float %9.0g
Bchol75 float %9.0g
Bdiabet float %9.0g
Bhbpsyst float %9.0g
Bhbpdias float %9.0g
Bobese float %9.0g
Bthin float %9.0g



J. A. C. Sterne and K. Tilling 177

Lagged confounders

storage display value
variable name type format label variable label

Lfib75 float %9.0g
Lhearta float %9.0g
Lgout float %9.0g
Lhighbp float %9.0g
Ldiabet float %9.0g
Lcursmok float %9.0g
Lchol75 float %9.0g
Lhbpsyst float %9.0g
Lhbpdias float %9.0g
Lobese float %9.0g
Lthin float %9.0g

-1.00 1.00 0.00 0.50 0.25 0.38 0.31 0.28 0.27 0.27 0.28 0.28 0.28 0.44 0.41 0.4
> 2 0.41 0.41 0.41 0.41 0.13 0.06 0.03 0.05 0.04 0.04 0.03 0.03

savres: caergestsmoknocens

psi pval z
1. -1 0 9.31326
2. 0 .0144764 2.44522
3. .03125 .0466648 1.98933
4. .0322266 .0527831 1.936691
5. .0332031 .0527831 1.936691
6. .0351563 .0527831 1.936691
7. .0390625 .0564285 1.907712
8. .046875 .0564285 1.907712
9. .0625 .0679246 1.825507
10. .125 .3005441 1.035267
11. .25 .8140365 .2352219
12. .265625 .8268306 .2187683
13. .2734375 .8740402 .1585287
14. .2773438 .9980356 .0024621
15. .2783203 .9980356 .0024621
16. .2792969 .8909989 -.1370404
17. .28125 .8997204 -.1260146
18. .3125 .5281636 -.6308119
19. .375 .0902674 -1.693989
20. .40625 .0514808 -1.94745
21. .4072266 .0492024 -1.966833
22. .4082031 .0492024 -1.966833
23. .4101563 .0492024 -1.966833
24. .4140625 .0414209 -2.039292
25. .421875 .0392723 -2.061322
26. .4375 .0155952 -2.418253
27. .5 .0300632 -2.169256
28. 1 1.13e-08 -5.710349

G estimate of psi for cursmok: 0.278 (95% CI 0.034 to 0.409)
Causal survival time ratio for cursmok: 0.757 (95% CI 0.665 to 0.967)

It is possible that observations are dropped from the logistic regressions if a covariate
predicts exposure perfectly. If this problem occurs, the above list of values for psi,
pval, and z will include a column labeled error, with values of 1 corresponding to the
logistic regressions in which the problem occurred. The cause of such problems can be
investigated by specifying the detail option so that the logistic regression output for
each iteration is displayed.
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The program displays a graph of z against ψ (Figure 1). This should be approxi-
mately linear. The vertical lines show the values of ψ corresponding to the values of z
closest to 0, 1.96, and −1.96. If the graph is not linear, then the G-estimation process
should be re-run using specified values of the range, because the search algorithm may
be unreliable.

The estimated value of ψ0 corresponds to the value of z closest to 0, with the 95%
confidence interval corresponding to the values of z closest to −1.96 and 1.96. The final
part of the output shows the causal survival time ratio exp(−ψ0), with its 95% CI.

z

psi
0 .2 .4 .6

−2

0

2

Figure 1: Graph of z against ψ, for a G-estimation that ignores censoring due to com-
peting risks.

To assess the influence of time-dependent confounding, we will compare these results
with those from the corresponding Weibull regression:

. weibull _t cursmok agebase hearta gout highbp diabet fib75 chol75 hbpsyst /*
*/ hbpdias obese thin B* L* if visit>=2, dead(_d) t0(_t0) hr

(output omitted )

Weibull regression -- entry time _t0
log relative-hazard form Number of obs = 4621

LR chi2(34) = 157.01
Log likelihood = -833.45591 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

cursmok 1.055329 .2156308 0.26 0.792 .7070749 1.575107
(output omitted )

p 1.156709 .0784166 1.012788 1.321081
(output omitted )
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Note that the hazard ratio for cursmok is, as is usually the case, almost identical
to that from the Cox regression displayed earlier. The gesttowb utility uses the shape
parameter γ from the Weibull regression (which is p in the Weibull output above) to
convert the causal survival time ratio into a corresponding hazard ratio.

. gesttowb
g-estimated hazard ratio 1.38 ( 1.04 to 1.60)

Because of time-dependent confounding, the standard survival analysis approach to
the analysis of time-updated exposures underestimated the effect of smoking (hazard
ratio 1.05 compared to the G-estimated hazard ratio of 1.38).

5.1 Allowing for competing risks

To allow for censoring due to competing risks, we first have to model the probabil-
ity of being censored at each examination. Because we are examining survival from
examination 2 onwards, no subject can be censored at examination 1. We model the
probability of censoring using one model for examinations 2 and 3, and a separate model
for examination 4. For examinations 2 and 3, we use a multinomial logit model with
four outcomes: no censoring, MI (our outcome), death from another cause, and lost to
follow-up. The model for examination 4 is similar, but there is no loss to follow-up after
examination 4 (because it is the last planned examination). We then use the predicted
probabilities (for each individual, from the model) of each outcome to calculate pcens,
the estimated probability of being censored at a given examination, for each individual.

. mlogit cens phase3 agebase hearta gout highbp cursmok hbpsyst hbpdias /*
*/obese thin totchol fibrin if phase~=1&phase~=4

(output omitted )

Multinomial regression Number of obs = 3285
LR chi2(36) = 154.79
Prob > chi2 = 0.0000

Log likelihood = -1633.1061 Pseudo R2 = 0.0452
(output omitted )

(Outcome cens==No is the comparison group)

. predict pcens2 if e(sample), outcome(2)
(option p assumed; predicted probability)
(3092 missing values generated)

. predict pcens3 if e(sample), outcome(3)
(option p assumed; predicted probability)
(3092 missing values generated)

. gen pcens=pcens2+pcens3
(3092 missing values generated)

. mlogit cens agebase hearta gout highbp diabet cursmok hbpsyst hbpdias /*
*/obese thin totchol fibrin if phase==4

(output omitted )

Multinomial regression Number of obs = 1336
LR chi2(24) = 93.39
Prob > chi2 = 0.0000

Log likelihood = -556.46295 Pseudo R2 = 0.0774
(output omitted )

(Outcome cens==No is the comparison group)
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. predict pcens42 if e(sample), outcome(2)
(option p assumed; predicted probability)
(5041 missing values generated)

. replace pcens=pcens42 if phase==4
(1336 real changes made)

. replace pcens=0 if phase==1
(1756 real changes made)

We use the individual probability of not being censored at each examination to
calculate pnotcens, the estimated probability for each individual of being uncensored to
the end of examination 4.

. gen lpnocens=log(1-pcens)

. egen sumpnoc=sum(lpnocens), by(id)

. gen pnotcens=exp(sumpnoc)

. label var pnotcens "Cumulative probability not censored"

We then use this probability of remaining uncensored to adjust the G-estimation
for censoring due to competing risks. This involves specifying two further options: the
probability of remaining uncensored to the end of the study (pnotcens) and an indicator
variable for each id, idcens, which takes the value 1 if that subject is censored before
the end of the study, and the value 0 otherwise. If these options are specified, the
stgest command will weight the estimation procedure as described earlier, and use
robust standard errors to account for the clustering this induces within individuals.

. stgest cursmok agebase fib75 hearta gout highbp diabet chol75 hbpsyst /*
*/hbpdias obese thin, /*
*/visit(visit) firstvis(2) lagconf(fib75 hearta gout highbp diabet /*
*/cursmok chol75 hbpsyst hbpdias obese thin) baseconf(fib75 hearta gout highbp/*
*/cursmok chol75 diabet hbpsyst hbpdias obese thin) lasttime(mienddat)/*
*/idcens(idcrcens) range(-1 1) pnotcens(pnotcens) saveres(caergestsmok) replace

(output omitted )

-1.00 1.00 0.00 0.50 0.25 0.38 0.31 0.28 0.30 0.30 0.31 0.31 0.31 0.75 0.88 0.8
> 1 0.84 0.86 0.85 0.85 0.85 0.84 -0.50 -0.25 -0.13 -0.06 -0.09 -0.08 -0.09 -0.
> 09 -0.09 -0.09

G estimate of psi for cursmok: 0.311 (95% CI -0.077 to 0.844)

Causal survival time ratio for cursmok: 0.733 (95% CI 0.430 to 1.080)

(Continued on next page)
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Figure 2: Graph of z against ψ, for G-estimation allowing for censoring due to competing
risks.

Again, to assess the influence of time-dependent confounding, we will compare these
results with those from the corresponding Weibull regression. To adjust for censoring
due to competing risks, we include in the model only those individuals who remained
uncensored to the planned end of the study, and weight their contributions by the inverse
of the probability of remaining uncensored to the planned end of the study.

. gen invpnotc=1/pnotcens

. drop if idcrcens==1
(959 observations deleted)

. weibull _t cursmok agebase hearta gout highbp diabet fib75 chol75 hbpsyst /*
*/ hbpdias obese thin B* L* [pweight=invpnotc] if visit>=2, dead(_d) /*
*/ t0(_t0) hr cluster(id)

(output omitted )

Weibull regression -- entry time _t0
log relative-hazard form Number of obs = 3999

Wald chi2(34) = 178.10
Log likelihood = -946.90352 Prob > chi2 = 0.0000

(standard errors adjusted for clustering on id)

Robust
_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

cursmok 1.024165 .2182997 0.11 0.911 .6744302 1.555258
(output omitted )

p 1.15558 .0947354 .984051 1.357007
(output omitted )

As before, we can use the shape parameter from the Weibull regression to express the
G-estimation parameter as a hazard ratio:
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. gesttowb
g-estimated hazard ratio 1.43 ( 0.91 to 2.65)

Again, time-varying confounding has meant that the standard survival analysis sub-
stantially underestimates the detrimental effect of smoking on time to MI.

6 Acknowledgments

We thank Ian White and Sarah Walker, who allowed us to use the interval bisection
algorithm from their strbee command, and Jamie Robins and Miguel Hernan for their
help and advice. A previous version of this article was presented at the 2001 UK Stata
User Group meeting.

7 References
Mark, S. D. and J. M. Robins. 1993. Estimating the causal effect of smoking cessation

in the presence of confounding factors using a rank preserving structural failure time
model. Statistics in Medicine 12(17): 1605–1628.

Robins, J. M., D. Blevins, G. Ritter, and M. Wulfsohn. 1992. G-estimation of the effect
of prophylaxis therapy for Pneumocystis carinii pneumonia on the survival of AIDS

patients. Epidemiology 3: 319–336.

Tilling, K., J. A. Sterne, and M. Szklo. 2002. Estimating the effect of cardiovascular
risk factors on all-cause mortality and incidence of coronary heart disease using g-
estimation: the ARIC study. American Journal of Epidemiology 155: 710–718.

Witteman, J. C., R. B. D’Agostino, T. Stijnen, W. Kannel, J. C. Cobb, and M. A.
de Ridder. 1998. G-estimation of causal effects: isolated systolic hypertension and
cardiovascular death in the Framingham Heart Study. American Journal of Epidemi-
ology 148(4): 390–401.

About the Authors

Jonathan Sterne is Reader in Medical Statistics in the Department of Social Medicine, Univer-
sity of Bristol. His research interests include statistical methods for life course epidemiology,
and bias in meta-analysis and systematic reviews.

Kate Tilling is Lecturer in Medical Statistics in the Department of Public Health Sciences,
King’s College London. Her research interests include statistical methods for observational
studies and longitudinal data analysis.




