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Abstract. We present a menu-driven Stata program for the calculation of sample
size or power for complex clinical trials with a survival time or a binary outcome.
The features supported include up to six treatment arms, an arbitrary time-to-
event distribution, fixed or time-varying hazard ratios, unequal patient allocation,
loss to follow-up, staggered patient entry, and crossover of patients from their
allocated treatment to an alternative treatment. The computations of sample size
and power are based on the logrank test and are done according to the asymptotic
distribution of the logrank test statistic, adjusted appropriately for the design
features.

Keywords: st0013, randomized controlled trials, survival analysis, logrank test,
experimental design

1 Introduction

Stata includes just one program (sampsi) for calculating sample size in randomized con-
trolled studies. It deals only with comparisons between two groups in terms of binary
or Normally distributed outcome variables. Many such trials, however, are designed
around a survival-time outcome measure such as the time to death, to disease progres-
sion, or to healing of a lesion. The trials may compare more than two groups and are
subject to loss to follow-up, withdrawal from allocated treatment, and staggered entry.
The purpose of the present article and software is to provide a very flexible tool for
determining sample size in such studies. Because inevitably there are many potential
“options” (in the Stata sense), a conventional ado-file may be dauntingly complex. For
this reason, we have provided a menu-driven front end for sample-size calculation. The
Study size menu is initiated by entering ssmenu on in the Stata command window.

For survival-time outcomes, the basic assumption behind the calculations is that the
groups will be compared by using the logrank test (Peto and Peto 1972); for example,
using the sts test command for st data in Stata. The logrank test is based on the
comparison between observed and (conditionally) expected numbers of events. Power
is greatest under the assumption of proportional hazards between the groups. In our
implementation, therefore, the null and alternative hypotheses are set up in terms of
hazard ratios (HRs). The following study design features have been included:
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• Up to six treatment groups.

• Arbitrary baseline time-to-event distribution.

• Time-varying hazard ratios (i.e., nonproportional hazards).

• Arbitrary allocation ratios across groups.

• Loss to follow-up.

• Staggered patient entry.

• Crossover from allocated treatment to alternative treatment.

• Survival analysis by unweighted, Tarone–Ware or Harrington–Fleming versions
of the logrank test (Tarone and Ware 1977; Harrington and Fleming 1982). The
weights used in the last two versions of the test are the square root of the total
number at risk (Tarone–Ware) and the estimated overall survivor function raised
to power I (default is I = 1) (Harrington–Fleming) at each failure time.

• In addition, two flavors of χ2 test (unconditional and conditional on the total
number of events) are available to compare the proportions of failures at the
end of the study. Complex trials with a binary outcome, involving possible loss
to follow-up, staggered entry, and treatment crossover, may thereby be designed
with the aid of the software.

• Trend test, with specified doses if required.

Sample-size calculation for the comparison between two survival distributions using
the logrank test was described in the simplest case of two groups and proportional
hazards by Freedman (1982) and Schoenfeld (1982). Extension to more than two groups
was given by Ahnn and Anderson (1995). A method incorporating loss to follow-up,
staggered entry, and treatment crossover was proposed for two-group designs by Lakatos
(1988) and extended to more than two groups by Ahnn and Anderson (1998). The
latter methodologies are based on a nonstationary Markov model, which allows for an
arbitrary number of switches between treatments. In our approach, only one treatment
switch is permitted. We believe that this is quite sufficient in practice and may be
supported by certain medical arguments about the effects of treatment. In addition, it
allows direct calculation of the expected failure-time distribution adjusted for loss to
follow-up, staggered entry, and treatment crossover.

2 Design of menu and dialogs

All the features are available from the Study size menu and its associated dialogs.
When the computations are complete, Stata displays, in the Review window, the com-
mand line that generated the results. The computations are performed by an ado-file
called calcssi, which is provided as part of this article. By recalling the command
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from the Review window, editing, and re-executing it, the menu system may also be
used as a tutor for the command-driven approach using calcssi.

We provide an item within the Study size menu for computing sample size for
simpler studies with a binary outcome. It extends the facilities available with Stata’s
sampsi command and relies on an ado-file called calcssbi, also provided with this
article.

When ssmenu has been executed using ssmenu on, a new item Study size appears
on the system menu-bar. The menu is turned off by entering ssmenu off. Study size
contains the following four items:

Survival - Basic setup Sets up basic design parameters
(number of groups etc.)

Survival - Advanced options Accesses the more complicated design options
Survival - Compute Sets up more design parameters

and runs the calculations
Binary outcomes For trials with a binary outcome

and a simple design

The first three items deal with the design of potentially complex trials with a
survival-time outcome. The fourth is for simpler trials with a binary outcome and
is independent of the first three. We will describe these items in turn.

2.1 Survival - Basic setup

Having clicked on the Survival - Basic setup menu item, you enter the number of
groups, the number of periods, and the baseline failure (or survival) distribution. The
number of groups must be between two and six. The number of periods means the
duration of the trial, in arbitrary time units, from entry of the first patient to the time
the analysis is presumed to be carried out. Each period is of length one time unit, and
the time units are chosen such that rates of events (failure, withdrawal, loss to follow-up,
and entry into the trial) are approximately constant within each period. In the simplest
case, you need only enter 1 (the default) as the number of periods. The baseline failure
distribution is entered as cumulative probabilities of failure either at the end of each
period (if there is more than one period) or only at the end of the last period (however
many periods there are). By pressing the appropriate radio button on the next line,
you can tell the program that you are entering survival probabilities instead of failure
probabilities. These are, of course, just one minus the failure probabilities.

The format for entering the failure distribution is either a single value such as 0.5,
representing the cumulative probability at the end of the last period, or values preceded
by p<period number>=, separated by spaces, representing the cumulative probability at
the end of each period. You must enter the values in one or the other of these two
ways; they may not be mixed. For example, suppose there were four periods, and the
cumulative failure probabilities were 0.1, 0.2, 0.3, and 0.35. You would enter these as



154 Sample size calculation

p1=0.1 p2=0.2 p3=0.3 p4=0.35. If you give values for some of the periods only (e.g.,
p1=0.1 p3=0.3), the program will interpolate and extrapolate failure probabilities for
the other periods, assuming piecewise exponential distributions with a constant hazard
in each period. If just one period is specified, a constant hazard is assumed so that the
failure distribution is exponential.

The default test is a global test of difference between the groups based on a χ2

distribution with k− 1 degrees of freedom, where k is the number of treatment groups.
A trend test on 1 degree of freedom is also available. You can check the box for Trend if
you require a trend test. If you have dose levels for the groups, these should be entered
in the Dose box. If you do not specify dose levels, a linear trend test will be performed,
equivalent to specifying doses 1, 2, . . . , k.

The default method of analysis in the Method of sample size calculation list-box
is the unweighted logrank test. The two weighted versions of the test (Tarone–Ware and
Harrington–Fleming) are usually used when nonproportional hazards are anticipated.
They place different weights on different portions of the survival distribution.

Complex trials with a binary outcome are supported by another method of analysis
(binomial, conditional, and unconditional on total events), also available on the Method
of sample size calculation list-box. The groups are compared in terms of the ex-
pected proportions of failures at the end of the study. For consistency with the survival
analysis paradigm, these overall event probabilities are specified indirectly in terms of
the baseline failure or survival distribution and the hazard ratios for the groups, rather
than directly (and more familiarly) as the event probabilities for the groups.

2.2 Survival - Advanced options

The Survival - Advanced options menu item provides the more complicated design
features mentioned in the Introduction. For many trial designs, you will not need
this item at all. Cumulative probabilities of loss to follow-up may be entered for any
group in the trial in the same format as for the failure probabilities above; that is,
a single value for the end of the trial or values preceded by p<period number>= for
any subset of periods. Likewise, a cumulative probability of withdrawal from allocated
treatment is required if you wish to make use of this feature. (We will give an example
of this later.) You will then need to specify either the group(s) to which the patients
transferred (the so-called target group on crossover) or the hazard ratio of failure
following withdrawal, compared with the baseline hazard. While the latter is the more
flexible option, the former is more likely to be used in practice. For example, control-
arm patients who show signs of disease progression or other treatment failure some way
into the trial may be transferred to the experimental regimen received by Group 2, and
therefore take on the hazard ratio expected in Group 2. This can dilute the expected
treatment effect considerably and so increase the sample size.
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2.3 Survival - Compute

In addition to Survival - Basic setup, the Survival - Compute menu requires some
design parameters to be specified. Most important of these are the hazard ratios in
relation to the baseline hazard function implied by (and internally computed from) the
baseline failure-time distribution. HRs are entered separately for each group. Typically,
group 1 will be the control arm and will be assumed to have an HR of 1. The experimental
arm(s) will have HR(s) less than 1, representing an anticipated improvement in survival.
If it is known that the hazard ratio is time-varying, time-specific values (HR function)
may be given. These are entered in order for each period. If too few HR values are
entered for any group, the values during subsequent periods are assumed to equal the
last value entered for that group. HR functions must be entered for at least two groups.
The default for the remaining groups is the geometric mean of the specified HR functions.

Allocation ratios (weights) are by default taken as equal across the groups. Unequal
allocation ratios are entered in an obvious way; e.g., 2 1 1 would assume twice as many
patients in group 1 as in groups 2 and 3.

In reality, patients enter trials over time and are not all available at the beginning of
the study. You indicate the recruitment duration by filling the Duration box with the
number of periods it takes to recruit. By default this is 0, meaning (unrealistically) that
all patients are recruited at the beginning. The default is to assume steady recruitment
(uniform distribution), and this may be changed to a negative exponential distribution
with a rate that you enter in the Shape of distribution box. Period weights refers
to the proportion of patients recruited during each period and is by default 1, meaning
equal numbers of patients in each period.

The usual two-sided Type I error probability is entered in the Alpha box, and the
power in the Power box. Alternatively, you can specify the sample size (i.e., the total
number of patients in all groups) and get the power by pressing the Specify sample
size radio button.

The Detailed output check box gives further information when the program is run
by pressing the Compute button.

Technical note: Computation

The computations of sample size and power are based on the logrank test and are done
according to the asymptotic distribution of the logrank test statistic, Q. Q is defined
as U ′V −1U , where U is the vector of the total observed minus expected number of
events in each of the k groups in the design except for the first, and V is the covariance
matrix of U . The distribution of Q differs under the null and alternative hypotheses.
The null hypothesis, H0, is that the survival distributions are identical in the k groups.
The alternative hypothesis, H1, is that at least one distribution is different from the
others. Q is distributed asymptotically as χ2 on k− 1 degrees of freedom under H0 and
as noncentral χ2 on k − 1 degrees of freedom under local H1. Loosely speaking, “local
H1” implies that the hazard ratios between treatment groups are not far from 1. The
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noncentrality parameter equals E (U ′)V −1E (U), the expectation being taken underH1.
Under distant H1, the distribution of Q may be approximated by a scaled, noncentral
χ2 on k−1 degrees of freedom. The scaling factor and the noncentrality parameter may
be determined by the method of moments from the asymptotic mean and variance of Q
under distant H1. The test statistic for trend when dose levels are specified is also based
on U , and is asymptotically normally distributed under H0 and H1 with known mean
and variance. Computation is required of the survival functions in each of the k groups
allowing for loss to follow-up, treatment crossover, etc. Although lengthy and tedious,
the calculations are algebraically fairly straightforward. A report on the methodology
is being prepared and will be published in due course. In the meantime, mathematical
details are available from the authors on request. The calcssi Stata software has been
in use in real applications for several years. In the two-group case, calcssi gives results
that may be up to about 5% higher than those from the method of Lakatos (1988), as
implemented in the SAS program SIZE by Shih (1995).

2.4 Binary outcomes

The Binary outcomes menu provides for the comparison of up to six groups with pro-
portions of events as the outcome. It allows for comparison of more than two groups,
for differing allocation ratios, and for a dose/response relationship via a trend test, as
with the survival menus. However, no allowance is made for loss to follow-up, crossover,
or staggered entry into the study. (These possibilities are provided within the sur-
vival analysis framework by the two binomial options on the Method of sample size
calculation list-box in the Survival - Basic setup dialog, followed by the features
of the Survival - Advanced options and Survival - Compute dialogs.) The default
test does not condition on the total number of observed events. A conditional test which
uses the Peto approximation to the odds ratio is available as an option. This approxi-
mation is very adequate with small to moderate treatment effect (odds ratio between 0.5
and 2.0), but underestimates the sample size with larger differences between the groups.
Unlike with sampsi, no continuity correction is included in the computations; therefore,
the sample sizes will always be somewhat smaller than those obtained using sampsi.
The statistical jury is out on whether it is preferable to use a continuity correction for
such calculations or not. We chose not to do so.

Technical note: Choice of test to compare binary outcomes

We will not attempt a review of the rather extensive literature for sample size cal-
culation in the two-group binary outcomes study, but will restrict ourselves to a few
comments. A recent review is given by Sahai and Khurshid (1996). Many software
program authors choose as their default option (or indeed perhaps their only option)
the unconditional test with nonlocal alternatives and without continuity correction. A
Normal approximation to the binomial distribution is assumed. The addition of a con-
tinuity correction may considerably increase the study size and has been criticized as
unnecessarily conservative (i.e., potentially wasteful of resources, particularly in small
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studies where cost per patient is in some sense high). Our default tends slightly in the
direction of conservatism, as may be seen in the examples of the previous subsection,
but will give always smaller samples than sampsi does.

It may be helpful to bear in mind the principle of being willing to analyze the data
according to the same test that was used in the sample-size calculation. For some people,
this will rule out use of the conditional test (Peto approximation), which assumes that
the total number of events is fixed.

The local alternative option uses the same variance for the observed proportion mi-
nus the expected proportion under the null hypothesis and the alternative hypothesis.
There is usually little difference between the results with local and nonlocal alternatives.
For technical reasons, we prefer the approach with local alternatives because the mathe-
matics extends naturally from two groups to many groups. For practical reasons (rather
than for any methodological limitations), our software allows up to six groups. Such
extension to many groups is not straightforward with nonlocal alternatives, although a
reasonable approximation is used in the software.

In summary, unless there are strong reasons and a clear rationale to do otherwise,
we believe that our default choice of test for sample size and power calculations in the
two-group and the multi-group situation is satisfactory.

3 Examples

3.1 A basic survival study design

We will give a hypothetical example with design parameters that are typical of a trial
in some types of cancer. We will start with the basic situation, and then elaborate the
design to illustrate some of the more complicated options.

There are two arms, control and experimental. From existing data, we know that the
two-year survival rate of control-arm patients is approximately 20%. We are hoping that
the experimental treatment will improve survival with a hazard ratio of 0.7, representing
a two-year survival probability of about 32%.

Figure 1 shows the completed Basic setup dialog for the trial. The only value that
had to be entered was 0.8 for the baseline cumulative probability of failure at the end
of the study (two years).

(Continued on next page)
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Figure 1: A completed Basic setup screen.

The second menu that must be used is Survival - Compute. We fill in the hazard
ratios for groups 1 and 2, the recruitment duration as 1, and the power as 0.9 (see
Figure 2).

Figure 2: A Survival Computation screen.
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On pressing the Compute button, the following results are obtained:

Sample size: 2-group comparison
Unweighted logrank test

Allocation ratio: Equal group sizes
Two-sided alpha = 0.050
Power = 0.900

Total sample size = 736
Expected total number of events = 333

The total number of patients required is 736 (368 per group). The total number of
events is 333.

To recapitulate: we recruit patients at a uniform rate for 2 years (= 1 period),
and then we analyze the data at that point. In reality, we would be more likely to
follow the patients up for some time before analysis, both for practical reasons of trial
management and to accumulate more events. Suppose we were to recruit for 2 years, as
before, but then to follow-up for 1 year and to analyze the data at that point, 3 years
after initiation of the study. Now, the natural time period for the sample-size calculation
is 1 year rather than two. We would specify this design by requiring 3 periods with a
recruitment duration of 2 periods (i.e., 2 years). Also, we would have to specify the
cumulative failure rate to be 0.8 at 2 years by entering p2=0.8, rather than leaving the
value as 0.8 which would be interpreted incorrectly as the value at the end of the study
(now 3 years). The instantaneous event rate (hazard) in period 3 would be taken to
be the same as in the latest specified period, here period 2. For examples of how the
hazard is computed from the specified failure probabilities, see the description of the
edf0() option in the help file for calcssi.

On pressing Compute, the number of events is found to be essentially unchanged (331
versus 333 before), but the required number of patients is reduced from 736 to 461, a
37% saving. If the duration were increased to 4 years by following up for 2 years, then
the sample size would be further reduced to 389. We are trading length of follow-up
for number of patients. To obtain a given number of events (dictated by the baseline
failure probabilities and the hazard ratio), we can have fewer patients followed up over
a longer time or more patients over a shorter time.

3.2 A more complicated design

We will now assume that the study is carried out over 4 years (four one-year periods)
with recruitment over 2 years, and that the hazard ratio for the experimental treatment
arm compared with control varies over time. We will take the HRs to be 0.5, 0.65, 0.8,
and 0.9 in periods 1 to 4, respectively. The interpretation is that the new treatment
reduces the mortality rate quite markedly in the period immediately following its first
administration, but that its efficacy decreases fairly rapidly over time, so that by 4 years
it is little better than control.
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Before running this example, note that using the last-mentioned setup with recruit-
ment over 2 years, follow-up for 2 years, and a constant HR of 0.7, but otherwise the
same parameters, gives n = 389 with 332 events.

In the Survival - Basic setup dialog, we enter the number of periods to be 4
and the cumulative failure probability at period 2 to be p2=0.8. In the Survival -
Compute dialog, we enter the recruitment duration to be 2, the hazard ratio for group
1 to be 1, and the hazard ratios for group 2 to be 0.5 0.65 0.8 0.9. On pressing the
Compute button, the resulting sample size is 178 with 150 events, about half the value
with a constant HR. The reason why the number of events has gone down is that most
of the deaths occur in the first period where the hazard ratio is 0.5, quite a lot lower
than the constant HR of 0.7 we assumed before. This is a more extreme HR, and hence
the required number of events is reduced.

We may further complicate the situation by assuming that a proportion of patients
crossover from the control to the experimental therapy arm. Suppose that all patients
receive the protocol treatment in the first one-year period. However, 25% of them
relapse in the second period and are given the new treatment, and the same happens
to some of the survivors in the third and fourth period, perhaps as attempted ‘rescue
therapy’, for example. The cumulative proportions of patients given the new treatment
by the end of these periods are now 0.35 and 0.45, respectively. We specify the design by
entering the cumulative distribution of the time to crossover as p1=0 p2=0.25 p3=0.35
p4=0.45, and the target group for crossover from group 1 to be 2, with no crossover
from group 2. These options are entered in the Survival - Advanced options dialog,
which is shown in Figure 3.

Figure 3: An Advanced option screen.

No data are entered for Group 2 since no crossover is expected. This results in
n = 217 with 181 events, an increase from 178 with 150 events because the treatment
difference between the groups is diluted by the crossover.
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Note that the increase in sample size is modest in this example because of the very
high event rate. Many events occur early in the trial when little or no crossover has
occurred. If the two-year cumulative event rate was p2=0.4 rather than p2=0.8, we
would obtain n = 442 (204 events) without crossover but n = 607 (442 events) with the
above crossover specification, a substantial difference.

3.3 A study with a binary outcome

We now show results for a simple study with a binary outcome. Suppose there are
two groups of equal size, and the hypothesized proportions of an event are 0.2 and 0.3.
Figure 4 shows the necessary setup using the Binary outcomes dialog.

Figure 4: A completed Basic setup screen.

The result of pressing Compute with this setup is shown below:

Sample size: 2-groups comparison
Unconditional comparison of 2 binomial proportions

Anticipated event probabilities: 0.200, 0.300
Allocation ratios: Equal group sizes
Two-sided alpha = 0.050
Power = 0.900

Total sample size = 789
Expected total number of events = 198

A total of 789 subjects are needed. Specifying nonlocal alternatives (by clicking
the appropriate radio button) gives a small reduction to 782, whereas specifying the
conditional test (Peto) gives a more substantial reduction to 771.
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For comparison, sampsi gives the following:

. sampsi 0.2 0.3, power(0.9)

Estimated sample size for two-sample comparison of proportions

Test Ho: p1 = p2, where p1 is the proportion in population 1
and p2 is the proportion in population 2

Assumptions:

alpha = 0.0500 (two-sided)
power = 0.9000

p1 = 0.2000
p2 = 0.3000

n2/n1 = 1.00

Estimated required sample sizes:

n1 = 412
n2 = 412

sampsi requires a total of 824 subjects, some 4% more than our default option of local
alternatives and the unconditional test. This is due to sampsi’s use of an unconditional
test with additional application of a continuity correction to the χ2 statistic. If we
apply a continuity correction to our requirement for 789 subjects using the formula
given under [R] sampsi in the Stata Reference Manual, we obtain 414 subjects per
group, very similar to sampsi.

4 Conclusion

It is important that the design of a randomized controlled clinical trial be realistic,
allowing for such factors as a tendency for patients’ treatment to be switched if the
initial treatment is not successful, for possible loss to follow-up, and for the decline of
a treatment effect over time, expressible as nonproportional hazards. Basic consider-
ations such as staggered patient entry are also very important and may influence the
overall duration of a trial to a major extent. The software provided here should allow
researchers to accommodate all of these basic and more advanced design features in a
straightforward manner.
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