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Abstract. Categorical and limited dependent variable models are routinely es-
timated via maximum likelihood. It is well-known that the ML estimates of the
parameters are inconsistent if the distribution or the skedastic component is mis-
specified. When conditional moment tests were first developed by Newey (1985)
and Tauchen (1985), they appeared to offer a wide range of easy-to-compute spec-
ification tests for categorical and limited dependent variable models estimated by
maximum likelihood. However, subsequent studies found that using the asymp-
totic critical values produced severe size distortions. This paper presents simula-
tion evidence that the standard conditional moment test for normality after tobit
estimation has essentially no size distortion and reasonable power when the critical
values are obtained via a parametric bootstrap.

Keywords: st0011, conditional moment tests, bootstrap, tobit, normality

1 Introduction

Building on the work of White (1982), Newey (1985), and Tauchen (1985) indepen-
dently developed conditional moment tests. At first, these conditional moment tests
appeared to offer a gold mine of easy-to-compute specification tests for models esti-
mated by maximum likelihood. These tests promised to be especially valuable in check-
ing for evidence against homoskedasticity and assumed distributions after estimating
categorical and limited dependent variable models. A high water mark in this tide
of tests was reached by Pagan and Vella (1989), who derived several conditional mo-
ment specification tests for probit, logit and tobit models and linked them to previously
derived specification tests. However, subsequent simulation studies (Skeels and Vella
1997, 1999; Ericson and Hansen 1999, inter alia) found that obtaining critical values
from the asymptotic distributions of these tests causes large size distortions.

This paper evaluates the performance of one of these tests, when the critical values
are obtained using a parametric bootstrap. This paper presents evidence that obtaining
the critical values from a parametric bootstrap with 500 repetitions essentially removes
the size distortions and still yields reasonable power.

c© 2002 Stata Corporation st0011



126 Testing for normality

2 Conditional moment test for normality after tobit es-
timation

2.1 Intuition and conditional moment restrictions

Building on the work of White (1982), the theory of conditional moment specification
tests after maximum likelihood estimation was formulated by Newey (1985) and Tauchen
(1985).1 Pagan and Vella (1989) derived a number of conditional moment tests to test
the specification of binary and censored regression models. Skeels and Vella (1997,
1999) provided simulation evidence that the test against the null of normality derived
by Pagan and Vella and an alternative version of the test that they proposed were all
oversized.

Following the notation of Skeels and Vella (1999), suppose that one has N observa-
tions on (yi, xi) and that the maintained hypothesis is that these data follow a simple
normal tobit model. Specifically,

y∗i = x′iβ + ui, i = 1, . . . , N (1)

where y∗i is the unobserved latent variable, xi is a (K × 1) vector of covariates, β is a
(K × 1) vector of parameters, and ui is the disturbance term which is N(0, σ2) under
the null hypothesis. Since this is a tobit model, only

yi =
{
y∗i if y∗i > 0
0 otherwise

is observed over the N observations.

The importance of testing that the ui are normally distributed comes from the well-
known fact that the standard tobit estimator is not consistent if the ui are not normally
distributed2.

The intuition behind the conditional moments test after maximum likelihood is
straightforward. Since the model was estimated by maximum likelihood, the assumed
data-generating process specifies all moments of disturbances conditional on the co-
variates. These conditional moments can be used to write down conditional moment
restrictions that have conditional expected values of zero.3 This produces a vector of
conditional moment restrictions that are zero under the null. Under the null, you would
expect the sample averages to be close to zero. The trick is to find the appropriate
weighting matrix that accounts for any covariance in the moment restrictions and scales
the sample averages so that the resulting statistic converges to a known distribution.
Newey (1985) and Tauchen (1985) found such a matrix, here denoted by Q̂−1, so that

1See Wooldridge (2001), Section 13.7 for a textbook introduction to these tests.
2See Wooldridge (2001), Chapter 16.6.3 for a discussion of this issue.
3For instance, in the classical normal linear model, the fourth moment of the residuals is

E[u4
i |xi] = 3σ4. This conditional moment can be used to form the restriction that E[u4

i − 3σ4|xi] = 0.
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τ = ι′M̂Q̂−1M̂ ′ι→d χ
2(r) (2)

where ι is an (N × 1) vector of ones, M̂ is the (N × r) matrix of sample realizations of
the r moment restrictions, and Q̂−1 is a feasible weighting matrix that properly scales
the inner product of sample averages ι′M̂ . Before dealing with the details of the scaling
matrix Q̂−1, consider the moment conditions themselves.

Essential to these tests is a vector of functions whose expected value is zero. These
are the conditional moment restrictions. Since the moment-based methods that test
for normality use the third and fourth moment of the normal distribution, the vector
of population moment conditions will have dimension (2 × 1); i.e., r = 2 in this case.
To build intuition, temporarily ignore the fact that the ui are disturbances in a tobit
model. If the ui were disturbances from a simple linear model, then ui = yi − x′iβ. If
the ui are normally distributed, then

E[u3
i |xi] = 0

and
E[u4

i − 3 ∗ σ4|xi] = 0

In this case, the ith realization of the restriction on the third moment of ui is

mi,1(θ) = u3
i

where θ′ = (β′, σ2). Similarly, the ith realization of the condition on the fourth moment
of ui is

mi,1(θ) = u4
i − 3σ2

As a vector,

mi(θ) =
(

u3
i

u4
i − 3σ2

)
Note that E[mi(θ)|xi] = (0, 0)′. Since mi(θ) depends on the true θ, it is not feasible.

If we were interested in testing for the normality of the disturbances after estimating a
classical normal linear model by maximum likelihood, we would use θ̂′ = β̂′, σ̂2 in place
of θ. The scaling matrix Q̂−1 is explicitly constructed to account for the fact that θ was
estimated via maximum likelihood.

Now, returning to the problem at hand, the ui are not simple linear disturbances,
but rather they are tobit disturbances. Lee and Maddala (1985) showed that the third
moment for tobit residuals is

mi,1(θ) = Iiu
3
i − (1 − Ii)(z2

i + 2)σ3λi (3)

where

Ii =
{

1 if yi > 0
0 otherwise
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zi = x′iβ/σ, λi = φ(zi)/(1 − Φ(zi)), φ() is the standard normal density, and Φ() is the
standard normal CDF. The intuition for equation (3) is that when Ii = 1, no censoring
occurs, and the third-moment restriction is the same as for the classical normal linear
model; i.e., E[ui|Ii = 1] = u3

i . When Ii = 0 the expected value of ui conditional on
Ii = 0 must account for the censoring; i.e., the E[ui|Ii = 0] = (z2

i + 2)σ3λi, as shown
by Lee and Maddala (1985).

The second-moment restriction, which is derived from the fourth moment of a normal
random variable, has an analogous intuition. The moment restriction is

mi,2(θ) = Ii(u4
i − 3σ4) + (1 − Ii)(z2

i + 3)σ4λizi (4)

As above, when Ii = 1 (i.e., there is no censoring), the ui have the same restriction
as in the classical normal linear model. When Ii = 0, the fourth moment of the ui is
adjusted for the censoring.

As described in Section 6, the (N × 2) matrix M̂ in the test statistic in equation (2)
is obtained by plugging the tobit estimates β̂ and σ̂ in for the true values.

2.2 The scaling matrix

Let f(yi; θ) be the contribution of observation i to the tobit log-likelihood. Letting θ
be (p × 1) implies that the score matrix, S(θ), will be (N × p) and that the average
information matrix, �(θ), will be (p× p); i.e.,

Sik(θ) =
∂f(yi; θ)
∂θk

, i = 1, . . . , N k = 1, . . . , p

and

�k,l(θ) =
1
N

N∑
i=1

E

{
∂2f(yi; θ)
∂θk∂θl

}
, k, l = 1, . . . , p

In subsection 2.1, mi(θ) was defined to be mi(θ) = (mi,1(θ),mi,2(θ))′, and the
mi,r(θ), r = 1, 2 were explicitly given. The scaling matrix requires a (p × r) matrix
W (θ), where W (θ) is an average of derivatives of mi(θ) with respect to the p parameters
in θ. Specifically, let

Wk,l(θ) =
1
N

N∑
i=1

E

{
∂mi,l(θ)
∂θk

}
, k = 1, . . . , p, l = 1, . . . , r

Finally, let �̂ = �(θ̂), Ŝ = S(θ̂), Ŵ = W (θ̂), and require that

�̂ →H0
p lim

N→∞
�(θ)

and
Ŵ →H0

p lim
N→∞

W (θ)
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Then
Q̂ =

(
M̂ − Ŝ�̂−1Ŵ

)′ (
M̂ − Ŝ�̂−1Ŵ

)′

Note that while Ŝ is pinned down, there is some freedom in choosing �̂ and Ŵ .
Skeels and Vella (1999) discuss the restrictions required in choosing �̂ and Ŵ and two
resulting estimators of Q̂. In this paper, only one of the two is implemented.4 Specifi-
cally, choosing the consistent estimators

Ŵ = N−1Ŝ′M̂

and
�̂ = N−1Ŝ′Ŝ

yields an estimator Q̂ that is consistent for Q.

This estimator of Q was chosen for two reasons. First, Skeels and Vella (1999) show
that it always has the larger size of the two tests and that it has higher power in their
tobit simulations. Second, the primary goal of this paper is to investigate the extent
that a parametric bootstrap can resolve the small sample problems with the τ that uses
the conventional estimator of Q. In contrast, the second estimator of Q considered by
Skeels and Vella (1999) can be seen as a new estimator of Q that was postulated to have
better finite sample properties.

Finally, it should be mentioned that τ can be calculated using an artificial regression.
This point is discussed in Section 6.

2.3 Parametric bootstrap critical values

Applying the results of Newey (1985) and Tauchen (1985), Pagan and Vella (1989) show
that τ has an asymptotic chi-squared distribution with 2 degrees of freedom. However,
as noted above, several studies have found that the sample sizes frequently encountered
in practice are not large enough for the distribution of τ to be reasonably approximated
by its asymptotic distribution. This paper investigates whether obtaining critical values
from a parametric bootstrap with 500 replications yields reasonable size and power
properties.

Following Efron and Tibshirani (1993), the parametric bootstrap is quite straight-
forward, but some additional notation will make it even clearer. First, write the statistic
τ as τ(θ). This makes the dependence of τ on θ explicit and is useful in describing the
parametric bootstrap algorithm.

For the test of interest, we can reject H0 at the level α if

τ(θ) > F1−α

where F is the distribution of τ(θ) and F1−α is the (1−α) centile of the distribution F.
4 Skeels and Vella (1999) call it the OPG estimator. OPG stands for “outer product of the gradient”.
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The parametric bootstrap uses the following algorithm to estimate F :

1. Estimate the parameters θ on the sample (yi, xi), i = 1, . . . , N. Call these estimates
θ̂0.

2. For R replications, repeat steps (a)–(f).

(a) Generate N observations of a pseudonormal variate ũi with zero mean and
standard deviation given in θ̂0.

(b) Use xi, θ̂0, and ũi to generate ỹ∗i .

(c) Use ỹ∗i to generate

ỹi =
{
ỹ∗i if ỹ∗i > 0
0 Otherwise

(d) Estimate a tobit model on (ỹi, xi) to obtain estimates θ̂r.

(e) Using θ̂r, calculate τr(θ̂r).

(f) Save τr(θ̂r) in a file.

3. The collection of τr(θ̂r), r = 1, . . . , R can be used to estimate the empirical dis-
tribution of F . In particular, the (1 − α) centile of F is estimated by the (1 − α)
centile of τr(θ̂r), r = 1, . . . , R. This estimated centile, F̂1−α, is the parametric
bootstrap critical value.

Hence, we can reject H0 if τ(θ̂0) > F̂1−α.

3 Design of the simulations

Simulations were run to estimate the size and power of this conditional moment test
when the critical values were obtained via a parametric bootstrap. Two basic de-
signs were used in the simulations. Following Skeels and Vella (1999), one design was
formulated around the data used by Moffit (1984). A second set of simulations was
performed around a simple specification at three different sample sizes. As noted by
Skeels and Vella (1999), running the simulations based on the Moffit (1984) data pro-
vides some idea of how the test may perform with the type of data actually encountered.
The second set of simulations reveals what happens to the performance of the test when
the sample size is changed, holding the specification constant.

In the first set of simulations, data were generated according to

H∗
i = βnwinwii + βmsmsi + βageagei + βraceracei

+βclt6clt6 + βeduceduc+ constant+ ui (5)

where H∗
i is the latent number of hours per week, nwi is the annual level of nonwage

income, ms is an indicator of marital status, age gives the age, race is a binary variable
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(white=1, 0 otherwise), clt6 is the number of children under 6 in the household, and educ
gives the number of years of education.5 The parameter estimates used are reported in
the output below.

. use moffit, clear

. describe

Contains data from moffit.dta
obs: 610
vars: 21 26 Feb 2002 14:19
size: 53,680 (99.0% of memory free)

storage display value
variable name type format label variable label

hours float %9.0g
x2 float %9.0g
nwi float %9.0g
const float %9.0g
ms float %9.0g
age float %9.0g
race float %9.0g
x8 float %9.0g
clt6 float %9.0g
cgt6 float %9.0g
x11 float %9.0g
educ float %9.0g
x13 float %9.0g
x14 float %9.0g
x15 float %9.0g
x16 float %9.0g
x17 float %9.0g
x18 float %9.0g
x19 float %9.0g
x20 float %9.0g
x21 float %9.0g

Sorted by:

(Continued on next page)

5See Moffit (1984) for more on the data and the model involved. I would like to thank Chris Skeels
for making the data available to me.
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. tobit hours nwi ms age race clt6 educ, ll(0)

Tobit estimates Number of obs = 610
LR chi2(6) = 24.18
Prob > chi2 = 0.0005

Log likelihood = -1694.4825 Pseudo R2 = 0.0071

hours Coef. Std. Err. t P>|t| [95% Conf. Interval]

nwi -.0108405 .1754488 -0.06 0.951 -.3554044 .3337234
ms -9.308479 3.902876 -2.39 0.017 -16.97333 -1.643622

age -1.114833 .4674299 -2.39 0.017 -2.032818 -.1968478
race 1.778366 3.726882 0.48 0.633 -5.540855 9.097587
clt6 -6.346814 4.266223 -1.49 0.137 -14.72525 2.031617
educ 2.017293 .5898988 3.42 0.001 .8587914 3.175795

_cons 39.92167 22.07323 1.81 0.071 -3.427918 83.27127

_se 34.09747 1.611069 (Ancillary parameter)

Obs. summary: 313 left-censored observations at hours<=0
297 uncensored observations

For the size simulations, ui was generated from a normal(0, se2) and

Hi =
{
H∗
i if H∗

i > 0
0 otherwise

Similar to Skeels and Vella (1999), the power of the test was examined by five sets
of simulations in which the ui were generated from the distributions in Figure 1.6 For
each run of each simulation, the pseudorandom variates were scaled by the estimated
se from the tobit fit to the Moffit data. The details of how the data were generated

are presented in Section 6.

Figure 1: Distributions used in power simulations.

t1
t5

χ2
1 − 1
χ2

5 − 5
.4(χ2

1 − 1) + .6(χ2
25 − 25)

In the second set of simulations, the functional form and the average number of
censored observations were arbitrarily fixed, while the sample size was allowed to vary
over 100, 500, and 1,000. The data were generated according to

y∗i = 1 + x1 + x2 + x3 + ui

6Skeels and Vella (1999) considered all of these distributions except for the χ2
5 − 5.
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where
x1 ∼ N(0, 1)

x2 = .3 ∗ x1 + ε2 and ε2 ∼ N(0, 1)

and
x3 = .3 ∗ x1 + ε3 and ε3 ∼ N(0, 1)

The censored yi was then computed as

yi =
{
y∗i if y∗i > 0
0 otherwise

The same size and power simulations were run with this data generating process as
with the Moffit data simulations.

4 Results

The results are presented in Tables 1–4. Each simulation was repeated 2,000 times.
This implies that each of the estimates in the tables below has a standard error of√
p ∗ (1 − p)/2000, where p is the estimate.

Table 1 contains the nominal sizes for the different simulations using the asymptotic
critical values. As in previous studies, using the asymptotic critical values results in
severely oversized tests. The fact that the test is severely oversized even at the sample
size of 1,000 is noteworthy. The 95% confidence interval for the Moffit case at the 5%
level is [.1248,.1552]. Since this interval contains the Skeels and Vella (1999) result of
15.34, this is a replication of their result.

Table 1: Asymptotic sizes.

Sample %10 %5 %1
100 0.3730 0.3010 0.1950
500 0.2040 0.1400 0.0725
1000 0.1675 0.1080 0.0430
Moffit 0.2070 0.1400 0.0805

Table 2 contains the nominal sizes that result from using the bootstrap critical
values. The results clearly indicate that 500 repetitions are sufficient to produce quite
reasonable sizes.
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Table 2: Bootstrap sizes.

Sample %10 %5 %1
100 0.1045 0.0510 0.0120
500 0.0960 0.0535 0.0120
1000 0.0975 0.0470 0.0120
Moffit 0.0965 0.0545 0.0135

Table 3 contains the results from using the asymptotic critical values for each of
the power simulations. The last column contains the Skeels and Vella (1999) results.
Note that all their reported results were for the 5% level. Except for the chi-squared
mixture, the 95% confidence interval for each of the Moffit cases at the 5% level con-
tains the corresponding result obtained by Skeels and Vella (1999). As discussed in
Drukker and Skeels (2002), Skeels and Vella (1999) obtained different results because
of software limitations.7

(Continued on next page)

7The software package used by Skeels and Vella (1999) contained a chi-squared inversion algorithm
that would sometimes crash when attempting to invert a value in the tails. For this reason, instead of in-
verting uniform[0,1] pseudo-variates, they generated the χ2

2 pseudo-variates by inverting uniform[.04,.94]
pseudo-variates. Drukker and Skeels (2002) show why throwing the tails causes the difference in the
results. The package used by Skeels and Vella (1999) was not Stata, and the other software has been
fixed.
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Table 3: Asymptotic powers.

Simulation Sample %10 %5 %1 S&K
t1 100 0.9975 0.9940 0.9785 NA
t1 500 0.9995 0.9995 0.9995 NA
t1 1000 1.0000 1.0000 1.0000 NA
t1 Moffit 1.0000 1.0000 1.0000 1.0000
t5 100 0.4490 0.3395 0.1950 NA
t5 500 0.8610 0.7465 0.4475 NA
t5 1000 0.9760 0.9335 0.7370 NA
t5 Moffit 0.9170 0.8520 0.6555 .8523
χ2

1 − 1 100 1.0000 1.0000 1.0000 NA
χ2

1 − 1 500 1.0000 1.0000 1.0000 NA
χ2

1 − 1 1000 1.0000 1.0000 1.0000 NA
χ2

1 − 1 Moffit 1.0000 0.9995 0.9965 .9997
χ2

5 − 5 100 0.9345 0.8970 0.7650 NA
χ2

5 − 5 500 1.0000 1.0000 1.0000 NA
χ2

5 − 5 1000 1.0000 1.0000 1.0000 NA
χ2

5 − 5 Moffit 0.9270 0.8755 0.6880 NA
Mixture 100 0.5230 0.4260 0.2355 NA
Mixture 500 0.9200 0.8755 0.7165 NA
Mixture 1000 0.9950 0.9915 0.9700 NA
Mixture Moffit 0.4605 0.3210 0.1275 .9631

Using the parametric bootstrap critical values produces the nominal powers in Table
4. The table contains three important results. First, although the test appears weak
against t5, most of the powers appear to be quite reasonable. Second, except for the
χ2 mixture and the χ2

1, all the 95% confidence intervals around the Moffit-5% results
contain the exact powers calculated by Skeels and Vella. The difference in the mixture
case is due to the same issue discussed above and in Drukker and Skeels (2002). The
difference in χ2

1, while statistically significant, is not qualitatively significant. Both the
Skeels and Vella (1999) and the present results indicate that this test has reasonable
power against the χ2

1 alternative in the Moffit case. Third, results for the χ2
1, χ

2
5 and

the mixture of χ2 variables indicate that this conditional moment test has less power
against skewed distributions with real-world data generating processes than with the
simple process. Still, the increases in power caused by increasing the sample size with
the simple process indicate that this test with bootstrap critical values should have
reasonable power against skewed distributions and real-world data generating processes
with sample sizes of 1,000 or more. Of course, given some actual data, one could repeat
the design of the Moffit simulation to determine exactly how much power this test has
against given skewed alternatives.
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Table 4: Bootstrap powers.

Simulation Sample %10 %5 %1 S&K
t1 100 0.9130 0.8315 0.6860 NA
t1 500 0.9995 0.9980 0.9770 NA
t1 1000 1.0000 0.9995 0.9955 NA
t1 Moffit 1.0000 1.0000 0.9980 1.0000
t5 100 0.0775 0.0305 0.0070 NA
t5 500 0.5725 0.3125 0.0575 NA
t5 1000 0.9170 0.7460 0.2765 NA
t5 Moffit 0.7265 0.4830 0.0915 .4733
χ2

1 − 1 100 0.9970 0.9690 0.4080 NA
χ2

1 − 1 500 1.0000 1.0000 1.0000 NA
χ2

1 − 1 1000 1.0000 1.0000 1.0000 NA
χ2

1 − 1 Moffit 0.9945 0.9490 0.3850 .9868
χ2

5 − 5 100 0.4755 0.1925 0.0090 NA
χ2

5 − 5 500 1.0000 1.0000 1.0000 NA
χ2

5 − 5 1000 1.0000 1.0000 1.0000 NA
χ2

5 − 5 Moffit 0.7055 0.3855 0.0190 NA
Mixture 100 0.0965 0.0320 0.0070 NA
Mixture 500 0.8020 0.6215 0.2370 NA
Mixture 1000 0.9895 0.9725 0.8175 NA
Mixture Moffit 0.1640 0.0370 0.0010 .8932

5 Conclusion

Since misspecifying the distribution or skedastic component in a maximum likelihood
estimator of a categorical or limited dependent variable model results in inconsistent
estimates, the derivation of a class of conditional moment tests against these alternatives
originally caused great excitement. However, subsequent studies found that using the
asymptotic critical values produced severely oversized tests.

This paper has presented evidence that using critical values obtained from a para-
metric bootstrap with 500 repetitions essentially removes the size distortions from the
standard conditional moment test for non-normal disturbances after tobit estimation.
The results also indicate that using the parametric bootstrap critical values with the
conditional moment test for normality yield reasonable powers. This paper also repli-
cated most of the tobit/normal results of Skeels and Vella (1999).

The next step is to investigate how much power the other OPG conditional moment
tests investigated by Skeels and Vella (1999) have against their alternatives when using
bootstrap critical values. This topic is under investigation by the author.
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6 Appendix

6.1 The sample moment restrictions

Begin with the tobit estimates β̂ and σ̂ and residuals ûi. The estimates can be used to
obtain

ẑi =
x′iβ̂
σ̂

λ̂i =
φ(ẑi)

1 − Φ(ẑi)

where φ() is the standard normal density and Φ() is the standard normal CDF.

Since the data specify Ii according to

Ii =
{

1 if yi > 0
0 otherwise

the sample moment restrictions are

mi(θ̂) =

{
Iiû

3
i − (1 − Ii)(ẑ2

i + 2)σ̂3λ̂i
Ii(û4

i − 3σ̂4) + (1 − Ii)(ẑ2
i + 3)σ̂4λ̂iẑi

}

Performing these computations for each observation i produces the (N × 2) matrix,

M̂ = mi(θ̂)′

6.2 An artificial regression for τ

Newey (1985) noted that one of the benefits of τ is that it could be easily calculated
via an artificial regression. Specifically, he noted that τ = N − SSR where N is the
number of observation in the artificial regression,

ι = M̂Γ1 + ŜΓ2 + e

and SSR is the sum of squared residuals from this regression. This paper uses the
new command tobcm, written by the author to compute τ . tobcm uses the artificial
regression method to compute τ .

6.3 Generating the simulated data

All the simulations were run in Stata 7.0, and the ado- and do-files are available from
the author’s user site.

Since the functional forms are given in the text, it remains to discuss how the
error terms were generated. For the size simulations, Figure 2 describes the method of
generating the simulated normal variates.
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Figure 2: Data generation in size simulations.

Case Mathematical Description Stata code
Moffit 34.09747 ∗ ui ui ∼ N(0, 1) gen double ui=

se*invnorm(uniform())
Simple specification 2 ∗ ui ui ∼ N(0, 1) gen double ui=

2*invnorm(uniform())

Note that se in Figure 2 is a Stata scalar equal to the estimated b[ se] from the
tobit. The methods for generating the disturbances for the power simulations are given
in Figure 3.

Figure 3: Data generation in power simulations.

Distribution Mathematical Stata Scale
Description Code

t1 s1

{
N(0,1)
N(0,1)

}
gen double t1=

See Note 1

s1*(u1/u2)

t5 s2

{
N(0,1)

(
χ2(5)

5 )
1
2

}
gen double t5=

b
√

(5/3)

s2*(u3/(chic))

χ2
1 − 1 s3

{
χ2(1) − 1

} gen double chia=
b ∗ √2

s3*(chi2 1-1)

χ2
5 − 5 s4

{
χ2(5) − 5

} gen double chib=
b ∗ √10

s4*(chi2 5-5)

.4(χ2
1 − 1) s5

[
.4(χ2(1) − 1)

gen double mix =
b ∗ √.16 ∗ 2 + .36 ∗ 50

+.6(χ2
25 − 25) +.6{χ2(25) − 25}

] s5*(.4*(chi2 1-1)

+.6*(chi2 25-25))

Note 1: Neither the mean nor the variance exist for the Cauchy
distribution. No adjustment was made for location. The generated
variable was scaled by its standard deviation and multiplied by b.

Note 2: u1, u2, u3 are pseudo-standard normals created by
gen double ui = invnorm(uniform()),

Note 3: b is the estimated standard error in the Moffit case,
and b is 2 in the simple case

Note 4: chic = sqrt(chi2 5)/5)

Note 5: gen double chi2 df = invchi2(df,uniform()); df={1, 5, 25}
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