

Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

The Stata Journal (2002)
2, Number 2, pp. 107–124

Power by simulation

A. H. Feiveson
NASA Johnson Space Center
alan.h.feiveson1@jsc.nasa.gov

Abstract. This paper describes how to write Stata programs to estimate the power
of virtually any statistical test that Stata can perform. Examples given include
the t test, Poisson regression, Cox regression, and the nonparametric rank-sum
test.

Keywords: st0010, power, simulation, random number generation, postfile, copula,
sample size

1 Introduction

Statisticians know that in order to properly design a study producing experimental
data, one needs to have some idea of whether the scope of the study is sufficient to give
a reasonable expectation that hypothesized effects will be detectable over experimental
error. Most of us have at some time used published procedures or canned software
to obtain sample sizes for studies intended to be analyzed by t tests, or even analysis
of variance. However, with more complex methods for describing and analyzing both
continuous and discrete data (for example, generalized linear models, survival models,
selection models), possibly with provisions for random effects and robust variance es-
timation, the closed-form expressions for power or for sample sizes needed to achieve
a certain power do not exist. Nevertheless, Stata users with moderate programming
ability can write their own routines to estimate the power of virtually any statistical
test that Stata can perform.

2 General approach to estimating power

2.1 Statistical inference

Before describing methodology for estimating power, we first define the term “power”
and illustrate the quantities that can affect it. In this article, we restrict ourselves
to classical (as opposed to Bayesian) methodology for performing statistical inference
on the effect of experimental variable(s) X on a response Y . This is accomplished by
calculating a p-value that attempts to probabilistically describe the extent to which the
data are consistent with a null hypothesis, H0, that X has no effect on Y . We would
then reject H0 if the p-value is less than a predesignated threshold α. It should be
pointed out that considerable criticism of the use of p-values for statistical inference has
appeared in the literature; for example, Berger and Sellke (1987), Loftus (1993), and
Schervish (1996). However, for this article, we accept this methodology as the modus
operandi.

c© 2002 Stata Corporation st0010

108 Power by simulation

2.2 Defining power

In simple terms, the power of the above test on the effect of X is defined as the prob-
ability that H0 is rejected; however, it makes no sense to talk about a quantitative
“probability” without reference to some stochastic model. By defining power as the
probability of some event, we imply that the event, namely rejection of H0, is random.
More specifically, we contemplate a hypothetical scenario in which the identically sized
experiment could be run over and over, each time collecting new data and doing a new
hypothesis test. If this scenario can be adequately modeled, we may thus estimate power
by simulating data from multiple replications of the experiment and simply calculate
the proportion of rejections as an estimate of the power. What does it mean to model
the experimental scenario? For our purposes, it means that the experiment design, the
values of X, and the distribution of Y must be sufficiently specified such that the re-
sulting power as a function of α is uniquely determined. Let us examine each of these
scenario components:

1. Experiment design. The scope of the experiment must be specified in terms
of definition of experimental units, overall sample size, crossed, hierarchical or
multilevel structure (if applicable) with specified sample sizes at each level, and
so forth. This allows one to generate simulated data that could be matched to
each observation of Y in an actual experiment.

2. Values of X. Some components of X may be determined by the design; for exam-
ple, dummy variables in ANOVA. Values of others, such as independent variables
in regression models, must be specified, since these in general affect power.

3. Distribution of Y . The distribution of Y must be completely specified for all
values of the covariates in the dataset. In fully parametric models, this means
specifying the distributional family and all parameter values that correspond to
an assumed departure from H0. There may also be other parameters (for example,
variances and covariances) that affect power. Values of these nuisance parameters
must also be specified. For semiparametric models such as Stata’s xtgee or stcox,
or for nonparametric analysis, a specific model is still needed to simulate the data,
even though that model is not necessarily assumed in the analysis (see the example
in Section 3.3). These requirements may give the impression of being overbearing
or not feasible, but must nevertheless be satisfied to calculate power, whether by
simulation or pure mathematical analysis. For example, in a two-sample t test, one
assumes two normal distributions (distributional family) with the same specified
variance (nuisance parameter) and a given hypothetical difference between the
means (departure from H0).

2.3 Bias

In the ideal situation, the p-value should be calculated such that the probability of rejec-
tion is exactly α when H0 is true. Since α is arbitrary, this implies that the distribution
of the p-value over many replications of the experiment should be uniform on [0,1].

A. H. Feiveson 109

However, in many complex analyses, p-values are based on asymptotic approximations,
and the resulting probability of rejection under H0 may not be exactly α. In this case,
the test is said to be biased. In the process of estimating power, it is often desirable
to include a case when H0 holds, to check for bias. This process is illustrated in the
examples of Section 3.

2.4 Outline of the method

A step-by-step process for carrying out power estimation in Stata would then resemble
the following:

1. Use the underlying model to generate random data with (a) specified experimental
design and sample size(s), (b) values of X, (c) parameter values that express the
distribution of Y under the alternative hypothesis one is trying to detect, and (d)
values of nuisance parameters such as variances.

2. Run the Stata estimation program (regress, glm, etc.) on these randomly gen-
erated data.

3. Retrieve the p-value directly, or calculate it yourself. For some Stata commands
such as tabi, the p-value is directly retrievable as a “return” quantity (you can
type return list after running the command to see if this is the case). In many
estimation commands, the p-value is obtained by a z test; that is, assuming the
parameter estimate divided by its standard error has a standard normal distribu-
tion. In this case, you can retrieve the parameter estimates and standard errors
using e(b) and e(V), and then calculate the p-value (see Step 4). In other situ-
ations, a retrievable statistic such as a log-likelihood ratio is assumed to have a
chi-squared distribution under H0.

4. Calculate the test statistic and p-value, if necessary. For example, if it is a z
test, divide the parameter estimate of interest by its standard error and use the
normprob function to get the p-value. Specifically, suppose b is the coefficient
estimate with standard error sb. The two-sided p-value to test the hypothesis of a
zero coefficient is then equal to 2[1−Φ(Z)], where Z = b/sb and Φ is the standard
normal cumulative distribution function, returned by normprob.

5. Do Steps 1–4 a large number of times, say, NIT, and save the p-values in a file
with NIT observations.

6. The estimated power for a level-α test is simply the proportion of observations
(out of NIT) for which the p-value is less than α.

It is important that design-related values of X such as group identity, drug doses,
temperature settings, etc. remain fixed throughout all NIT iterations of the simulation.
This is because power may well be a function of X. For random covariates such as ages
of subjects, whether or not to regenerate them for each iteration depends on whether

110 Power by simulation

a) the user wishes to calculate power conditionally on fixed values of these covariates
(such as those observed in the actual data), or b) one wishes the random event of
rejection to reflect the joint distribution of Y and X over hypothetical reenactments of
the experiment. In (a), values of X may be randomly generated for the first simulation,
but must then remain the same for all subsequent simulations. In (b), one must assume
some model for the joint distribution of Y and X and use it to generate both X and Y
for each iteration.

As a check, always run the simulation for the null case to make sure the estimated
power comes out close to α (to within the sampling error of the number of iterations).
More generally, in the null case, the distribution of the p-values should be uniform. This
may be easily tested in Stata using the ksmirnov command. If this check fails, then the
test could be biased and/or the simulation could be programmed incorrectly.

Much of the bookkeeping involved in saving the simulated p-values (and any other
desired quantities) can be facilitated with the help of postfile commands. This will
be illustrated in the following examples.

3 Examples

3.1 Example 1: [two-sample t test]

The first example we give is one for which theoretical results abound in the literature:
the two-sample t test. In fact, Stata has the built-in command sampsi to estimate power
for this analysis. Let’s see how good sampsi really is for estimating the power of the
test of equal means when they differ by an amount ∆. The model for the two-sample t
test may be written as

yij = µi + eij (1)

where the µi are population means, the eij ’s are iid N(0, σ2), and yij is the jth obser-
vation in the ith group, where i = 1, 2, j = 1, . . . , Ni.

Although not explicitly appearing in the above formulation of the model, here X
consists of dummy variables X1 and X2, indicating membership in groups 1 and 2,
respectively. Thus, we could have expressed the first part of the model as yij = µ1X1 +
µ2X2 + eij .

The experiment design is defined by the Xi and the sample sizes Ni, while the
distribution of Y = {yij} is specified through the normal assumption and given values
of µ1, µ2 and σ2. Since H0 is defined by µ1 = µ2, any departure from H0 may be
expressed in terms of ∆ = µ1 −µ2. Here, σ2 is a nuisance parameter because the power
of the test of H0 : µ1 = µ2 depends on σ2 through the quantity ∆/σ. As a result, the
value of σ must also be specified. Suppose we know from previous studies that σ2 = 1.0,
and we wish to estimate the power when α = 0.05, N1 = 8, N2 = 12, and ∆ = 1.2 using
1,000 simulated experiments. Following is a program to do so:

A. H. Feiveson 111

/* t2sim.do: calculates power of two-sample t test by simulation
arguments are: n1 = sample size of 1st group

n2 = sample size of 2nd group
del = actual difference between the two means
sig = common standard deviation of error term
al = test level, "alpha"
NIT = no. of simulations */

version 7.0
args n1 n2 del sig al NIT
local df=‘n1’+‘n2’-2 /* degrees of freedom */
drop _all

set obs ‘NIT’
gen s2=‘sig’*‘sig’*invchi2(‘df’,uniform())/‘df’
gen delm=‘del’ + ‘sig’*sqrt((1/‘n1’+1/‘n2’))*invnorm(uniform())
gen sed = sqrt(s2*(1/‘n1’+1/‘n2’))
gen tobs=delm/sed
gen pv=tprob(‘df’,tobs)
count if pv < ‘al’
scalar pow=r(N)/‘NIT’
noi di "est power = ",scalar(pow)," for al = ‘al’ "
exit

This program is efficient because it avoids having to simulate each observation for each
replicated experiment. Instead it uses the fact that the sample statistics needed to
perform the t test: (1) D, the difference between the sample means, and (2) S2, the
pooled variance estimate, have known distributions and are statistically independent.
Specifically, D ∼ N{∆, σ2(1/N1 + 1/N2)} and S2 ∼ σ2χ2(ν)/ν, where ν is the degrees
of freedom ν = N1 + N2 − 2. In the program, d and S2 are generated directly, being
named delm and s2. The t-value for the test ∆ = 0 is the ratio tobs = D/s.e.(D), where
s.e.(D) = S

√
1/N1 + 1/N2. The corresponding two-sided p-value is the area under the

t-distribution density for |t| > tobs, which can be evaluated using Stata’s tprob function
with ν degrees of freedom. We now run our program:

. run t2sim 8 12 1.20 1.0 .05 1000
est power = .702 for al = .05

There were 702 rejections in 1,000 simulations, giving an estimated power of 0.702. A
confidence interval for the power may be obtained by running cii. For example,

. cii 1000 702

Binomial Exact
Variable Obs Mean Std. Err. [95% Conf. Interval]

1000 .702 .0144636 .6725858 .7302194

gives a 95% confidence interval of (0.673, 0.730) for the power. (Of course, the width of
the interval can be made smaller by increasing NIT.) Running sampsi gives

112 Power by simulation

. sampsi 0.0 1.2, n1(8) n2(12) a(.05) sd(1)

Estimated power for two-sample comparison of means

Test Ho: m1 = m2, where m1 is the mean in population 1
and m2 is the mean in population 2

Assumptions:

alpha = 0.0500 (two-sided)
m1 = 0
m2 = 1.2
sd1 = 1
sd2 = 1

sample size n1 = 8
n2 = 12

n2/n1 = 1.50

Estimated power:

power = 0.7483

This value is considerably beyond the upper 95% confidence limit for power based on our
simulation. These results suggest that at least for this case, sampsi is overestimating
the true power.

3.2 Example 2: [Poisson regression]

We wish to test the effect of a drug dose on a Poisson distributed response y in rats.
For a sample of n rats, we have the Poisson regression model y ∼ Poisson(µ), where

log µi = β0 + βixi

for i = 1, . . . , n, where xi is the dose in mg given to the ith rat. Suppose we are
trying to decide what sample size would give reasonable power for the test of the null
hypothesis β1 = 0 if the true value of β1 were 0.65 (the alternative hypothesis), under
an experimental design with three levels of dosage (0.2, 0.5, and 1.0 mg) repeated r
times on n = 3r different rats. The following program estimates the power for a fixed
value of r. One can then run it for several values to arrive at an r of choice.

/* poispow.do - does power estimation for poisson regression model */
version 7.0
args NIT rlow rhigh rstep d1 d2 d3 be1 alpha

/* model: log(mu) = be0 + be1*x

y ~ Poisson(mu)

Specifically, power is estimated for testing the hypothesis be1 = 0, against
a user-specified alternative for a sample size r = no. rats per dose level,
ranging from rlow to rhigh in steps of rstep. Without loss of generality, we
can assume the true value of be0 is 0.

Note: This simulation uses Joe Hilbe’s ‘rnd’ random number generator
obtained from STB-41.

A. H. Feiveson 113

In the ‘args’ statement:
NIT is number of iterations in the simulation
rlow is the smallest value of r to be considered
rhigh is the largest value of r to be considered
rstep is the step size for incrementing r
d1, d2 and d3 are the fixed dosages
be1 is the "true" value of beta1 (the alternative hypothesis).
alpha is the level of the test (e.g. alpha = .05)

*/

forv r = ‘rlow’(‘rstep’)‘rhigh’ {
drop _all
set obs 3
gen x=‘d1’ in 1
replace x=‘d2’ in 2
replace x=‘d3’ in 3
expand ‘r’
sort x
gen mu=exp(0 + ‘be1’*x) /* (the "zero" is to show be0 = 0) */

/* Note: Here, I generated my "x" and mu-values and now store them in a
dataset -tempx- so that the same values could be used throughout
the simulation */

save tempx,replace

/* Initialize the posting process */
/* The simulated p-values will be save in temppow.dta */

tempname buff
postfile ‘buff’ pval using temppow,replace

/* run NIT simulated Poisson regressions for a fixed value of r */
forv it = 1/‘NIT’ {

qui use tempx,clear
/*generates Poisson(mu) random variable in variable -xp- */
qui rndpoix mu
qui poisson xp x /*performs the Poisson regression */
matrix V=e(V)
matrix b=e(b)
scalar zrat=b[1,1]/sqrt(V[1,1]) /* the "z"-ratio */
scalar pval = 2*(1-normprob(abs(zrat))) /* the "p"-value */
post ‘buff’ (pval) /*post the result to temppow.dta */

}
postclose ‘buff’ /* close the buffer */

use temppow,clear
/*The dataset in memory now contains NIT simulated p-values. To get an
estimate of the power, just count the proportion of pval’s that are less
than alpha: */

count if pval<‘alpha’
scalar power=r(N)/‘NIT’
noi di "Power is ",%8.4f scalar(power), /*
*/ " for ‘r’ rats per dose and alpha = ‘alpha’"

}
Note the use of the postfile commands to update the relevant simulation results to
a new file without worrying about destroying the current dataset. In this case, the file
temppow.dta is overwritten for each value of r, but we just as easily could have saved
it under a different name each time through the loop over values of r. We now run this
program for various values of r (10, 20, 30, 40, 50, 60, and 70), with 100 simulations
per run, and with α = 0.05.

114 Power by simulation

. run poispow 100 10 70 10 .2 .5 1.0 .64 .05
Power is 0.3000 for 10 rats per dose and alpha = .05
Power is 0.4400 for 20 rats per dose and alpha = .05
Power is 0.7000 for 30 rats per dose and alpha = .05
Power is 0.8100 for 40 rats per dose and alpha = .05
Power is 0.9000 for 50 rats per dose and alpha = .05
Power is 0.9100 for 60 rats per dose and alpha = .05
Power is 0.9700 for 70 rats per dose and alpha = .05

Although each individual estimate is not that accurate, being based on only 100 trials,
one could fit a logistic or other regression curve through this data to get a good estimate
of which value of r would give a prescribed power, say, of 0.80. Of course, one could get
better accuracy by increasing NIT at the expense of more computer time.

Finally, (perhaps this should have been done first), we run the program with β1 = 0
and a large value of NIT (say, 1,000) to see if the level of the test is “close” to 0.05.
If not, the normal approximation is not adequate, or we may have programmed the
procedure incorrectly. To get the most provocative case (that is, the smallest sample
size considered), we run this for r = 10.

. run poispow 1000 10 10 10 .2 .5 1.0 0.0 .05
Power is 0.0450 for 10 rats per dose level and alpha = .05

There were 45 simulated p-values less than 0.05, which for 1,000 binomial trials gives a
95% confidence interval of about (0.033, 0.060) for the level of the test (see cii command
results below). With the value 0.05 being in this confidence interval, one might conclude
that the normal approximation z test is adequate, even for 30 observations (r = 10).

. cii 1000 45

Binomial Exact
Variable Obs Mean Std. Err. [95% Conf. Interval]

1000 .045 .0065555 .0330098 .0597525

Finally, we check the entire distribution of simulated p-values for a uniform distribution:

. ksmirnov pval=pval

One-sample Kolmogorov-Smirnov test against theoretical distribution
pval

Smaller group D P-value Corrected

pval: 0.0135 0.696
Cumulative: -0.0237 0.324
Combined K-S: 0.0237 0.627 0.611

It passes with flying colors. Figure 1 gives the histogram of pval with 32 bins.

. graph pv, xlab ylab bin(32)

A. H. Feiveson 115

F
ra

c
ti
o
n

pval
0 .5 1

0

.02

.04

.06

Figure 1: Empirical distribution of p-values when H0 is true: Poisson regression example.

3.3 Example 3: [stcox with clustering]

Suppose you plan to test the effect of a new manufacturing process on the strength of
fiber-wrapped pressure vessels. You plan to compare a number of vessels made with the
standard and new process using survival analysis of failure or censoring times, measured
in months. Let X be a binary indicator of the new process and let h0(t) and h(t) be
the hazard functions associated with the failure-time distribution under the standard
process and the new process, respectively. You would like to apply the proportional
hazards model

h(t) = h0(t) exp(βX)

to the results and the test the hypothesis H0 that the new process has no effect on
reliability; that is, that β = 0.

You also know that vessels are manufactured in batches, and that all vessels from
a given batch must be manufactured by the same procedure. Furthermore, there is
an overhead cost of procuring vessels from each batch, as well as an experimental cost
per vessel of actually running the experiment. In particular, for an experiment with B
batches and n vessels per batch, the cost is approximately proportional to 2B + nB.
Based on this cost function, you would like to choose one of these three designs, which
have about the same cost to run:

(Continued on next page)

116 Power by simulation

Table 1: Three possible experimental designs

Total Cost
Design B n nB 2B Index

1 12 6 72 24 96
2 16 4 64 32 96
3 24 2 48 48 96

Clearly, if there is no intra-batch correlation, you should choose the design that tests
the most vessels; namely, the first design. On the other hand, if the failure times of
vessels from the same batch are highly correlated, you should choose the design with the
most batches; that is, the third design. For intermediate situations, one must have some
idea of the correlation to identify the design with the best power for testing H0. Suppose
you know from a previous study of standard vessels that the intra-batch correlation of
log failure times ranges from about 0.40 to 0.60. How can you use this information in
a simulation to find the design with the best power for testing β = 0, assuming that
β = −1.25?

Although stcox assumes a proportional hazards model, it does not specify any
particular baseline hazard function. Nevertheless, we must assume some specific failure-
time distribution to simulate experimental data. In this example, we use a Weibull
model because it satisfies the proportional hazards assumption and is easy to implement.
To some extent, the power of the test β = 0 will depend on which distribution we use,
but we will assume that the answer to the question of which design is superior will be
the same over any reasonable set of distributions we might choose. In addition to the
question of what marginal distribution to use for failure times, we must also consider
how the within-batch dependence should be modeled and how to incorporate censoring
in our simulated data.

Simulation of data satisfying the proportional hazards assumption

Given a random uniform number u, one may generate a new random variable with
distribution function F by the simple transformation y = F−1(u). In our case, F
is the Weibull CDF, parameterized here as F (y) = 1 − exp(−cyk). Therefore, given
U ∼ uniform[0, 1],

Y =
(− logU

c

)1/k

(2)

has the aforementioned Weibull distribution. (Note that we may use U here instead of
1−U , since both have the same uniform distribution.) The hazard function correspond-
ing to F (y) is given by h(y) = ckyk−1. Under the Cox model, the parameter c would
be equal to some base value c0 when X = 0 and would become equal to c1 = c0 exp(β)
when X = 1.

A. H. Feiveson 117

Simulation of intra-batch dependence

Suppose the correlation between log failure times of any two vessels manufactured from
the same batch is ρ > 0. How can we incorporate this dependence into our simulated
data while still maintaining the marginal Weibull distribution for each observation?
One simple method (which we use here) is to make use of a copula constructed from a
particular multivariate normal distribution. A copula is usually defined as a bivariate
CDF whose marginals are uniform; see, for example, Genest and MacKay (1986). How-
ever, the concept can easily be extended to a multivariate distribution. The method
follows three steps. First, for ρ0 > 0, we use the random effects model Zij = zi+ eij for
i = 1, . . . , B and j = 1, . . . , n, where zi ∼ N(0, ρ0), eij ∼ N(0, 1 − ρ0), and the zi and
eij are mutually independent. The Zij all have the same N(0, 1) marginal distribution,
are independent between batches (different values of i) and have correlation ρ0 within
a batch (different values of j for the same i). (Note: The value of ρ0 is chosen such
that the correlation between the simulated log failure times within a batch is approxi-
mately ρ. How this is done will be explained in the next section.) Next, we transform
the Zij into uniform random variables with a similar correlation structure (although
the intra-batch correlation will no longer be equal to ρ0). This is accomplished by the
transformation Uij = Φ(Zij), where Φ is the standard normal CDF (normprob in Stata).
Finally, we transform the Uij into dependent Weibulls using Equation 2. Although not
used explicitly here, the multivariate CDF of the Uij is a copula. Oakes (1989) provides
additional examples of simulated correlated survival data using copulas.

Obtaining the value of ρ0

In terms of the original normally distributed Zij , the simulated log failure times may
be expressed as gij = G(Zij), where

G(z) = log

[{− log Φ(z)
c

}1/k
]

(3)

Using second-order expansions of gij and gij′ about z = 0, it can be shown (approxi-
mately) that

Cov(gij , gij′) = {G′(0)}2
ρ0 +

{G′′
(0)}2

2
ρ2
0 (4)

and that

Var(gij) = Var(gij′){G′(0)}2 +
{G′′

(0)}2

2
(5)

Combining (4) and (5), we find that Corr(gij , gij′) is a weighted average of ρ0 and ρ2
0;

namely,
Corr(gij , gij′) = wρ0 + (1 − w)ρ2

0 (6)

where

w =
{G′(0)}2

{G′(0)}2 + {G′′(0)}2/2
(7)

118 Power by simulation

It can be shown that w does not depend on the parameters k or c; specifically,

w =
π(log 2)2

π(log 2)2 + (1 − log 2)2
.= 0.94128 (8)

Thus, we can solve (6) for the value of ρ0 such that Corr(gij , gij′) = ρ. The solution is

ρ0 =
−w +

√
w2 + 4ρ(1 − w)

2(1 − w)
(9)

Simulation program

Here is a program to estimate the power as a function of B, n, ρ, β, α, and the number
of iterations (NIT). While we could assume that the user is to input specific values of
the Weibull parameters k and c0, we instead assume that the user provides the median,
y.50, and the 10% point, y.10, of the failure time distribution for the standard vessels.
The program calculates k and c0 so that y.50 and y.10 match the user input values. This
program also allows the user to specify a censoring time y0. Simulated failure times
exceeding y0 are set equal to y0, with an indicator of censoring accordingly set for use
with stcox. When stcox is run, the cluster option with robust standard errors is used
to account for the batch effect.

/* coxsim.do*/

args B n rho be pct50 pct10 y0 alpha NIT
/*

B is the number of batches (blocks)
n is the number of vessels per batch
rho is the desired intra-batch correlation
be is value of "beta" under the alternative hypothesis
pct50 is desired median of failure time distribution, when x = 0
pct10 is desired 10% point of failure time distribution, when x = 0
y0 is censoring time
alpha is level of test
NIT is number of simulated experiments

*/

scalar lg2=log(2)
scalar w = _pi*lg2*lg2/(_pi*lg2*lg2+(1-lg2)^2)
/* w is weight that describes correlation of log failure times

in terms of correlation between N(0,1) variates
r0 is rho-zero - the original Normal correlation needed to make the final
Weibull correlation equal to rho

*/

local disc=w*w+4*‘rho’*(1-scalar(w))
scalar r0 = 0.5*(-w+sqrt(‘disc’))/(1-scalar(w))

/* Solve for c0 and k such that F0(‘pct50’) = 0.5 and F0(‘pct10’)=0.10
where F0(y) = 1 - exp(-c0*y^k). See test50 and test10 below for checkout.

*/

local k = log(log(.5)/log(.9))/log(‘pct50’/‘pct10’)
local c0 = -log(.5)/(‘pct50’^‘k’)

scalar test50=exp(-(‘c0’*‘pct50’^‘k’)) /* should be .50 */
scalar test10=1-exp(-(‘c0’*‘pct10’^‘k’)) /* should be .10 */

A. H. Feiveson 119

/* y0 is the desired censoring time
pcen = P(censoring) when x=0 =exp(-c0y0^k)
k is shape parameter
k < 1 => h(y) -> 0
k > 1 => h(y) increasing to oo

*/
scalar pcen = exp(-(‘c0’)*‘y0’^‘k’)
local sige=sqrt(1-scalar(r0))
local sigu=sqrt(scalar(r0))
tempname buff
postfile ‘buff’ pval b1 v11 zrat using temppow,replace

forv it = 1/‘NIT’ {
drop _all
range block 1 ‘B’ ‘B’
gen x=1-mod(_n,2)
gen zu=‘sigu’*invnorm(uniform())
expand ‘n’
gen ze=‘sige’*invnorm(uniform())
gen z=zu+ze /* equi-correlated N(0,1)’s with correlation rho */
gen u=normprob(z) /* equi-correlated uniforms */
sort block
gen xbe=x*‘be’
gen c = ‘c0’*exp(xbe)

/* marginal distribution of y is Weibull
F(y) = 1 - exp(-cy^k)
f(y)=cky^(k-1)*exp-cy^k
h(y)=cky^(k-1)
prop hazards model: c = c0*exp(xbe)
*/

cap gen y=.
replace y=(-log(u)/c)^(1/‘k’)
gen byte fail=0
replace fail=1 if y <= ‘y0’
replace y=‘y0’ if y > ‘y0’
qui stset y,failure(fail)
stcox x ,nohr nolog cluster(block) robust
matrix b=e(b)
matrix V=e(V)
scalar zrat=b[1,1]/sqrt(V[1,1]) /* the "z"-ratio */
scalar pval = 2*(1-normprob(abs(zrat))) /* the "p"-value */
post ‘buff’ (pval) (b[1,1]) (V[1,1]) (zrat)
if ‘it’==‘NIT’ {save temp,replace}

}
postclose ‘buff’
use temppow,clear

/*The dataset in memory now contains NIT simulated p-values. To get an
estimate of the power, say for alpha=.05, just count the proportion of pv’s
that are less than 0.05: */

count if pval<‘alpha’
scalar power=r(N)/‘NIT’
noi di "Power is ",%8.4f scalar(power),/*
*/ " for ‘B’ blocks, ‘n’ reps per block, alpha = ‘alpha’"
exit

Below, we run this program assuming intra-batch correlations of 0.60, 0.40, 0.20, and
0 for each of the values of B and n in Table 1. We will estimate the power of the test

120 Power by simulation

β = 0, when in fact, β = −1.25 for α = 0.05. We ask the program to calculate values of
the Weibull parameters such that the median failure time for standard vessels is pct50
= 10 months, and where 10% of these vessels fail within pct10 = 2.5 months. We
also impose an experiment observation limit of y0 = 20 months (the censoring time).
This value of y0 corresponds to about 17% censoring. One thousand simulated Cox
regressions were run for each set of inputs.

. run coxsim 24 2 .60 -1.250 10 2.5 20 .05 1000
Power is 0.7620 for 24 blocks, 2 reps per block, alpha = .05

. run coxsim 16 4 .60 -1.250 10 2.5 20 .05 1000
Power is 0.6940 for 16 blocks, 4 reps per block, alpha = .05

. run coxsim 12 6 .60 -1.250 10 2.5 20 .05 1000
Power is 0.5740 for 12 blocks, 6 reps per block, alpha = .05

. run coxsim 24 2 .40 -1.250 10 2.5 20 .05 1000
Power is 0.8230 for 24 blocks, 2 reps per block, alpha = .05

. run coxsim 16 4 .40 -1.250 10 2.5 20 .05 1000
Power is 0.7740 for 16 blocks, 4 reps per block, alpha = .05

. run coxsim 12 6 .40 -1.250 10 2.5 20 .05 1000
Power is 0.7170 for 12 blocks, 6 reps per block, alpha = .05

. run coxsim 24 2 .20 -1.250 10 2.5 20 .05 1000
Power is 0.8490 for 24 blocks, 2 reps per block, alpha = .05

. run coxsim 16 4 .20 -1.250 10 2.5 20 .05 1000
Power is 0.8700 for 16 blocks, 4 reps per block, alpha = .05

. run coxsim 12 6 .20 -1.250 10 2.5 20 .05 1000
Power is 0.8600 for 12 blocks, 6 reps per block, alpha = .05

. run coxsim 24 2 .000 -1.250 10 2.5 20 .05 1000
Power is 0.9260 for 24 blocks, 2 reps per block, alpha = .05

. run coxsim 16 4 .000 -1.250 10 2.5 20 .05 1000
Power is 0.9680 for 16 blocks, 4 reps per block, alpha = .05

. run coxsim 12 6 .000 -1.250 10 2.5 20 .05 1000
Power is 0.9820 for 12 blocks, 6 reps per block, alpha = .05

A plot of estimated power versus ρ for these 12 runs of coxsim is shown in Figure 2.
Note that Design 3 is clearly best if ρ is moderate or high and that Design 1 is best only
for very low values of ρ. The conclusion to be made is that Design 3 is the way to go.

(Continued on next page)

A. H. Feiveson 121

p
o
w

e
r

intra−batch correlation

 Design 1 Design 2
 Design 3

0 .2 .4 .6

.5

.6

.7

.8

.9

1

Figure 2: Power as a function of intra-batch correlation for three competing experimen-
tal designs.

We conclude this example with a case where H0 is true and ρ = 0.6. The theoretical
level of the test (0.05) is within the 95% confidence interval of (0.046, 0.077), formed
from 60 rejections in 1,000 tries.

. run coxsim 24 2 .600 0.0 10 2.5 20 .05 1000
Power is 0.0600 for 24 blocks, 2 reps per block, alpha = .05

. cii 1000 60

Binomial Exact
Variable Obs Mean Std. Err. [95% Conf. Interval]

1000 .06 .00751 .046095 .0765593

3.4 Example 4: [rank sum test - one-sided]

You wish to design a study to compare men’s and women’s salaries for a given occu-
pation class in some region. From past studies, you know that the logarithms of these
salaries are approximately normally distributed with the same variance, but differing
means. Being conservative, you do not want to make such distributional assumptions in
your analysis, but instead wish to compare medians using the nonparametric ranksum
command. However, you are willing to use the lognormal assumption to size your study.
Suppose you want to sample men and women proportionately for your study and that
approximately twice as many men as women in the region have the occupation of in-
terest. Then you will be sampling n women and 2n men. What should n be to achieve
a power of 0.80 for a one-sided test of equal medians against the alternative that the
median salary of men exceeds that of women by a factor of 1.15? Assume the value 0.5
for the standard deviation of log salaries for each group, and that the level of the test
is 0.05.

122 Power by simulation

Simulation program

Below is a program to estimate the power. Note that the calculation of the p-value
reflects the one-sided test. Under the alternative hypothesis, Group 2 (men) would
have a higher median salary, hence in order for the null to be rejected, the standardized
difference between the two groups in rank sums (zrat in the program) must be negative.
Therefore, in calculating the p-value, we only consider the lower tail.

/* rksumsim.do
Rank sum 2-sample rank test power simulation */

version 7.0
args medrat sig n alpha NIT
/*

medrat is the assumed ration of medians (men to women)
sig is the standard deviation of log salaries
n is sample size for women
alpha is the level of the test
NIT is number of simulations

*/
local dif=log(‘medrat’) /* difference in means of log salaries */

tempname buff
postfile ‘buff’ pv1 zrat using temppow,replace

forv it = 1/‘NIT’ {
drop _all
set obs ‘n’
gen byte group=1
local N=3*‘n’
set obs ‘N’
replace group=2 if group==.

/* without loss of generality - take mean log salary for women to be zero */
gen y= 0 + ‘sig’*invnorm(uniform()) if group==1

/* mean log salary for men is ‘dif’ */
replace y= ‘dif’+‘sig’*invnorm(uniform()) if group==2
replace y=exp(y)

ranksum y,by(group) /* test medians */
local zrat=r(z)
scalar pv1=normprob(‘zrat’) /* 1-sided pvalue, H1: Group2 > Group1 */
post ‘buff’ (pv1) (zrat)
if ‘it’==‘NIT’ {

save temp,replace
}

}
postclose ‘buff’
use temppow,clear

/*The dataset in memory now contains NIT simulated p-values. To get an
estimate of the power, say for alpha=.05, just count the proportion of pv’s
that are less than 0.05: */

local n2 = 2*‘n’
count if pv1<‘alpha’
scalar power=r(N)/‘NIT’
noi di "Power is ",%8.4f scalar(power),/*
*/ " for ‘n’ women, ‘n2’ men, ratio = ‘medrat’, alpha = ‘alpha’"

A. H. Feiveson 123

Results

Now, we run the program for various values of n:

. for n in num 50(10)160: run rksumsim 1.15 0.50 n .05 1000

-> run rksumsim 1.15 0.50 50 .05 1000
Power is 0.4820 for 50 women, 100 men, ratio = 1.15, alpha = .05

-> run rksumsim 1.15 0.50 60 .05 1000
Power is 0.5530 for 60 women, 120 men, ratio = 1.15, alpha = .05

-> run rksumsim 1.15 0.50 70 .05 1000
Power is 0.6490 for 70 women, 140 men, ratio = 1.15, alpha = .05

-> run rksumsim 1.15 0.50 80 .05 1000
Power is 0.6190 for 80 women, 160 men, ratio = 1.15, alpha = .05

-> run rksumsim 1.15 0.50 90 .05 1000
Power is 0.6840 for 90 women, 180 men, ratio = 1.15, alpha = .05

-> run rksumsim 1.15 0.50 100 .05 1000
Power is 0.6920 for 100 women, 200 men, ratio = 1.15, alpha = .05

-> run rksumsim 1.15 0.50 110 .05 1000
Power is 0.7340 for 110 women, 220 men, ratio = 1.15, alpha = .05

-> run rksumsim 1.15 0.50 120 .05 1000
Power is 0.7840 for 120 women, 240 men, ratio = 1.15, alpha = .05

-> run rksumsim 1.15 0.50 130 .05 1000
Power is 0.8130 for 130 women, 260 men, ratio = 1.15, alpha = .05

-> run rksumsim 1.15 0.50 140 .05 1000
Power is 0.8330 for 140 women, 280 men, ratio = 1.15, alpha = .05

-> run rksumsim 1.15 0.50 150 .05 1000
Power is 0.8560 for 150 women, 300 men, ratio = 1.15, alpha = .05

-> run rksumsim 1.15 0.50 160 .05 1000
Power is 0.8720 for 160 women, 320 men, ratio = 1.15, alpha = .05

From these results, it appears that a survey with about 125 women and 250 men should
do the job. Let’s check the true level of the test for a study of this scope:

. run rksumsim 1.00 0.50 125 .05 1000
Power is 0.0460 for 125 women, 250 men, ratio = 1.00, alpha = .05

The observed proportion of rejections (46/1000) is well within the bounds of random
variation for an unbiased test.

4 Concluding remarks

This paper has attempted to illustrate the potential of Stata for estimating the power
for a variety of statistical tests based on classical inference methods. In the examples
shown, heavy use is made of Stata’s ability to organize data and to generate pseudo-
random numbers. It is assumed throughout these examples that successive calls to
uniform() actually produce a sequence of “independent” uniformly distributed num-
bers. It is important to realize that unless Stata’s random number seed is set to the
same number, the results of running any of the above simulation programs will not be
perfectly repeatable. One may produce repeatable results by using Stata’s set seed
command. For example,

124 Power by simulation

. set seed 23456789

. run t2sim 8 12 1.2 1 .05 1000
est power = .684 for al = .05

. set seed 23456789

. run t2sim 8 12 1.2 1 .05 1000
est power = .684 for al = .05

In our example programs, we made use of the postfile commands to conveniently
compile the simulation results in a special file. Alternatively, this could be done with
Stata’s simul command. It should be remembered that in any calculation of power,
whether by mathematical derivation or by simulation, the distribution of the data un-
der the alternative hypothesis must be completely specified even for “distribution-free”
test procedures. At first glance, this requirement appears formidable, but it should be
remembered that in virtually all applications, power calculations, although somewhat
dependent on the choice of distributional assumptions, are meant only to serve as a guide
for experiment planning. Hopefully the decision of which design to use should be rela-
tively robust to differences between reasonable distributional models. This robustness
can, of course, be checked by further simulation with a variety of models.

5 References
Berger, J. and T. Sellke. 1987. The irreconcilability of P values and evidence (with

discussion). Journal of the American Statistical Association 82: 112–122.

Genest, C. and J. MacKay. 1986. The joy of copulas: bivariate distributions with
uniform marginals. The American Statistician 40: 280–283.

Loftus, G. 1993. A picture is worth a thousand p values: On the irrelevance of hypothesis
testing in the microcomputer age. Behavior Research Methods, Instruments, and
Computers 25: 250–256.

Oakes, D. 1989. Bivariate survival models induced by frailties. Journal of the American
Statistical Association 84: 487–493.

Schervish, M. 1996. P values: What they are and what they are not. The American
Statistician 50: 203–206.

