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Abstract. The by varlist: construct is reviewed, showing how it can be used
to tackle a variety of problems with group structure. These range from simply
doing some calculations for each of several groups of observations to doing more
advanced manipulations making use of the fact that with this construct, subscripts
and the built-ins _n and _N are all interpreted within groups. A fairly complete
tutorial on numerical evaluation of true and false conditions is included.
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1 Divide and conquer

This column focuses on the by varlist: construct in Stata. by:, as I will call it for
brevity, is one of Stata’s most distinctive and powerful features, but also one that many
users find hard to grasp. It is not so much that by: is especially difficult to understand.
Rather, the challenge is mainly in absorbing some of the important details, in recognizing
when a problem calls for by:, and in thinking your way towards the few lines of Stata
that then solve that problem. In addition, the Stata documentation for by: is in several
short sections scattered around the manuals, at [U] 14.1.2 by varlist:, [U] 14.5 by
varlist: construct, [U] 16.7 Explicit subscripting, [U] 31.2 The by construct,
and [R] by. Here I attempt to bring all the main details together and to provide a
good range of illustrations. As an extra, I will also give a fairly complete run-down on
how Stata handles true and false conditions. This is often very useful with by:, and
elsewhere in Stata.

The big idea behind by: is just this: do something separately for each group of
observations defined by a specified variable list (varlist). For example, imagine that
you have read in Stata’s auto.dta. On your machine, that dataset will be in whatever
directory or folder the sysdir command tells you pertains to STATA. If you typed at
the Stata prompt something of the form

. by foreign: command

that command would be executed separately for each group of observations defined by
the variable foreign. With these data, typing tabulate foreign tells you that there
are two categories of that variable. As value labels have been attached to foreign,
those categories are shown as Domestic and Foreign, indicating the origin of the 74
cars described in the auto dataset, whether domestic, made in the United States, or
foreign, made elsewhere. If command were (say) summarize mpg, then the values of
mpg would be summarized, first for observations for which foreign has the value label
Domestic, and then for those with the value label Foreign.

c© 2002 Stata Corporation pr0004
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In short, by: subdivides a composite task—to do something for each of several
groups—into its component tasks. It is a matter of divide and conquer. Note that the
command introduced with by varlist: both defines the problem to Stata and instructs
Stata to carry out the command for each group. We are here avoiding the need to set
up, for ourselves, any kind of loop over the different groups defined by varlist. Users
who come to Stata with some programming background, or with experience of other
statistical software, often are predisposed to think about writing a miniature program
to cycle through groups, but by: allows, as it were, one kind of “programming without
programming”. I said more about related ideas in my column in the previous issue; see
Cox (2001).

Before proceeding to the details, let us note that by: will not work with all Stata
commands. Look at the help on any command to see whether by: will work with that
command. Even if it does not, on occasion the same functionality may be implemented
as a by() option.

2 Sort first

Before you can issue a command prefixed with by varlist:, you must, however, first sort
the data in memory according to varlist. If varlist were a single numeric variable, then
sorting would be by numeric order: lowest first, and highest last. Note that numeric
missing is always treated as higher than any nonmissing numeric value. If varlist were
a single string variable, then sorting would be by alphanumeric order, more precisely
ASCII order; for example, missing (empty) strings go before numeric strings such as "1",
which go before lowercase letters such as "a", and which in turn go before uppercase
letters such as "A". See [R] sort if desired.

If the data are already sorted by varlist, and Stata knows this to be the case, then
the sort is unnecessary. The first part of that condition should be clear: if the data
are already sorted, then the sort should indeed be unnecessary. But what is meant
by the second part? Suppose that you type in a dataset ordered by some variable: to
you they are now sorted by that variable. That’s not enough to Stata: it needs to do a
sort by itself, and then it knows that data are indeed sorted, even if that sort doesn’t
change the order of the observations. The easiest way to read Stata’s mind on this point
is to look at the bottom of the output issued by the describe command, which tells
you whenever Stata thinks that the data are sorted by a particular varlist. In practice,
however, if data need to be sorted in a particular way, it is often fastest just to do that
explicitly. It is rare indeed that the machine time thus spent exceeds the time checking
manually whether data are sorted and by what varlist.

Whatever the variable(s) being sorted, the most important result is that observations
with identical values end up next to each other. That is guaranteed, as a matter of
definition, by sort. Thus, sort foreign implies that all the observations with value
0 will be next to each other at the start of the dataset, and all those with value 1 will
be next to each other at the end of the dataset. To know that foreign takes on values
0 and 1, we need to look underneath the value labels to see the actual numeric values.
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In the auto data, we can do this by tabulate foreign, nolabel, or by seeing from
describe that foreign has value labels origin attached and then looking at the label
definition with label list origin.

Consider this experiment with the auto data:

. sort foreign

. sort mpg

. sort foreign

Will the data be in exactly the same order after the third sort as after the first
sort? The answer is that it is possible, but that you should never assume that this
will be the case. In general, it is highly unlikely. Once the data have been sorted by
mpg, Stata forgets the particular order of observations that it obtained previously. As
far as it is concerned, any order of observations in which all the values of 0 for foreign
precede all the values of 1 is an acceptable solution, and naturally there are many such
solutions. (To be precise, there are 52! 22! solutions given 52 values of 0 and 22 values of
1, and that’s a lot.) This detail can be crucial in a few problems concerning by:, and on
occasion you must make sure that it does not bite you. To epitomize the problem in two
sentences: Only if all observations are unique with respect to varlist does sort varlist
produce exactly the same order of observations every time. If there are any observations
identical with respect to varlist , then the exact order of observations after sort varlist
may well differ.

Before Stata 7, the need to sort first meant that every such problem was at least a
two-step

. sort foreign

. by foreign: command

but in Stata 7 there is now a way to do this as a single step,

. bysort foreign: command

which can be thought of as a telescoping of the two commands above. bys is an accept-
able abbreviation for bysort. by foreign, sort: command is also legal syntax. The
choice is a matter of taste.

The next step in complexity is to a very common situation. Concretely, consider
panel or longitudinal data in which observations are arranged first by some kind of
panel identifier and second by time of recording. In biostatistics, observations on visits
of patients will normally carry patient identifier and date of visit as key variables. Many
people have data like these, even if they don’t use the term “panel”. Data management
and data analysis problems often then require some work done separately for each
patient, but respecting time order (say, working with the last visit for each patient).
Before Stata 7, the preparatory sorting would have been

. sort patientid date

. by patientid: command

but in Stata 7 there is now a way to do this in a single step:

. bysort patientid (date): command
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Note the syntactic nuance of by varname1 (varname2): this means that command
will be executed separately for groups of varname1 , but that each such group will be
sorted first according to varname2.

From now on in this column, the syntax used will be that of Stata 7. Readers using
earlier versions are thus requested to translate bysort commands into the older and
more long-winded syntax.

3 varlist can have one or more variables

All the examples so far have been of by: with a single variable, but if you didn’t know,
then the use of the general jargon varlist and the last point made about panel data
would probably lead you to suspect that what can be done with one variable can as
easily be done with two or more variables. Indeed, that is one of the cardinal virtues of
by:. It is essentially no more difficult to tackle problems in which groups of observations
are defined by several variables than it is to tackle those in which they are defined by
one variable. Programmers in any language will especially appreciate this, as in most
other circumstances there is a prospect of setting up multiple loops, which is at least
tedious and error-prone.

Let’s imagine that in the auto data we want to issue

. by foreign rep78: command

That is, groups of observations are defined jointly by two variables foreign and rep78.
The situation here is perhaps best shown, a little indirectly, by looking at the results of

. contract foreign rep78

contract (see [R] contract) produces by default a condensed dataset consisting of all
those combinations of its varlist that exist in the data, together with a new variable
_freq showing the number of observations in each combination. Let us list the results:

. list foreign rep78 _freq

foreign rep78 freq
1. Domestic 1 2
2. Domestic 2 8
3. Domestic 3 27
4. Domestic 4 9
5. Domestic 5 2
6. Domestic . 4
7. Foreign 3 3
8. Foreign 4 9
9. Foreign 5 9
10. Foreign . 1

We see that in practice there are two categories of foreign and six of rep78 (the missing
category can easily be overlooked). However, of the twelve possible combinations, only
ten actually occur. When we sort by foreign rep78, first all observations are sorted
according to the value of foreign, just as previously discussed. Then all observations
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with each value of foreign are sorted according to their values of rep78. Given three
or more variables, such a process would be repeated, breaking ties where possible by
referring to variables mentioned later in the varlist . Note that the order in which
variables are named in the varlist is crucial for determining the precise sort order.
Thus, the results of sort foreign rep78 differ from those of sort rep78 foreign.
The same combinations of categories will appear, but in a different order.

Assuming that the auto data are read in once more, now we can do something for
all the combinations of the two variables:

. bysort foreign rep78: command

It is really the same idea as before, but one new detail is worth emphasis. Stata just
silently ignores cross-combinations of categories not represented in the data. (Remember
that only ten out of twelve cross-combinations of foreign and rep78 are actually present
in the auto dataset.) Usually, that is a feature. If you use by: and results appear to be
incomplete, then this will usually be the explanation. Of course, other limitations can
bite, such as when some minimum number of observations is needed on mathematical
or statistical grounds for a calculation. Thus, for example, two observations distinct
on both variables are the minimum for a correlation coefficient to be calculated, and
even then the result necessarily has magnitude 1. On occasion with by:, the option rc0
can be useful for ensuring that Stata continues regardless of failure for any one group
of observations. rc0 stands for return code 0, which Stata habitually emits when a
command has executed without problems.

4 The built-ins n and N

You already know enough to use by: effectively. Most uses of by: are no more than
sorting the data into groups and then doing something separately for each group, and
with bysort that can be done in one command. What follows are the slightly more ad-
vanced tricks possible with this construct. They are the means for solving a surprisingly
large number of problems in Stata whenever observations have group structure.

The key to many such tricks lies in Stata’s built-in variables, _n and _N. If no by:
is in sight, then _n is just the observation number: 1 for the first observation, 2 for the
second, and so on. _n depends on the current sort order of the data. This alone can be
useful: suppose you read in some data that do not possess an identifier. generate id
= _n assigns identifiers 1 up, and given that, sort id will bring the data back to the
original order.

Similarly, if no by: is in sight, then _N is the total number of observations in memory.
At a given time this is one number: for the auto data as supplied with Stata, it is 74. But
_N is also variable, so if observations are added or dropped, it will necessarily change.

Now comes the twist that gives by: extra spin. Under the aegis of by varlist:, _n
and _N are interpreted as observation number (1 up) and total number of observations
within each group of observations defined by varlist. That is, they are always interpreted
with reference to the current group of observations, rather than the entire dataset.
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To see this, here is a simple example. Suppose that with those panel data on patient
visits we want to generate a variable that records the number of visits for each patient.

. bysort patientid: generate int nvisits = _N

The main idea is that because generate is executed under by patientid:, _N is the
number of observations in each group, namely, the number of visits for each patient.
It is clear that we do not need to sort each patient’s observations by date to count
the number of visits. Even if they are not in date order, we will get the same counts.
However, bysort patientid (date): would do no harm and would produce the same
results. In other problems, not surprisingly, getting each group of observations in date
order will be crucial for getting the correct results.

By the way, int indicating variable type is just a flourish here, as a reminder that the
variable will have modest integer values, so that there is a small advantage in storing
them appropriately. Its use also presupposes, as we would certainly hope, that the
number of visits does not exceed 32,766 for any patient.

Within each group there are two special observations, the first and the last. In calling
these observations “special”, I am not thinking primarily of substantive meaning, even
though first and last state may be of particular scientific or practical interest, but rather
of two details that can be useful in writing code.

First, each group of observations evidently has at least one member. (Recall that
Stata unobtrusively skips, on our behalf, those logically possible cross-combinations of
two or more variables that do not occur in the dataset in memory; that is, those com-
binations for which the number of members is zero.) Thus, if we wish to do something
once (and/or systematically) for each group, then we could do it either for the first ob-
servation in the group or for the last observation in the group. With singleton groups,
those for which _N is 1, the first and the last will clearly be the same observation. To
put this another way, it always makes sense to refer to the first observation in each
group (Stata idiom will be _n == 1) or to the last observation in each group (Stata
idiom _n == _N). The double equal sign == is used in Stata whenever you wish to test
for equality: compare the use of the single equal sign = for assignment.

Second, we will often want to count something, or more generally to calculate some
sum, over all the observations in each group. The natural Stata way to do this will be
to produce a cumulative or running sum() within each group and then to pick up its
last value as the result we want.

With panel-like data in particular, we may want to make reference to changes, say,
in some measure like blood pressure bp since some previous state. For that it is essential
that observations are sorted properly, not only between but also within groups, as by
sort patientid date. In doing this, a nuance is worth noting. There is no observation
before the first and none after the last observation. It may be that in computer memory
the last observation for one patient is stored just before the first observation for another,
but Stata automatically acts logically and ignores that.

What are the changes between successive values for each patient?
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. bysort patient (date): generate chbp = bp - bp[_n-1]

bp is the current blood pressure (we could validly say bp[_n], but there is no need to do
so), while bp[_n-1]—for the current observation number _n, minus 1—is the previously
measured blood pressure, so we just subtract that. As another expression of how by:
works, note that the subscript, here [_n-1], is always interpreted within groups. For
more on subscripts, see [U] 16.7 Explicit subscripting.

In problems such as these, a mental check on boundary conditions is often a good
idea, at least until you know each idiom so well that you know what is and what is
not problematic. First check what happens with the first in each group, here bp[1].
Its previous value, bp[0], does not exist in the data. In fact, Stata acts as if bp[0]
were missing. Those of a philosophical or theological persuasion can ponder the sub-
tleties here, but the practical result is the same. As a consequence, chbp[1], which is
bp[1] - bp[0], will be returned as missing. Then check what happens with the last in
each group. In this case, the previous value will always be present, so long as there are
at least two observations in each group.

What is the difference between the first value and the last value for each patient?

. by patient: generate totchbp = bp[_N] - bp[1]

As the data are already in the correct sort order as a result of the previous bysort, by is
sufficient here. Once more, this example carries the message that under by: subscripts
are always interpreted within each group, so that bp[1] is the first value for each group
and bp[_N] is the last.

Here again, if we think about boundary conditions, one small problem can be iden-
tified with singleton groups, for each of which _N is 1. For such groups the first and
the last are necessarily the same observation, and the difference is, thus, necessarily 0
(unless missing minus missing, which in Stata is missing). We might decide to exclude
all such singletons from the calculation by

. by patient: generate totchbp = bp[_N] - bp[1] if _N > 1

Here now is a more involved but quite manageable problem: count the numbers of
increases and the numbers of decreases between successive measurements in blood pres-
sure for each patient. Depending partly on the resolution of measurement, some pairs
of measurements will appear identical: let’s arbitrarily lump the instances of no change
with the increases. A first idea is that we count increases or no changes by counting
how often

bp >= bp[_n-1]

and similarly that we count decreases by counting how often

bp < bp[_n-1]

As said, bp[0] is not present in the data, or what is equivalent in practice, we can also
say that bp[0] is always evaluated as missing. So, we certainly do not want to count all
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those occasions on which bp[1] < bp[0]—which evaluates to bp[1] < .—as if they
were real (physiological) decreases. In fact, we might as well bundle that boundary
problem with all the other cases in which one or other measurement is missing. So, we
will put this to Stata as producing two count variables:

. by patient: generate int ninc = sum(bp>=bp[_n-1] & bp<. & bp[_n-1]<.)

. by patient: generate int ndec = sum(bp<bp[_n-1] & bp<. & bp[_n-1]<.)

. by patient: replace ninc = ninc[_N]

. by patient: replace ndec = ndec[_N]

Let’s unpack that more slowly. In the first command, the event of interest is that
blood pressure did not decrease—bp>=bp[_n-1]—and that the current blood pressure is
not missing—bp<.—and that the previous blood pressure is not missing—bp[_n-1]<..
(Learn to save yourself keystrokes by noting that < . is equivalent to ~= ., a fine
discrimination signaled by Lachenbruch (1992)). If all these conditions are true, the
numerical result of the Boolean expression

bp>=bp[_n-1] & bp<. & bp[_n-1]<.

for each observation is 1; if even one condition is false, the numerical result is 0. (In
the next section, we will look in much more detail at the numerical evaluation of true
and false conditions.) The second command has a similar flavor, except that we are
counting decreases. In both commands we get the cumulative or running sum by using
the sum() function. The last value produced by that function is the one we want, and
the last value we know how to get, by specifying _N as subscript.

Stata is operating here just as you might if given several apples and oranges and
asked to count first the apples, and then the oranges. Given apple, apple, orange,
orange, apple you could sum 1 + 1 + 0 + 0 + 1 apples = 3 apples and 0 + 0 + 1 + 1 + 0
oranges = 2 oranges. Think of this as producing running tallies of 1 2 2 2 3 apples and
0 0 1 2 2 oranges seen so far, and reading off just the last tally. You are thinking just
as Stata does given the commands above. It is no surprise that counting problems can
be reduced to summing 1s and 0s (or summing 1s, as the 0s make no difference).

It turns out that we could have done all this in one fell swoop with egen, as for
example:

. by patient: egen int ninc = sum(bp>=bp[_n-1] & bp<. & bp[_n-1]<.)

However, we save only one command, and it is always worth knowing the underlying
Stata thinking. We need to be prepared for all those problems for which no one has pre-
viously written a program offering a canned solution. In passing, note that, confusingly,
egen’s sum() always gives final sums, not cumulative or running sums.

5 True and false in Stata

We will now pick up on an idea just mentioned, that true and false conditions have
numerical equivalents. This material is useful in many applications of Stata, not only
for by: but more broadly, so we will look at the area in some detail.
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Most computer languages have some way of indicating and working with what is
true and what is false, but not all languages choose exactly the same way. Stata follows
two rules, the second of which may be considered as a generalization of the first. I will
state the rules, and then we will look at each in turn.

• Rule TF1: Logical or Boolean expressions evaluate to 0 if false, 1 if true.

• Rule TF2: Logical or Boolean arguments, such as the argument to if or while,
may take on any value, not just 0 or 1. 0 is treated as false and any other numeric
value as true.

5.1 Rule TF1

First consider the results of logical or Boolean expressions. (George Boole, who lived
from 1815 to 1864, worked on differential equations, finite difference calculus, algebra,
logic, and probability; see, for example Boole (1854) or Heath and Seneta (2001).) In
Stata, these expressions make use of one or more of various relational and logical oper-
ators. The operators ==, ~=, !=, >, >=, <, and <= are used to test equality or inequality.
The operators & | ~ and ! are used to indicate “and”, “or” and “not”. Note that it is
a matter of taste whether you use ~ or ! to indicate “not”. In this column, in deference
to Stata Corporation house style, we use ~. If you want to learn more about any of
these, see help on operators at [U] 16.2 Operators.

For example, in the auto data, the expression foreign == 1 will be true for those
observations for which the variable foreign is 1 and false otherwise. As stressed earlier,
the double equal sign == is used whenever you wish to test for equality: compare the
use of the single equal sign = for assignment. As a second example, the expression 2
== 2 is always true. That may not seem helpful or instructive, but there are occasional
uses for expressions that are necessarily always true. More complicated expressions can
readily be constructed: foreign == 1 & rep78 == 4 will be true whenever foreign
== 1 and rep78 == 4. Typing

. count if foreign == 1 & rep78 == 4

shows that there are 9 such cars in the auto data. (Incidentally, although the count
command may seem trivial, it is a very simple and useful way of getting answers to
some basic questions about your data.)

What is also important, and what may be new to you, is that logical expressions
have numerical values. This can be immensely useful. In Stata, the rule is that false
logical expressions have value 0 and true logical expressions have value 1. Thus, log-
ical expressions may be used to generate indicator variables (also often called binary,
dichotomous, dummy, or indeed logical or Boolean, depending on tribal jargon), which
have values 0 or 1. The command

. generate byte himpg = mpg > 30
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will generate a new variable that is 1 whenever mpg is greater than 30, and 0 otherwise.

By the way, byte indicating variable type is just another flourish here, as a reminder
that the variable will have small integer values, so that there is a small advantage in
storing them appropriately.

Some wrinkles should now be mentioned. What if mpg were missing? As mentioned
earlier, the rule is that Stata treats numeric missing values as higher than any other
numeric value, so missing would certainly qualify as greater than 30, and any observation
with mpg missing would be assigned 1 for this new variable. This leads to the next
wrinkle:

. generate byte himpg = mpg > 30 if mpg < .

would assign 1 if mpg were greater than 30, but not missing; 0 if mpg were not greater
than 30; and missing if mpg were missing. The logic is that we did not say what result
was wanted if mpg were missing: in the absence of instructions, Stata will shrug its
shoulders in the only way it knows, and assign a result of missing. The same logic
would apply if we were only interested in domestic cars:

. generate byte himpg = mpg > 30 if foreign == 0

If foreign were not equal to 0, then the result would be missing. Otherwise, the result
would be 1 or 0, according to whether mpg was or was not greater than 30.

Examples of the usefulness of the numerical value of logical expressions arise when-
ever we want to count something. We’ve seen one example earlier in the column: let’s
now look at another in light of how Stata treats true and false. Suppose we want to
create a new variable in which we will put the frequencies of mpg being greater than 30,
by categories of rep78:

. bysort rep78: generate byte nhimpg = sum(mpg > 30)

. by rep78: replace nhimpg = nhimpg[_N]

In the first of these two commands, the function sum() produces a cumulative or running
sum of mpg > 30. If mpg > 30, the Boolean expression mpg > 30 is evaluated as 1, and
1 is added to the sum; otherwise, the expression is evaluated as 0, and 0 is added. This
yields a running count of the number of observations for which mpg > 30. In the second
command, we replace the running count by its last value, the total count. This is all
done within the framework of by:, for which data must be sorted on rep78, which is
done as part of bysort:. Under by:, the generate is carried out separately for each
group of rep78. Similarly, the replace is done separately for each group of rep78.

In this example, we have been using the fact that there are no missing values of
mpg in the auto data. And whenever you know that this is true of a variable in your
data, you too can ignore the possibility of missing values. But a more general recipe for
counting observations greater than some threshold is to use

sum( varname > threshold & varname < .)

That is a trustworthy recipe for whenever you want to exclude missing values. Naturally,
if you know that missing means in practice “too high to be measured”, then you might
want to include missing values.
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5.2 Rule TF2

Recall the rule: Logical or Boolean arguments, such as the argument to if or while,
may take on any value, not just 0 or 1. 0 is treated as false and any other numeric value
as true.

Now consider what happens if you type something like

. list mpg if foreign == 1

Stata lists mpg for those observations for which foreign is equal to 1, and does
not list them if this is not so. From the above, we can see that a more long-winded
way of explaining this is that Stata lists mpg whenever the logical expression foreign
== 1 is true, or evaluates to 1.

So this looks like the same idea in a different form. It is, but there are extra twists.
Consider now

. list mpg if foreign

There are no relational or logical operators in sight, but Stata is broad-minded here. It
will still try its best to find a way of deciding on true or false; in fact, it will accept any
argument that evaluates to a number not 0 as indicating true, and any argument that
evaluates to a number 0 as indicating false. If the mathematical or computer jargon
“argument” is new to you, think of it here as indicating whatever is fed to if.

Given a numeric variable such as foreign, Stata looks at the values of that variable,
and any value not 0 is treated as true and any value 0 as false. In other words,

. whatever if foreign

and

. whatever if foreign ~= 0

are exactly equivalent. That is always true for any numeric variable. In practice, also,
there is a very nice shortcut if, and only if, you have an indicator variable that takes
only the values 0 or 1. The two commands

. list mpg if foreign == 1

. list mpg if foreign

are equivalent in practice in the auto data. In the first, Stata evaluates the expression
foreign == 1, and then executes the action indicated (to list) if and only if the
expression is true, or evaluates numerically to 1. In the second, Stata looks at the
values of the variable foreign, and then executes the action if, and only if, the value
is a number not 0. In the auto data, foreign is not 0 when, and only when, it is equal
to 1, so the two conditions are satisfied by exactly the same observations. Over time
this will save you many keystrokes when you are working with indicator variables, and
it will let you type Stata syntax close to the way you are thinking, say, if female or
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even if ~female. Here ~ reverses the choice: ~ flips any value not 0 to 0, and any value
0 to 1. But remember that numeric missings count as not 0.

You can always check, either interactively or in a program, that a variable has only
the values 0 and 1. A good way to check is with assert, using | to indicate “or”:

. assert varname == 0 | varname == 1

If varname were equal to any other value, Stata would deny the assertion. assert is
a very useful command for checking that data do satisfy those conditions you think
should be satisfied. Don’t be misled by its placement in the Programming volume of
the manuals at [P] assert: the many examples in that manual entry give a flavor of how
it can be useful interactively.

Note also that if you typed, perhaps by accident,

. list mpg if rep78

you would get a list for all observations, because rep78 is never 0. It is the same logic.

If the argument were just a number, the same logic still applies. This also can be
useful with the if and while programming commands, so that, for example, while 1
would begin an infinite loop. We won’t go into that further now, but you can learn
more from [P] if and [P] while.

Finally, if you were to supply, most probably by accident, just the name of a string
variable or a text string as an argument to if or while, there would be an error message,
as Stata cannot interpret either as a numeric argument. This does not apply, however,
to expressions in which strings are tested for equality or inequality or processed to
yield a number. The expression "frog" == "frog" is true, and evaluated as 1, while
index("Stata", "S") yields a number (in this case also 1).

6 Applying the ideas to some specific problems

Now let us apply these ideas to various problems.

6.1 Has a doubly entered dataset been entered properly?

One way of checking data entry is to type in the same dataset twice. If this has been
done correctly, then every observation should have an identical twin. This is a little
different from the more common problem in which duplicate observations may signal
some kind of accidental repetition, but the way to detect it in Stata is much the same.
We can check for such duplicate observations in a single line:

. bysort *: assert _N == 2

Here * is a wildcard for all variables. _all would also work here. In each distinct group,
the number of observations _N should be 2. If this is so, then Stata says nothing, a case
of no news being good news. If it is not so, we might find it best to generate an indicator
variable:
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. by *: gen isbad = _N ~= 2

and then to edit if isbad or list if isbad. The “bad” observations so identified
will be unique (_N is 1) or occur in threes or larger groups (_N > 2).

6.2 Observations in a group differing on a variable

Suppose you have data on various individuals with genotypes ascertained from samples
taken at different times. You want to list only those samples with differing genotypes
for each individual.

Suppose the data look like this small subset:

. list id genotype in 1/7
1. 0 vv
2. 0 vv
3. 1 vv
4. 1 ww
5. 2 ww
6. 2 vv
7. 2 ww

Note that genotype could be either a string variable or a numeric variable with
labels. The solution here applies to both, and also to numeric variables without labels.
Consider the effects of sorting the data on id and then on genotype:

. sort id genotype

If all the values of genotype are the same for each id, then after sorting the first
value within each id will equal the last. If there is any variation within id, that will
not be true. This will work regardless of the number of observations for each id, the
number of genotypes, and the type of variable used. Thus, in the example data for id
0, the first value vv will equal the last, but for id 1 and 2, the first and last values will
differ. The example of id 2 also shows why sorting first is essential, as at present the
first and third value are both ww, but the middle value is vv.

Accordingly, we work out which groups have different values and then list those
groups only:

. bysort id (genotype): generate byte diff = genotype[1] ~= genotype[_N]

. list id genotype if diff

As always, with by: subscripts apply to observations within each group. [1] thus
denotes the first observation and [_N] the last observation within each group. The
expression is logical or Boolean and will be evaluated numerically as 1 or 0. If the
corresponding values differ, then diff will be 1, and if they are the same, diff will
be 0. Then the list is restricted to values which are different: if diff is a reliable
shortcut for if diff == 1 as all those values which are not 0 will in fact be 1.

How could this be extended to identifying groups that differ on at least one of two or
more variables? One way would be first to use egen, group() to group values according
to one or more variables, and then to use the same method on the resulting variable.
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6.3 Do any or all group members possess some characteristic?

This next problem is a generalization of the previous one. The characteristic might be
having exactly the same value within groups, but it could be something else.

In the simplest case, you might have a binary variable recording whether (say)
persons are male or female, unemployed or employed, or whatever, and some group
variable, say a variable recording a family identifier. For example,

. l family person female in 1/12
family person female

1. 1 1 1
2. 1 2 1
3. 1 3 1
4. 2 1 0
5. 2 2 0
6. 2 3 0
7. 3 1 0
8. 3 2 0
9. 3 3 0
10. 3 4 1
11. 3 5 1
12. 3 6 1

As you can guess, female is recorded as 1 for female and 0 for male: it is a good
convention to use names like female, signifying directly which sex is denoted by 1,
rather than names like gender that require explanation of the coding used.

Consider various families in the listing just given:

1. Family 1 contains 3 females, and so values of female are 1, 1, 1.

2. Family 2 contains 3 males, and so values of female are 0, 0, 0.

3. Family 3 contains 3 males and 3 females, and so values of female are 0, 0, 0, 1,
1, 1.

From these examples, we can see a correspondence between two ways of thinking
about such families:

1. If all members of a family are female, the minimum value of female is 1 in that
family, and vice versa.

2. If no members of a family are female, the maximum value of female is 0 in that
family, and vice versa.

3. If any member of a family is female, the maximum value of female is 1 in that
family, and vice versa.

Thus, let us sort by family female and then within each family look at the
minimum (first) and maximum (last) value of female.
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. sort family female

. by family: generate byte anyfemale = female[_N]

. by family: generate byte allfemale = female[1]

In the simplest case, with no missing values, anyfemale or allfemale will be 1 or
0 according to whether it is true (1) or false (0) that any or all in a family are female.
However, real examples could easily contain missing values. Missing numeric values
(.), counted as higher than any other numeric values, will be sorted to the end of any
group of numeric values. Thus, if any values of female were missing, so also would be
female[_N].

We will use indicator variables instead, defined such that the first or the last value
in each group holds what is needed to answer the question.

The condition that any person be female can be put also in this way: at least one
person is female.

. generate byte isfemale = female == 1

. bysort family (isfemale): generate byte anyfemale = isfemale[_N]

Note the subtle difference between female and isfemale. If female is 0 or 1, so also
is isfemale. But if female is missing, isfemale is 0, because the expression female
== 1 is then false.

What is meant precisely by all persons being female? Does this mean “absolutely
all persons are female”, or it is enough that “all persons with known (not missing) sex
are female”? You must decide this nuance on scientific or practical grounds, but let us
show both solutions. Whether absolutely all persons are female is given by

. generate byte isfemale = female == 1

. bysort family (isfemale): generate byte allfemale = isfemale[1]

because if there are any examples of isfemale of 0—corresponding to anyone male
or with missing value for sex—then isfemale[1] will be 0 after sorting. Whether all
non-missing values are female is given by

. bysort family (female): generate byte allfemale = female[1]

which is what we had before. Note that if all values of female are missing, then
allfemale[1] too is missing, which seems right—except that you should be sure not
to type thereafter if allfemale when you really mean if allfemale == 1.

More generally, we can use any expression that is true or false to create an indicator
variable. Sorting on that within groups (here families) ensures that minimum and
maximum are first and last within each group, and then we can use those minimum
and maximum values to determine group characteristics. Hence, if the characteristic of
interest is not coded as a 0–1 variable, we just need to create such a variable:

. generate byte isDemo = party == "D"

. bysort family (isDemo): generate byte anyDemo = isDemo[_N]

. by family: generate byte allDemo = isDemo[1]
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Once more, it turns out that we could save a command here and there by using
egen, max() or egen, min() as appropriate, but the approach from first principles
brings its own rewards.

7 Summary: The rules for by:

Let us now summarize the rules for by varlist:.

• Rule BY0: Before running any command by varlist:, the observations in mem-
ory must first be sorted according to varlist . In Stata 7, bysort allows you
to telescope sort varlist and the subsequent by varlist: command into a single
command line: that is very often convenient, but it is not compulsory.

• Rule BY1: Any command issued by varlist: is carried out separately for each
group of observations with identical values on varlist . varlist may contain one or
more variables, which may be numeric and/or string.

• Rule BY2: Under by varlist:, the Stata built-in variables _n and _N and subscripts
are interpreted with respect to the current group of observations, not the whole
dataset.

8 What’s next?

I hope that it is now clear that by varlist: is a very powerful construct. One major
theme in this column—of working through lists—will be revisited in the next issue,
when I shall be discussing how to set up your own loops over lists using commands like
foreach and forvalues.
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