

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
<http://ageconsearch.umn.edu>
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

From the help desk: Transfer functions

Allen McDowell
Stata Corporation
amcdowell@stata.com

Abstract. The question often arises as to whether one can estimate a transfer function model using Stata. While Stata does not currently have a convenience command for doing so, this article will demonstrate that estimating such a model can be accomplished quite easily using Stata's `arima` command. The classic text for transfer function modeling is Box, Jenkins, and Reinsel (1994); however, a more concise presentation can be found in Brockwell and Davis (1991).

Keywords: st0009, arima, xcorr, corrgram, transfer function, impulse-response function, autocorrelation function, cross-correlation function, pre-whitened, linear filter, difference equation

1 Transfer function models

Transfer function modeling is simply a methodology for finding a parsimonious, and therefore estimable, parameterization for an infinite-order distributed lag model. In the broadest of terms, transfer functions are a linear filter that can be represented by an equation of the form

$$\begin{aligned} Y_t &= \sum_{i=0}^{\infty} v_i * X_{t-i} + N_t \\ &= \left(\sum_{i=0}^{\infty} v_i * L^i \right) * X_t + N_t \\ &= v(L) * X_t + N_t \end{aligned}$$

whereby deviations of an output from its steady-state level are represented as a linear aggregate of input deviations. $v(L)$ is a polynomial in the lag operator L and is known as the transfer function of the filter. The weights, v_0, v_1, v_2, \dots , are known as the impulse-response function of the system. The term N_t represents an additive noise term that is assumed to be a random variable that follows a stationary autoregressive-moving average (ARMA) process and is independent of the input X_t . The system is said to be stable if the v_j in

$$\sum_{i=0}^{\infty} v_i * L^i$$

are absolutely summable; i.e.,

$$\sum_{i=0}^{\infty} |v_i| < \infty$$

Direct estimation of the vs is problematic because the right-hand side of the above equation is an infinite series. Even if the vs are indistinguishable from zero beyond some finite lag length, unless the finite lag structure is known a priori, some method for identifying the lag structure is needed. The method proposed by Box, Jenkins, and Reinsel (1994) is to equate the infinite-order polynomial distributed lag representation of the input-output system to a generalized linear difference equation of the form

$$a(L) * Y_t = c(L) * X_{t-b}$$

so that

$$Y_t = \frac{c(L)}{a(L)} * X_{t-b}$$

Equating coefficients on L identifies a functional relationship between the vs of the infinite-order distributed lag representation and the as and cs of the difference equation representation. These functional relationships can become quite complex as the orders of the polynomials $a(L)$ and $c(L)$ grow and are not presented here (The interested reader should consult Table 10.1 in Box, Jenkins, and Reinsel (1994). Note that I have also ignored the additive noise term for the moment. Some authors include the noise term throughout the derivation of the model, whereas some simply attach it in an ad hoc fashion. Operationally, it makes no difference which approach one takes; the latter method simplifies exposition without loss of generality.

Perhaps the most confusing aspect of transfer function modeling (or perhaps, better said, the transfer function literature) is the following: while one needs the difference equation representation to develop a strategy for estimating the impulse-response function, one must estimate the impulse-response function before one can estimate the parameters of the difference equation. Again, the problem is that the orders of the polynomials $a(L)$ and $c(L)$ and the value of the delay parameter b are unknown a priori. Since the ultimate goal is to obtain estimates of the impulse-response function, there is no compelling reason to ever estimate the parameters of the difference equation. That is, the role of the difference equation representation is as a conceptual device for obtaining an estimator for the impulse-response function. Once estimates of the impulse-response function are obtained, however, one can obtain estimates of the parameters of the difference equation.

Initial, but inefficient, estimates of the impulse-response function are determined by first prewhitening the input series by applying a linear filter $d(L)$. The same filter is then applied to the output series. The cross-correlation function between the two

filtered series will be proportional to the impulse-response function, and the constant of proportion will be the ratio of the standard deviations of the two filtered series. To see that this is true consider the following:

$$Y_t = v(L) * X_t$$

Let $d(L) * X_t = \alpha_t$ where α_t is white noise. Applying the same filter, $d(L)$, to Y_t produces

$$d(L) * Y_t = \beta_t$$

where β_t is some stationary ARMA process. Then,

$$d(L) * Y_t = v(L) * d(L) * X_t$$

or equivalently,

$$\beta_t = v(L) * \alpha_t$$

Multiplying both sides by α_{t-k} and taking expectations yields

$$E(\alpha_{t-k} * \beta_t) = E\{v(L) * \alpha_t * \alpha_{t-k}\}$$

which is

$$\gamma_{\alpha\beta}(k) = v_k * \sigma_\alpha^2$$

where $\gamma_{\alpha\beta}(k)$ is the cross-covariance at lag $+k$ between α_t and β_t . Thus,

$$v_k = \frac{\gamma_{\alpha\beta}(k)}{\sigma_\alpha^2}$$

or, in terms of cross-correlations

$$v_k = \frac{\rho_{\alpha\beta}(k) * \sigma_\beta}{\sigma_\alpha} \quad k = 0, 1, 2, \dots$$

Given the initial estimates of the v_k , one can determine the lag structure of the impulse-response function, including the value of the delay parameter b . With this information in hand, direct and efficient estimation of the impulse-response function by maximum likelihood is straightforward. This method is demonstrated in the example below.

2 Example

The example is taken from Chapter 11 of Box, Jenkins, and Reinsel (1994). A gas furnace is employed in which the input is a variable methane feed rate and the output is the resulting carbon dioxide concentration in the off-gases. In Figure 1 below, we see the time-series plots of the input, X_t , and the output, Y_t . Each (X_t, Y_t) pair was sampled from the continuous records at 9-second intervals.

```
. use furnace, clear
. tsset t
    time variable: t, 1 to 296
. graph x y t, c(l1[..#.#]) s(..) saving(levels, replace)
```

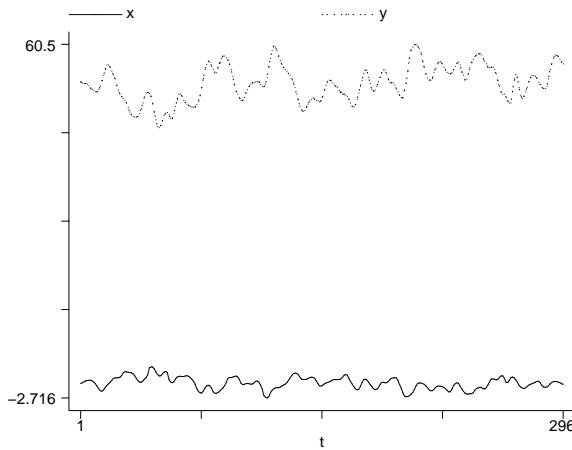


Figure 1: Time-series of X_t and Y_t

As a preliminary step, we must insure that both series are, in fact, stationary. If the series prove to be nonstationary, then the series must be transformed in order to induce stationarity. We can perform a visual test by examining the correlogram of each series to see if the autocorrelation function decays rapidly. We can also perform statistical tests for the presence of unit roots using either the Dickey–Fuller tests (Stata's `dfuller` command) or the Phillips–Perron test (Stata's `pperron` command).

(Continued on next page)

```
. corrrgram x, lags(20)
```

LAG	AC	PAC	Q	Prob>Q	-1	0	1	-1	0	1	[Autocorrelation]	[Partial Autocor]
1	0.9525	0.9526	271.26	0.0000								
2	0.8341	-0.7898	480	0.0000								
3	0.6819	0.3424	619.96	0.0000								
4	0.5312	0.1230	705.21	0.0000								
5	0.4075	0.0571	755.55	0.0000								
6	0.3182	-0.1159	786.35	0.0000								
7	0.2602	0.0539	807.01	0.0000								
8	0.2275	0.1030	822.86	0.0000								
9	0.2131	0.0145	836.82	0.0000								
10	0.2083	-0.0712	850.2	0.0000								
11	0.2028	-0.0971	862.94	0.0000								
12	0.1893	0.0455	874.07	0.0000								
13	0.1673	0.0877	882.79	0.0000								
14	0.1375	-0.1436	888.71	0.0000								
15	0.1048	0.0475	892.16	0.0000								
16	0.0754	0.0463	893.95	0.0000								
17	0.0520	-0.0184	894.8	0.0000								
18	0.0371	0.0228	895.24	0.0000								
19	0.0340	0.0944	895.61	0.0000								
20	0.0424	-0.0351	896.18	0.0000								

```
. dfuller x
```

Dickey-Fuller test for unit root		Number of obs = 295		
		Interpolated Dickey-Fuller		
Test Statistic		1% Critical Value	5% Critical Value	10% Critical Value
Z(t)	-2.665	-3.456	-2.878	-2.570

```
* MacKinnon approximate p-value for Z(t) = 0.0802
```

```
. pperron x
```

Phillips-Perron test for unit root		Number of obs = 295		
		Newey-West lags = 5		
Test Statistic		Interpolated Dickey-Fuller		
		1% Critical Value	5% Critical Value	10% Critical Value
Z(rho)	-33.910	-20.336	-14.000	-11.200
Z(t)	-4.131	-3.456	-2.878	-2.570

```
* MacKinnon approximate p-value for Z(t) = 0.0009
```

While the Phillips-Perron test rejects the null hypothesis of a unit root, the Dickey-Fuller test's rejection is somewhat weak. This is an indication that perhaps we should perform an augmented Dickey-Fuller test just to be sure. The number of lags for the test was chosen to be $\text{int}(12 * (\frac{T}{100})^{\frac{1}{4}})$, following Schwert (1989).

```
. dfuller x, lags(2)
Augmented Dickey-Fuller test for unit root           Number of obs = 293
Test Statistic          1% Critical Value          5% Critical Value          10% Critical Value
----- Interpolated Dickey-Fuller -----
Z(t)                 -4.879          -3.457          -2.878          -2.570
* MacKinnon approximate p-value for Z(t) = 0.0000
```

Based on the visual inspection as well as the unit-root tests, we can reject the null hypothesis that there is a unit root in the input series and assume stationarity of the input series X_t . We can now proceed to test the output series for stationarity.

```
. corrgram y, lags(20)
LAG      AC      PAC      Q      Prob>Q      -1      0      1      -1      0      1
----- [Autocorrelation] [Partial Autocor]
1      0.9708  0.9747  281.78  0.0000
2      0.8960 -0.8575  522.67  0.0000
3      0.7925  0.4651  711.77  0.0000
4      0.6800  0.2152  851.43  0.0000
5      0.5745 -0.0903  951.47  0.0000
6      0.4854 -0.0580 1023.2  0.0000
7      0.4161 -0.0080  1076  0.0000
8      0.3656  0.1319 1116.9  0.0000
9      0.3304 -0.0332 1150.5  0.0000
10     0.3065 -0.0666 1179.5  0.0000
11     0.2880 -0.0937 1205.1  0.0000
12     0.2693  0.0666 1227.7  0.0000
13     0.2473  0.0236 1246.7  0.0000
14     0.2215  0.0200 1262.1  0.0000
15     0.1930 -0.0661 1273.7  0.0000
16     0.1649  0.0958 1282.3  0.0000
17     0.1398  0.0141 1288.5  0.0000
18     0.1210  0.0696 1293.1  0.0000
19     0.1103 -0.0354 1297  0.0000
20     0.1078 -0.0092 1300.7  0.0000
```

|-----|-----|-----|-----|-----|-----|

```
. dfuller y
Dickey-Fuller test for unit root           Number of obs = 295
Test Statistic          1% Critical Value          5% Critical Value          10% Critical Value
----- Interpolated Dickey-Fuller -----
Z(t)                 -1.864          -3.456          -2.878          -2.570
* MacKinnon approximate p-value for Z(t) = 0.3492
```

```

. pperron y
Phillips-Perron test for unit root
Number of obs = 295
Newey-West lags = 5


| Test Statistic | Interpolated Dickey-Fuller |                   |                    |
|----------------|----------------------------|-------------------|--------------------|
|                | 1% Critical Value          | 5% Critical Value | 10% Critical Value |
| Z(rho)         | -23.969                    | -20.336           | -14.000            |
| Z(t)           | -3.423                     | -3.456            | -2.878             |


```

* MacKinnon approximate p-value for Z(t) = 0.0102

Note that while the sample autocorrelation function of the output series dampens out fairly quickly and the Phillips-Perron unit root test rejects the null hypothesis of a unit root, the Dickey-Fuller unit root test fails to reject the same null hypothesis. Again, this led me to perform an augmented Dickey-Fuller test using two additional autoregressive lags.

```

. dfuller y, lags(2)
Augmented Dickey-Fuller test for unit root
Number of obs = 293


| Test Statistic | Interpolated Dickey-Fuller |                   |                    |
|----------------|----------------------------|-------------------|--------------------|
|                | 1% Critical Value          | 5% Critical Value | 10% Critical Value |
| Z(t)           | -3.872                     | -3.457            | -2.878             |


```

* MacKinnon approximate p-value for Z(t) = 0.0023

The augmented Dickey-Fuller test rejects the null hypothesis of a unit root so we can proceed, as did Box, Jenkins, and Reinsel (1994), under the assumption that both the input and output series are stationary.

The next step is to pre-whiten the input series. Inspection of the sample autocorrelation function and the sample partial-autocorrelation function suggests an autoregressive model of order 3.

```

. arima x, ar(1/3)
(setting optimization to BHHH)
Iteration 0:  log likelihood = 72.554746
Iteration 1:  log likelihood = 72.567122
Iteration 2:  log likelihood = 72.568408
Iteration 3:  log likelihood = 72.568679
Iteration 4:  log likelihood = 72.568788
(swapping optimization to BFGS)
Iteration 5:  log likelihood = 72.568839
Iteration 6:  log likelihood = 72.568879
Iteration 7:  log likelihood = 72.568895
Iteration 8:  log likelihood = 72.568897
Iteration 9:  log likelihood = 72.568898
Iteration 10: log likelihood = 72.568898

```

ARIMA regression						
Sample: 1 to 296			Number of obs = 296			
			Wald chi2(3) = 18662.04			
Log likelihood = 72.5689			Prob > chi2 = 0.0000			
<hr/>						
x	Coef.	Std. Err.	z	P> z	[95% Conf. Interval]	
x	<hr/>					
_cons	-.0607873	.2112943	-0.29	0.774	-.4749165	.353342
<hr/>						
ARMA						
ar						
L1	1.969063	.0297688	66.15	0.000	1.910717	2.027409
L2	-1.365142	.0690584	-19.77	0.000	-1.500494	-1.22979
L3	.3394078	.0488192	6.95	0.000	.243724	.4350916
/sigma	.1878718	.0040316	46.60	0.000	.17997	.1957736

To get the pre-whitened series, we just use the residuals that are generated by `predict`.

```
. predict alpha, resid
```

We can inspect the correlogram of the filtered series to ensure that we have, in fact, produced a white-noise series.

LAG	AC	PAC	Q	Prob>Q	-1		0		1		-1		0		1	
					[Autocorrelation]				[Partial Autocor]							
1	-0.0352	-0.0352	.36967	0.5432												
2	0.0709	0.0699	1.8759	0.3914												
3	0.0578	0.0632	2.8834	0.4100												
4	-0.1426	-0.1451	9.0243	0.0605												
5	-0.0094	-0.0284	9.051	0.1070												
6	0.0585	0.0792	10.094	0.1208												
7	0.0145	0.0400	10.158	0.1798												
8	0.0024	-0.0286	10.16	0.2540												
9	-0.0542	-0.0766	11.062	0.2715												
10	0.0365	0.0545	11.473	0.3219												
11	0.1434	0.1807	17.841	0.0854												
12	-0.0761	-0.0804	19.64	0.0742												
13	0.0988	0.0320	22.681	0.0457												
14	0.0423	0.0645	23.24	0.0565												
15	-0.0819	-0.0212	25.344	0.0455												
16	0.0172	-0.0304	25.437	0.0625												
17	0.0653	0.0613	26.784	0.0613												
18	-0.0523	-0.0234	27.651	0.0676												
19	-0.0787	-0.1140	29.625	0.0568												
20	0.0229	0.0149	29.792	0.0733												

The evidence does indeed suggest that `alpha` is a white-noise series.

Next, we apply the same filter to the output series. This requires a little data management on our part. This is the type of operation that one would presumably like to see eliminated by a convenience command. Nevertheless, our task is easily accomplished by renaming two variables, using `predict` once again to generate the filtered output series, and then returning our variables back to their original names.

```
. rename x x1
. rename y x
. predict beta, resid
. rename x y
. rename x1 x
```

We will need the standard deviations of the two filtered series for our initial estimates of the impulse-response function, so I will save them as scalars:

```
. summarize alpha
Variable |   Obs      Mean   Std. Dev.      Min      Max
alpha | 296  .0000753  .1882882  -.9202943  .9906531
. scalar s_alpha = r(sd)
. summarize beta in 2/1
Variable |   Obs      Mean   Std. Dev.      Min      Max
beta | 295  3.042023  .377452   2.074999  4.701234
. scalar s_beta=r(sd)
```

We can now examine the cross-correlation function of α_t and β_t , which, as indicated earlier, will be proportional to the impulse-response function. The `xcorr` command will also allow us to generate a new variable containing the estimates of the cross-correlation function at each lag. From this variable and the standard deviations of α_t and β_t , we can construct initial estimates of the impulse-response function. From these estimates and an application of Bartlett's approximation of the standard errors of the cross-correlation function (Bartlett 1955), we can identify the lag structure of the transfer function that we wish to estimate.

(Continued on next page)

```
. xcorr alpha beta in 2/1 , saving(alpha_beta, replace) title(" ") l1title(" ")
```

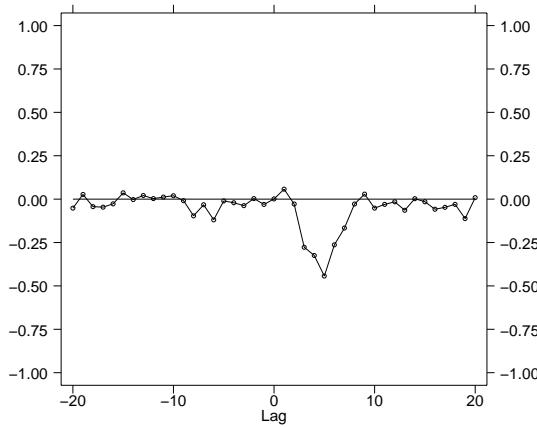


Figure 2: Cross-correlation function of α_t and β_t

```
. xcorr alpha beta in 2/1 , generate(cross) table
      -1      0      1
LAG    CORR  [Cross-correlation]
```

LAG	CORR	-1	0	1
-20	-0.0519			
-19	0.0269			
-18	-0.0434			
-17	-0.0462			
-16	-0.0272			
-15	0.0358			
-14	-0.0023			
-13	0.0210			
-12	0.0029			
-11	0.0119			
-10	0.0197			
-9	-0.0087			
-8	-0.0965			
-7	-0.0325			
-6	-0.1195			
-5	-0.0103			
-4	-0.0208			
-3	-0.0378			
-2	0.0033			
-1	-0.0306			
0	0.0010			
1	0.0573			
2	-0.0285			
3	-0.2771			
4	-0.3248			
5	-0.4435			
6	-0.2633			
7	-0.1669			

8	-0.0283
9	0.0287
10	-0.0519
11	-0.0305
12	-0.0156
13	-0.0642
14	0.0026
15	-0.0150
16	-0.0583
17	-0.0472
18	-0.0299
19	-0.1122
20	0.0090

We can use the new variable, *cross*, generated by *xcorr* along with the ratio of the standard deviations of the filtered input and output series to get initial estimates of the impulse-response function. Actually, all you need is the estimate of the cross-correlation function to identify the lag structure of the impulse-response function since the impulse-response function is proportional to the cross-correlation function. However, one could use these initial estimates of the impulse-response function as starting values in *arima* for models that have difficulty achieving convergence.

Under the null hypothesis that there is no cross correlation between the pre-whitened input series and the filtered output series, Bartlett's formula for the standard errors of the cross-correlations reduces to $1/\sqrt{n}$. While the theoretical impulse-response function will exhibit a pattern dictated by a difference equation of an order equal to 1 plus the order of the polynomial $a(L)$, past a certain lag, the individual cross-correlations, and thus the individual impulse-response functions, will not be significantly different from zero. We can, for example, use zero minus two standard deviations as a cutoff to determine which cross-correlations are significantly different from zero. Simulations indicate that with a sample of 296 observations, tests based upon the assumption that the cross-correlations are approximately normally distributed do not have the correct coverage probabilities; the tests are overly conservative. Nevertheless, continuing to follow Box, Jenkins, and Reinsel (1994), we can use the results of these tests to determine the value of *b*, the delay parameter, as well as the finite lag structure of the transfer function to be estimated.

```

. generate lag =_n-21
. generate std = -2/sqrt(296)
. generate zero = 0
. generate ir = (s_beta/s_alpha)*cross
(255 missing values generated)
. list lag cross ir std if ir != . & lag >=0 & cross < std
      lag      cross      ir      std
24.      3   -.277086  -.5554606  -.1162476
25.      4   -.3247887  -.6510878  -.1162476
26.      5   -.4435291  -.8891206  -.1162476
27.      6   -.2632791  -.5277824  -.1162476
28.      7   -.1669311  -.3346385  -.1162476

```

From the estimates we can now hypothesize that there is a three-period delay and that the transfer function will include five lags of the input series. We can estimate such a model using `arima` as follows:

```
. arima y l(3/7).x
(setting optimization to BHHH)
Iteration 0:  log likelihood = -363.30663
Iteration 1:  log likelihood = -363.30663
ARIMA regression
Sample: 8 to 296
Number of obs      =      289
Wald chi2(5)      =    1725.43
Prob > chi2        =     0.0000
Log likelihood = -363.3066
```

y	OPG					
	Coef.	Std. Err.	z	P> z	[95% Conf. Interval]	
y						
x						
L3	-.6992201	.3150715	-2.22	0.026	-1.316749	-.0816914
L4	-.5496065	.7044173	-0.78	0.435	-1.930239	.8310261
L5	-1.016878	.8318415	-1.22	0.222	-2.647257	.6135019
L6	.1387479	.6717631	0.21	0.836	-1.177883	1.455379
L7	-1.014284	.2799281	-3.62	0.000	-1.562933	-.4656348
_cons	53.32959	.0837679	636.64	0.000	53.16541	53.49377
/sigma	.8505925	.0248751	34.19	0.000	.8018382	.8993467

We must now turn our attention to modeling the additive noise term.

```
. predict n, resid
. corrgram n, lags(20)
```

LAG	AC	PAC	Q	Prob>Q	[Autocorrelation]		[Partial Autocor]	
					-1	0	1	-1
1	0.8850	0.9640	228.7	0.0000				
2	0.6999	-0.5440	372.23	0.0000				
3	0.4924	-0.0406	443.53	0.0000				
4	0.3124	0.1915	472.32	0.0000				
5	0.1818	0.0376	482.11	0.0000				
6	0.0951	-0.0130	484.8	0.0000				
7	0.0385	-0.0852	485.24	0.0000				
8	0.0016	0.0437	485.25	0.0000				
9	-0.0164	0.1025	485.33	0.0000				
10	-0.0085	-0.0079	485.35	0.0000				
11	0.0021	-0.1440	485.35	0.0000				
12	-0.0072	-0.1036	485.37	0.0000				
13	-0.0358	-0.0296	485.76	0.0000				
14	-0.0754	-0.0640	487.49	0.0000				
15	-0.1198	-0.1037	491.9	0.0000				
16	-0.1509	-0.0108	498.91	0.0000				
17	-0.1721	-0.0683	508.07	0.0000				
18	-0.1748	0.0324	517.54	0.0000				
19	-0.1526	0.0541	524.8	0.0000				
20	-0.1021	0.1211	528.06	0.0000				

Inspection of the sample autocorrelation function and the partial autocorrelation function indicates that the noise term follows a second-order autoregressive process. We can now include the error term in our model to jointly estimate all of the parameters.

```

. arima y 1(3/7).x, ar(1/2)
(setting optimization to BHHH)
Iteration 0:  log likelihood = -41.695686
Iteration 1:  log likelihood = -23.171625
Iteration 2:  log likelihood = -5.7968769
Iteration 3:  log likelihood = -2.1599672
Iteration 4:  log likelihood = -1.4669091
(setting optimization to BFGS)
Iteration 5:  log likelihood = -1.2421862
Iteration 6:  log likelihood = -.853274
Iteration 7:  log likelihood = -.83456897
Iteration 8:  log likelihood = -.82355348
Iteration 9:  log likelihood = -.82147948
Iteration 10: log likelihood = -.82086731
Iteration 11: log likelihood = -.82067251
Iteration 12: log likelihood = -.82065843
Iteration 13: log likelihood = -.82065789
Iteration 14: log likelihood = -.82065783

ARIMA regression

Sample: 8 to 296
Number of obs      =      289
Wald chi2(7)      =    6547.92
Prob > chi2       =    0.0000
Log likelihood = -.8206578


```

y	OPG					
	Coef.	Std. Err.	z	P> z	[95% Conf. Interval]	
y						
x						
L3	-.5557759	.0653626	-8.50	0.000	-.6838843	-.4276675
L4	-.6444723	.0744984	-8.65	0.000	-.7904865	-.498458
L5	-.8598032	.0784265	-10.96	0.000	-1.013516	-.7060902
L6	-.4835769	.0862466	-5.61	0.000	-.6526171	-.3145366
L7	-.3633083	.0776425	-4.68	0.000	-.5154849	-.2111318
_cons	53.37647	.1876201	284.49	0.000	53.00874	53.7442
ARMA						
ar						
L1	1.537904	.0386701	39.77	0.000	1.462112	1.613696
L2	-.6291054	.0426486	-14.75	0.000	-.7126951	-.5455156
/sigma	.2413085	.007408	32.57	0.000	.226789	.2558279

For diagnostic purposes, we should now check the residual to ensure that it is a white-noise process and that it is uncorrelated with the filtered input series α_t . Failure of either of these tests would indicate an inadequacy of the model.

```

. predict residual, residual
(7 missing values generated)

```

```

. corrgram residual, lags(20)
      -1      0      1 -1      0      1
    LAG    AC    PAC    Q  Prob>Q [Autocorrelation] [Partial Autocor]
    1    0.0323  0.0325  .30472  0.5809
    2    0.0710  0.0707  1.7816  0.4103
    3   -0.0749  -0.0801  3.4294  0.3300
    4   -0.0673  -0.0694  4.7668  0.3121
    5   -0.0639  -0.0519  5.9774  0.3084
    6    0.0978  0.1093  8.819  0.1840
    7    0.0272  0.0237  9.04  0.2498
    8    0.0340  0.0065  9.3852  0.3109
    9   -0.0548  -0.0561 10.288  0.3277
   10    0.0893  0.1260 12.692  0.2414
   11    0.0600  0.1142 13.783  0.2453
   12    0.1148  0.1267 17.783  0.1224
   13   -0.0280  -0.0158 18.022  0.1567
   14    0.0634  0.1098 19.252  0.1555
   15   -0.0798  0.0022 21.204  0.1304
   16   -0.0024  0.0232 21.206  0.1707
   17   -0.0745  -0.0738 22.924  0.1517
   18   -0.0112  -0.0585 22.963  0.1920
   19   -0.1106  -0.1399 26.772  0.1101
   20   -0.0003  -0.0691 26.772  0.1418
. xcorr alpha residual, saving(alpha_residual, replace) title(" ") l1title(" ")

```

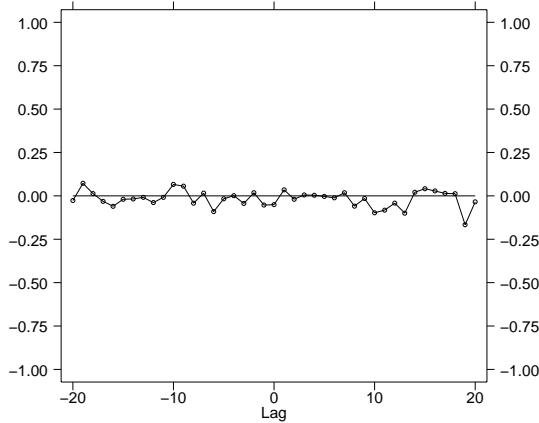


Figure 3: Cross-correlation function of residual and α_t

The diagnostics indicate that the residual is white noise and that it is uncorrelated with the input series α_t .

Finally, we can generate the predicted value of the output and compare it to the observed series.

```
. predict yhat
(option xb assumed; predicted values)
(7 missing values generated)
. graph y yhat t, c(l1[..#.#]) s(..) saving(prediction, replace)
```

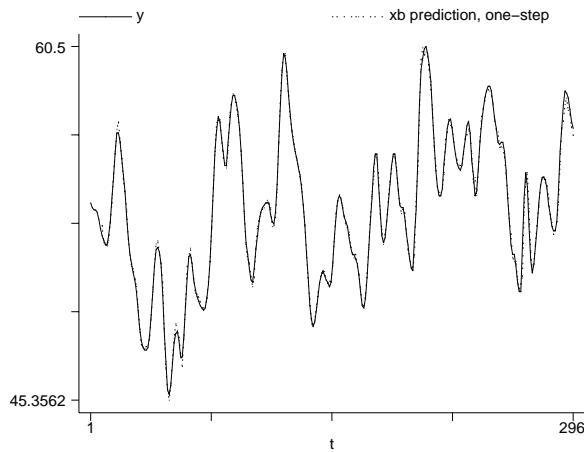


Figure 4: Time-series of Output (Y) and Prediction (yhat)

Comparison of the parameter estimates achieved by `arima` and those reported by Box, Jenkins, and Reinsel (1994) indicates that we have estimated the same model. There are minor numerical differences, but these differences are due to rounding in the reported results in Box, Jenkins, and Reinsel (1994).

3 References

Bartlett, M. S. 1955. *Stochastic Processes*. Cambridge: Cambridge University Press.

Box, G. E., G. M. Jenkins, and G. C. Reinsel. 1994. *Time Series Analysis – Forecasting and Control*. 3d ed. Upper Saddle River, NJ: Prentice-Hall.

Brockwell, P. J. and R. A. Davis. 1991. *Time Series: Theory and Methods*. 2d ed. New York: Springer-Verlag.

Schwert, W. G. 1989. Tests for Unit Roots: A Monte Carlo Investigation. *Journal of Business & Economic Statistics* 7(2).

About the Author

Allen McDowell is Director of Technical Services at Stata Corporation.