%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

The Stata Journal (2002)
2, Number 1, pp. 71-85

From the help desk: Transfer functions

Allen McDowell
Stata Corporation
amcdowell@stata.com

Abstract. The question often arises as to whether one can estimate a transfer
function model using Stata. While Stata does not currently have a convenience
command for doing so, this article will demonstrate that estimating such a model
can be accomplished quite easily using Stata’s arima command. The classic text for
transfer function modeling is Box, Jenkins, and Reinsel (1994); however, a more
concise presentation can be found in Brockwell and Davis (1991).

Keywords: st0009, arima, xcorr, corrgram, transfer function, impulse-response
function, autocorrelation function, cross-correlation function, pre-whitened, linear
filter, difference equation

1 Transfer function models

Transfer function modeling is simply a methodology for finding a parsimonious, and
therefore estimable, parameterization for an infinite-order distributed lag model. In the
broadest of terms, transfer functions are a linear filter that can be represented by an
equation of the form

o
Yo = D uixXeit+ N
=0

(Zvi *L’L> *Xt +Nt
=0

= o(l)*X;+ N,

whereby deviations of an output from its steady-state level are represented as a linear
aggregate of input deviations. v(L) is a polynomial in the lag operator L and is known
as the transfer function of the filter. The weights, v0, v1, v2, ..., are known as the
impulse-response function of the system. The term V; represents an additive noise term
that is assumed to be a random variable that follows a stationary autoregressive-moving
average (ARMA) process and is independent of the input X;. The system is said to be
stable if the v; in

S
E V; * L
i=0

are absolutely summable; i.e.,

© 2002 Stata Corporation st0009

72 From the help desk

o0
Z |vi| < o0
i=0

Direct estimation of the vs is problematic because the right-hand side of the above
equation is an infinite series. Even if the vs are indistinguishable from zero beyond some
finite lag length, unless the finite lag structure is know a priori, some method for iden-
tifying the lag structure is needed. The method proposed by Box, Jenkins, and Reinsel
(1994) is to equate the infinite-order polynomial distributed lag representation of the
input—output system to a generalized linear difference equation of the form

a(L) «Y; = ¢(L) * X¢—p

so that

e(L)

Y= D)

* Xi

Equating coefficients on L identifies a functional relationship between the vs of the
infinite-order distributed lag representation and the as and cs of the difference equation
representation. These functional relationships can become quite complex as the orders
of the polynomials a(L) and ¢(L) grow and are not presented here (The interested
reader should consult Table 10.1 in Box, Jenkins, and Reinsel (1994). Note that I have
also ignored the additive noise term for the moment. Some authors include the noise
term throughout the derivation of the model, whereas some simply attach it in an ad
hoc fashion. Operationally, it makes no difference which approach one takes; the latter
method simplifies exposition without loss of generality.

Perhaps the most confusing aspect of transfer function modeling (or perhaps, bet-
ter said, the transfer function literature) is the following: while one needs the differ-
ence equation representation to develop a strategy for estimating the impulse-response
function, one must estimate the impulse-response function before one can estimate the
parameters of the difference equation. Again, the problem is that the orders of the
polynomials a(L) and ¢(L) and the value of the delay parameter b are unknown a
priori. Since the ultimate goal is to obtain estimates of the impulse-response func-
tion, there is no compelling reason to ever estimate the parameters of the difference
equation. That is, the role of the difference equation representation is as a conceptual
device for obtaining an estimator for the impulse-response function. Once estimates of
the impulse-response function are obtained, however, one can obtain estimates of the
parameters of the difference equation.

Initial, but inefficient, estimates of the impulse-response function are determined
by first prewhitening the input series by applying a linear filter d(L). The same filter
is then applied to the output series. The cross-correlation function between the two

A. McDowell 73

filtered series will be proportional to the impulse-response function, and the constant
of proportion will be the ratio of the standard deviations of the two filtered series. To
see that this is true consider the following:

Y, =v(L)* X,

Let d(L) * X; = oy where oy is white noise. Applying the same filter, d(L), to Y;
produces

d(L) <Yy = By
where ; is some stationary ARMA process. Then,
d(L)«Yy =v(L)*«d(L) * Xy
or equivalently,
By = v(L) * oy
Multiplying both sides by a;_j and taking expectations yields
E(ai—j *) = E{v(L) x ot * . }
which is
Yap(k) = v * o,
where v,3(k) is the cross-covariance at lag +k between oy and ;. Thus,

k
o = '7a62()

Oa

or, in terms of cross-correlations

_ pap(k) x o5 k=0.1.2. ..

Oa

U,

Given the initial estimates of the vy, one can determine the lag structure of the
impulse-response function, including the value of the delay parameter b. With this
information in hand, direct and efficient estimation of the impulse-response function by
maximum likelihood is straightforward. This method is demonstrated in the example
below.

74 From the help desk

2 Example

The example is taken from Chapter 11 of Box, Jenkins, and Reinsel (1994). A gas
furnace is employed in which the input is a variable methane feed rate and the output
is the resulting carbon dioxide concentration in the off-gases. In Figure 1 below, we
see the time-series plots of the input, X;, and the output, Y;. Each (X, Y;) pair was
sampled from the continuous records at 9-second intervals.

. use furnace, clear

. tsset t
time variable: t, 1 to 296

. graph x y t, c(11[..#.#]) s(..) saving(levels, replace)

60.5 -

— ,ﬂ\/,/\\/f\’\/4\\/\//"x~n\/_//*”\/'*”\/\Vr/\\/f\1~wf\,rJP’V\x”\"

T T T T
1 296

t
Figure 1: Time-series of X; and Y}

As a preliminary step, we must insure that both series are, in fact, stationary. If the
series prove to be nonstationary, then the series must be transformed in order to induce
stationarity. We can perform a visual test by examining the correlogram of each series
to see if the autocorrelation function decays rapidly. We can also perform statistical
tests for the presence of unit roots using either the Dickey—Fuller tests (Stata’s dfuller
command) or the Phillips—Perron test (Stata’s pperron command).

(Continued on next page)

A. McDowell

. corrgram x, lags(20)

75

-1 0 1-1 0 1
LAG AC PAC Q Prob>Q [Autocorrelation] [Partial Autocor]
1 0.9525 0.9526 271.26 0.0000
2 0.8341 -0.7898 480 0.0000
3 0.6819 0.3424 619.96 0.0000 — —
4 0.5312 0.1230 705.21 0.0000 —
5 0.4075 0.0571 755.55 0.0000 —
6 0.3182 -0.1159 786.35 0.0000 —
7 0.2602 0.0539 807.01 0.0000 —
8 0.2275 0.1030 822.86 0.0000 —
9 0.2131 0.0145 836.82 0.0000 —
10 0.2083 -0.0712 850.2 0.0000 —
11 0.2028 -0.0971 862.94 0.0000 —
12 0.1893 0.0455 874.07 0.0000 —
13 0.1673 0.0877 882.79 0.0000 —
14 0.1375 -0.1436 888.71 0.0000 — —
15 0.1048 0.0475 892.16 0.0000
16 0.0754 0.0463 893.95 0.0000
17 0.0520 -0.0184 894.8 0.0000
18 0.0371 0.0228 895.24 0.0000
19 0.0340 0.0944 895.61 0.0000
20 0.0424 -0.0351 896.18 0.0000
. dfuller x
Dickey-Fuller test for unit root Number of obs = 295
Interpolated Dickey-Fuller
Test 1% Critical 5% Critical 10% Critical
Statistic Value Value Value
Z(t) -2.665 -3.456 -2.878 -2.570
* MacKinnon approximate p-value for Z(t) = 0.0802
. pperron x
Phillips-Perron test for unit root Number of obs 295
Newey-West lags = 5
Interpolated Dickey-Fuller —
Test 1% Critical 5% Critical 10% Critical
Statistic Value Value Value
Z(rho) -33.910 -20.336 -14.000 -11.200
Z(t) -4.131 -3.456 -2.878 -2.570

* MacKinnon approximate p-value for Z(t) = 0.0009

While the Phillips—Perron test rejects the null hypothesis of a unit root, the Dickey—
Fuller test’s rejection is somewhat weak. This is an indication that perhaps we should
perform an augmented Dickey—Fuller test just to be sure. The number of lags for the

test was chosen to be int(12 * (155)7), following Schwert (1989).

76

From the help desk

. dfuller x, lags(2)

Augmented Dickey-Fuller test for unit root Number of obs = 293
Interpolated Dickey-Fuller
Test 1% Critical 6% Critical 10% Critical
Statistic Value Value Value
Z(t) -4.879 -3.457 -2.878 -2.570

* MacKinnon approximate p-value for Z(t) = 0.0000

Based on the visual inspection as well as the unit-root tests, we can reject the null

hypothesis that there is a unit root in the input series and assume stationarity of the
input series X;. We can now proceed to test the output series for stationarity.

. corrgram y, lags(20)

-1 0 1 -1 0 1
LAG AC PAC Q Prob>Q [Autocorrelation] [Partial Autocor]
1 0.9708 0.9747 281.78 0.0000
2 0.8960 -0.8575 522.67 0.0000
3 0.7925 0.4651 711.77 0.0000 — —
4 0.6800 0.2152 851.43 0.0000 — —
5 0.5745 -0.0903 951.47 0.0000 —
6 0.4854 -0.0580 1023.2 0.0000 —
7 0.4161 -0.0080 1076 0.0000 —
8 0.3656 0.1319 1116.9 0.0000 — —
9 0.3304 -0.0332 1150.5 0.0000 —
10 0.3065 -0.0666 1179.5 0.0000 —
11 0.2880 -0.0937 1205.1 0.0000 —
12 0.2693 0.0666 1227.7 0.0000 —
13 0.2473 0.0236 1246.7 0.0000 —
14 0.2215 0.0200 1262.1 0.0000 —
15 0.1930 -0.0661 1273.7 0.0000 —
16 0.1649 0.0958 1282.3 0.0000 —
17 0.1398 0.0141 1288.5 0.0000 —
18 0.1210 0.0696 1293.1 0.0000
19 0.1103 -0.0354 1297 0.0000
20 0.1078 -0.0092 1300.7 0.0000
. dfuller y
Dickey-Fuller test for unit root Number of obs = 295
Interpolated Dickey-Fuller
Test 1% Critical 5% Critical 10% Critical
Statistic Value Value Value

Z(t) -1.864 -3.456 -2.878 -2.570

* MacKinnon approximate p-value for Z(t) = 0.3492

A. McDowell

. pperron y

Phillips-Perron test for unit root Number of obs = 295
Newey-West lags = 5
— Interpolated Dickey-Fuller ———
Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value
Z(rho) -23.969 -20.336 -14.000 -11.200
Z(t) -3.423 -3.456 -2.878 -2.570

* MacKinnon approximate p-value for Z(t) = 0.0102

7

Note that while the sample autocorrelation function of the output series dampens
out fairly quickly and the Phillips—Perron unit root test rejects the null hypothesis of
a unit root, the Dickey—Fuller unit root test fails to reject the same null hypothesis.
Again, this led me to perform an augmented Dickey—Fuller test using two additional

autoregressive lags.

. dfuller y, lags(2)

Augmented Dickey-Fuller test for unit root Number of obs = 293
Interpolated Dickey-Fuller
Test 1% Critical 6% Critical 10% Critical
Statistic Value Value Value
Z(t) -3.872 -3.457 -2.878 -2.570

* MacKinnon approximate p-value for Z(t) = 0.0023

The augmented Dickey—Fuller test rejects the null hypothesis of a unit root so we
can proceed, as did Box, Jenkins, and Reinsel (1994), under the assumption that both

the input and output series are stationary.

The next step is to pre-whiten the input series. Inspection of the sample autocorrela-
tion function and the sample partial-autocorrelation function suggests an autoregressive

model of order 3.

. arima x, ar(1/3)

(setting optimization to BHHH)

Iteration 0: log likelihood = 72.554746
Iteration 1: log likelihood = 72.567122
Iteration 2: log likelihood = 72.568408
Iteration 3: log likelihood = 72.568679
Iteration 4: log likelihood = 72.568788

(switching optimization to BFGS)

Iteration 5: log likelihood = 72.568839
Iteration 6: log likelihood = 72.568879
Iteration 7: log likelihood = 72.568895
Iteration 8: log likelihood = 72.568897
Iteration 9: log likelihood = 72.568898
Iteration 10: 1log likelihood = 72.568898

78

ARIMA regression

From the help desk

Sample: 1 to 296 Number of obs = 296

Wald chi2(3) = 18662.04

Log likelihood = 72.5689 Prob > chi2 0.0000

OPG

bd Coef. Std. Err. z P>zl [95% Conf. Intervall]
x

_cons -.0607873 .2112943 -0.29 0.774 -.4749165 .3563342

ARMA

ar

L1 1.969063 .0297688 66.15 0.000 1.910717 2.027409

L2 -1.365142 .0690584 -19.77 0.000 -1.500494 -1.22979

L3 .3394078 .0488192 6.95 0.000 .243724 .4350916

/sigma .1878718 .0040316 46.60 0.000 17997 .1957736

To get the pre-whitened series, we just use the residuals that are generated by

predict.

. predict alpha, resid

We can inspect the correlogram of the filtered series to ensure that we have, in fact,

produced a white-noise series.

. corrgram alpha, lags(20)
-1 0 1 -1 0 1
LAG AC PAC Q Prob>Q [Autocorrelation] [Partial Autocor]
1 -0.0352 -0.0352 .36967 0.5432
2 0.0709 0.0699 1.8759 0.3914
3 0.0578 0.0632 2.8834 0.4100
4 -0.1426 -0.1451 9.0243 0.0605 — —
5 -0.0094 -0.0284 9.051 0.1070
6 0.0585 0.0792 10.094 0.1208
7 0.0145 0.0400 10.158 0.1798
8 0.0024 -0.0286 10.16 0.2540
9 -0.0542 -0.0766 11.062 0.2715
10 0.0365 0.0545 11.473 0.3219
11 0.1434 0.1807 17.841 0.0854 — —
12 -0.0761 -0.0804 19.64 0.0742
13 0.0988 0.0320 22.681 0.0457
14 0.0423 0.0645 23.24 0.0565
15 -0.0819 -0.0212 25.344 0.0455
16 0.0172 -0.0304 25.437 0.0625
17 0.0653 0.0613 26.784 0.0613
18 -0.0523 -0.0234 27.651 0.0676
19 -0.0787 -0.1140 29.625 0.0568
20 0.0229 0.0149 29.792 0.0733

The evidence does

indeed suggest that alpha is a white-noise series.

A. McDowell 79

Next, we apply the same filter to the output series. This requires a little data
management on our part. This is the type of operation that one would presumably
like to see eliminated by a convenience command. Nevertheless, our task is easily
accomplished by renaming two variables, using predict once again to generate the
filtered output series, and then returning our variables back to their original names.

. rename x x1

. rename y X

. predict beta, resid
. rename X y

. rename x1 x

‘We will need the standard deviations of the two filtered series for our initial estimates
of the impulse-response function, so I will save them as scalars:

. summarize alpha

Variable Obs Mean Std. Dev. Min Max

alpha 296 .0000753 .1882882 -.9202943 .9906531
. scalar s_alpha = r(sd)
. summarize beta in 2/1

Variable Obs Mean Std. Dev. Min Max

beta 295 3.042023 .377452 2.074999 4.701234

. scalar s_beta=r(sd)

We can now examine the cross-correlation function of o; and 3, which, as indicated
earlier, will be proportional to the impulse-response function. The xcorr command will
also allow us to generate a new variable containing the estimates of the cross-correlation
function at each lag. From this variable and the standard deviations of a; and 3, we can
construct initial estimates of the impulse-response function. From these estimates and
an application of Bartlett’s approximation of the standard errors of the cross-correlation
function (Bartlett 1955), we can identify the lag structure of the transfer function that
we wish to estimate.

(Continued on next page)

80 From the help desk

. xcorr alpha beta in 2/1 , saving(alpha_beta, replace) title(" ") lititle(" ")

1.00 I 1.00
0.75 F0.75
0.50 I 0.50
0.25 | - 0.25
0.00 1| Avee™ A\V.Vaias ‘WW - 0.00

-0.25 | \\// F-0.25

-0.50 | F -0.50

-0.75 | F-0.75

-1.00 - -1.00

-20 -10 0 10 2
Lag

Figure 2: Cross-correlation function of o and

. xcorr alpha beta in 2/1 , generate(cross) table

-1 0 1

LAG CORR [Cross-correlation]
-20 -0.0519

-19 0.0269

-18 -0.0434

-17 -0.0462

-16 -0.0272

-15 0.0358

-14 -0.0023

-13 0.0210

-12 0.0029

-11 0.0119

-10 0.0197

-9 -0.0087

-8 -0.0965

-7 -0.0325

-6 -0.1195

-5 -0.0103

-4 -0.0208

-3 -0.0378

-2 0.0033

-1 -0.0306

0 0.0010

1 0.0573

2 -0.0285

3 -0.2771 —
4 -0.3248 —
5 -0.4435 —
6 -0.2633 —
7 -0.1669 —

A. McDowell 81

8 -0.0283
9 0.0287
10 -0.0519
11 -0.0305
12 -0.0156
13 -0.0642
14 0.0026
15 -0.0150
16 -0.0583
17 -0.0472
18 -0.0299
19 -0.1122
20 0.0090

We can use the new variable, cross, generated by xcorr along with the ratio of the
standard deviations of the filtered input and output series to get initial estimates of the
impulse-response function. Actually, all you need is the estimate of the cross-correlation
function to identify the lag structure of the impulse-response function since the impulse-
response function is proportional to the cross-correlation function. However, one could
use these initial estimates of the impulse-response function as starting values in arima
for models that have difficulty achieving convergence.

Under the null hypothesis that there is no cross correlation between the pre-whitened
input series and the filtered output series, Bartlett’s formula for the standard errors of
the cross-correlations reduces to 1/sqrt(n). While the theoretical impulse-response func-
tion will exhibit a pattern dictated by a difference equation of an order equal to 1 plus
the order of the polynomial a(L), past a certain lag, the individual cross-correlations,
and thus the individual impulse-response functions, will not be significantly different
from zero. We can, for example, use zero minus two standard deviations as a cutoff
to determine which cross-correlations are significantly different from zero. Simulations
indicate that with a sample of 296 observations, tests based upon the assumption that
the cross-correlations are approximately normally distributed do not have the correct
coverage probabilities; the tests are overly conservative. Nevertheless, continuing to fol-
low Box, Jenkins, and Reinsel (1994), we can use the results of these tests to determine
the value of b, the delay parameter, as well as the finite lag structure of the transfer
function to be estimated.

. generate lag =_n-21
. generate std = -2/sqrt(296)
. generate zero = 0

. generate ir = (s_beta/s_alpha)*cross
(255 missing values generated)

. list lag cross ir std if ir != . & lag >=0 & cross < std
lag cross ir std

24. 3 -.277086 -.5554606 -.1162476

25. -.3247887 -.6510878 -.1162476

4
26. 5 -.4435291 -.8891206 -.1162476
27. 6 -.2632791 -.5277824 -.1162476
28. 7 -.1669311 -.3346385 -.1162476

82

From the help desk

From the estimates we can now hypothesize that there is a three-period delay and

that the transfer function will include five lags of the input series. We can estimate such
a model using arima as follows:

. arima y 1(3/7).x

(setting optimization to BHHH)
Iteration O: log likelihood = -363.30663
Iteration 1: log likelihood = -363.30663

ARIMA regression

Sample: 8 to 296 Number of obs = 289
Wald chi2(5) = 1725.43
Log likelihood = -363.3066 Prob > chi2 = 0.0000
OPG
y Coef . Std. Err. z P>|z]| [95% Conf. Intervall
y
X
L3 -.6992201 .3150715 -2.22 0.026 -1.316749 -.0816914
L4 -.5496065 .7044173 -0.78 0.435 -1.930239 .8310261
L5 -1.016878 .8318415 -1.22 0.222 -2.647257 .6135019
L6 .1387479 .6717631 0.21 0.836 -1.177883 1.455379
L7 -1.014284 .2799281 -3.62 0.000 -1.562933 -.4656348
_cons 53.32959 .0837679 636.64 0.000 53.16541 53.49377
/sigma .8505925 .0248751 34.19 0.000 .8018382 .8993467
We must now turn our attention to modeling the additive noise term.
. predict n, resid
. corrgram n, lags(20)
-1 0 1 -1 0 1
LAG AC PAC Q Prob>Q [Autocorrelation] [Partial Autocor]
1 0.8850 0.9640 228.7 0.0000 —
2 0.6999 -0.5440 372.23 0.0000 — —
3 0.4924 -0.0406 443.53 0.0000 —
4 0.3124 0.1915 472.32 0.0000 — —
5 0.1818 0.0376 482.11 0.0000 —
6 0.0951 -0.0130 484.8 0.0000
7 0.0385 -0.0852 485.24 0.0000
8 0.0016 0.0437 485.25 0.0000
9 -0.0164 0.1025 485.33 0.0000
10 -0.0085 -0.0079 485.35 0.0000
11 0.0021 -0.1440 485.35 0.0000 —
12 -0.0072 -0.1036 485.37 0.0000
13 -0.0358 -0.0296 485.76 0.0000
14 -0.0754 -0.0640 487.49 0.0000
15 -0.1198 -0.1037 491.9 0.0000
16 -0.1509 -0.0108 498.91 0.0000 —
17 -0.1721 -0.0683 508.07 0.0000 —
18 -0.1748 0.0324 517.54 0.0000 —
19 -0.1526 0.0541 524.8 0.0000 —
20 -0.1021 0.1211 528.06 0.0000

A. McDowell

83

Inspection of the sample autocorrelation function and the partial autocorrelation
function indicates that the noise term follows a second-order autoregressive process. We
can now include the error term in our model to jointly estimate all of the parameters.

. arima y 1(3/7).

x, ar(1/2)

(setting optimization to BHHH)

Iteration O: log likelihood = -41.695686
Iteration 1: log likelihood = -23.171625
Iteration 2: log likelihood = -5.7968769
Iteration 3: log likelihood = -2.1599672
Iteration 4: log likelihood = -1.4669091
(switching optimization to BFGS)
Iteration 5: log likelihood = -1.2421862
Iteration 6: log likelihood = -.853274
Iteration 7: log likelihood = -.83456897
Iteration 8: log likelihood = -.82355348
Iteration 9: log likelihood = -.82147948
Iteration 10: log likelihood = -.82086731
Iteration 11: 1log likelihood = -.82067251
Iteration 12: log likelihood = -.82065843
Iteration 13: 1log likelihood = -.82065789
Iteration 14: 1log likelihood = -.82065783
ARIMA regression
Sample: 8 to 296 Number of obs = 289
Wald chi2(7) = 6547.92
Log likelihood = -.8206578 Prob > chi2 = 0.0000
0PG
y Coef . Std. Err. z P>|z| [95% Conf. Intervall
y
X
L3 -.55657759 .0653626 -8.50 0.000 -.6838843 -.4276675
L4 -.6444723 .0744984 -8.65 0.000 -.7904865 -.498458
L5 -.8598032 .0784265 -10.96 0.000 -1.013516 -.7060902
L6 -.4835769 .0862466 -5.61 0.000 -.6526171 -.3145366
L7 -.3633083 .0776425 -4.68 0.000 -.5154849 -.2111318
_cons 53.37647 .1876201 284.49 0.000 53.00874 53.7442
ARMA
ar
L1 1.537904 .0386701 39.77 0.000 1.462112 1.613696
L2 -.6291054 .0426486 -14.75 0.000 -.7126951 -.5455156
/sigma .2413085 .007408 32.57 0.000 .226789 .2558279

For diagnostic purposes, we should now check the residual to ensure that it is a
white-noise process and that it is uncorrelated with the filtered input series «;. Failure
of either of these tests would indicate an inadequacy of the model.

. predict residu
(7 missing value

al, residual
s generated)

84

From the help desk

. corrgram residual, lags(20)

-1 0 1 -1 0 1
LAG AC PAC Q Prob>Q [Autocorrelation] [Partial Autocor]
1 0.0323 0.0325 .30472 0.5809
2 0.0710 0.0707 1.7816 0.4103
3 -0.0749 -0.0801 3.4294 0.3300
4 -0.0673 -0.0694 4.7668 0.3121
5 -0.0639 -0.0519 5.9774 0.3084
6 0.0978 0.1093 8.819 0.1840
7 0.0272 0.0237 9.04 0.2498
8 0.0340 0.0065 9.3852 0.3109
9 -0.0548 -0.0561 10.288 0.3277
10 0.0893 0.1260 12.692 0.2414 —
11 0.0600 0.1142 13.783 0.2453
12 0.1148 0.1267 17.783 0.1224 —
13 -0.0280 -0.0158 18.022 0.1567
14 0.0634 0.1098 19.252 0.1555
15 -0.0798 0.0022 21.204 0.1304
16 -0.0024 0.0232 21.206 0.1707
17 -0.0745 -0.0738 22.924 0.1517
18 -0.0112 -0.0585 22.963 0.1920
19 -0.1106 -0.1399 26.772 0.1101 —
20 -0.0003 -0.0691 26.772 0.1418

. xcorr alpha residual, saving(alpha_residual, replace) title(" ") 1lititle(" ")

1.00 r 1.00

0.75 1 r 0.75

0.50 | ~0.50

0.25 1 ~0.25

0.00 AV o= N \f - 0.00
-0.25 r-0.25
-0.50 1 r -0.50
-0.75 1 r -0.75
-1.00 1 ~ -1.00

20 -10 0 10 20
Lag

Figure 3: Cross-correlation function of residual and «y

The diagnostics indicate that the residual is white noise and that it is uncorrelated

with the input series «;.

Finally, we can generate the predicted value of the output and compare it to the

observed series.

A. McDowell 85

. predict yhat
(option xb assumed; predicted values)
(7 missing values generated)

. graph y yhat t, c(11[..#.#]) s(..) saving(prediction, replace)

y --------- xb prediction, one-step

45.3562

| T
t

Figure 4: Time-series of Output (Y) and Prediction (yhat)

Comparison of the parameter estimates achieved by arima and those reported by
Box, Jenkins, and Reinsel (1994) indicates that we have estimated the same model.
There are minor numerical differences, but these differences are due to rounding in the
reported results in Box, Jenkins, and Reinsel (1994).

3 References
Bartlett, M. S. 1955. Stochastic Processes. Cambridge: Cambridge University Press.

Box, G. E., G. M. Jenkins, and G. C. Reinsel. 1994. Time Series Analysis — Forecasting
and Control. 3d ed. Upper Saddle River, NJ: Prentice—Hall.

Brockwell, P. J. and R. A. Davis. 1991. Time Series: Theory and Methods. 2d ed. New
York: Springer-Verlag.

Schwert, W. G. 1989. Tests for Unit Roots: A Monte Carlo Investigation. Journal of
Business & Economic Statistics 7(2).

About the Author

Allen McDowell is Director of Technical Services at Stata Corporation.

