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Parametric frailty and shared frailty survival
models

Roberto G. Gutierrez
Stata Corporation

Abstract. Frailty models are the survival data analog to regression models, which
account for heterogeneity and random effects. A frailty is a latent multiplicative ef-
fect on the hazard function and is assumed to have unit mean and variance θ, which
is estimated along with the other model parameters. A frailty model is an hetero-
geneity model where the frailties are assumed to be individual- or spell-specific. A
shared frailty model is a random effects model where the frailties are common (or
shared) among groups of individuals or spells and are randomly distributed across
groups. Parametric frailty models were made available in Stata with the release
of Stata 7, while parametric shared frailty models were made available in a recent
series of updates. This article serves as a primer to those fitting parametric frailty
models in Stata via the streg command. Frailty models are compared to shared
frailty models, and both are shown to be equivalent in certain situations. The
user-specified form of the distribution of the frailties (whether gamma or inverse
Gaussian) is shown to subtly affect the interpretation of the results. Methods for
obtaining predictions that are either conditional or unconditional on the frailty
are discussed. An example that analyzes the time to recurrence of infection after
catheter insertion in kidney patients is studied.

Keywords: st0006, parametric survival analysis, frailty, random effects, overdis-
persion, heterogeneity

1 Introduction

Parametric survival models are regression models in which the distribution of the re-
sponse is chosen to be consistent with what one would see if the response is time-to-
failure. In particular, the distribution of the response should have positive support.
Examples of such distributions are the exponential, Weibull, log-normal, log-logistic,
Gompertz, and the generalized gamma, among others. Survival models also differ from
standard regression models in their ability to account for censoring and truncation.

For purposes of interpretability, the distribution of time-to-failure is oftentimes char-
acterized by the hazard function, which is the ratio of the probability density function
to one minus the cumulative density function. Hazard functions also provide a conve-
nient means to adjust for regressors, either by assuming that the covariates serve to
multiplicatively shift the hazard function (proportional hazards) or by assuming that
the covariates serve to accelerate or decelerate the effect of time (accelerated failure
time).

c© 2002 Stata Corporation st0006
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A frailty model is a generalization of a survival regression model. In addition to the
observed regressors, a frailty model also accounts for the presence of a latent multiplica-
tive effect on the hazard function. This effect, or frailty, is not directly estimated from
the data, but instead is assumed to have unit mean and finite variance, which is esti-
mated. In cases where the frailty is greater than one, subjects experience an increased
hazard (or risk) of failure and are said to be more frail than their cohorts. In this way,
frailty models can provide a useful alternative to a standard survival model when the
standard model fails to adequately account for all the variability in the observed failure
times.

Frailty models come in two flavors. The frailty model is used with univariate data and
is used to model heterogeneity among individuals, analogous to how negative binomial
regression generalizes Poisson regression, since the negative binomial may be derived
from a Poisson model by introducing a latent gamma-distributed effect. The shared
frailty model is used with multivariate survival data where the unobserved frailty is
shared among groups of individuals, and thus a shared frailty model may be thought of
as a random effects model for survival data. In this way, a shared frailty model would
be analogous to how a Poisson random effects model (estimated via xtpois) generalizes
the standard Poisson model.

Frailty models for univariate data have long been used to account for heterogeneous
times-to-failure. The term frailty was first suggested by Vaupel et al. (1979) in the
context of mortality studies, and Lancaster (1979) incorporated the frailty concept into
a study of duration of unemployment. Hougaard (1984) discusses the ramifications of the
assumed distribution of the frailty, whether gamma or inverse Gaussian. In particular,
for the gamma frailty distribution the relative variability of the frailties among survivors
is shown to remain constant, whereas for the inverse Gaussian the relative variability
decreases with age, making the population of survivors more homogeneous with the
passage of time. Hougaard (1986b) considers the positive stable family of distributions
for the frailty, not available for estimation in current Stata. The positive stable family
is appealing under this family because if individual hazards are proportional, then so
are the population hazards. In general, however, the relative shapes of the individual
and population (unconditional on the frailty) hazard functions can differ extensively
due to the frailty effect — the more frail individuals tend to fail earlier, leaving a more
homogeneous population of survivors.

Shared frailty models for multivariate data have the added appeal that the frailty can
be used to model intragroup correlation. Early considerations of these models can be
found in Clayton (1978) and Clayton and Cuzick (1985), and much of the development
in this area stems from the extension of methods used to measure correlation in bivari-
ate survival data with arbitrary individual hazard functions (including Cox models).
Hougaard (1986a) examines the shared frailty model with Weibull individual hazards,
and Whitmore and Lee (1991) look at the inverse Gaussian shared frailty model with
constant individual hazards (exponential time-to-failure). Sahu et al. (1997) estimate
Bayesian shared frailty models using Gibbs sampling.
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Section 2 discusses the univariate (or non-shared) frailty model, and derives the
likelihood used to estimate model parameters. A case study involving times to infection
after catheter insertion in kidney patients is introduced, and methods for obtaining
predictions are given, as well as a note on the interpretation of hazard ratios in the
presence of frailty effects. Section 3 mirrors the material covered in Section 2, with
the discussion now focused on the multivariate, or shared, frailty model. The kidney
data is re-examined in this section. Section 4 describes situations for which both the
non-shared and the shared frailty model prove equivalent.

2 Frailty models

For a random time-to-failure, T , we define the probability density function of T as f(t)
and the cumulative distribution function as F (t) = P (T ≤ t). Two other functions that
prove useful in this context are the survivor function S(t) = P (T > t) = 1 − F (t), and
the hazard function h(t) = f(t)/S(t), which can be interpreted as the instantaneous
rate of failure given survival up until time t.

Consider a parametric survival model characterized by its hazard function, h(t).
Implicit in the definitions of all these functions are the effects of any covariates, whether
we parameterize the model as having proportional hazards (PH) with respect to changes
in covariate values, or accelerated failure time (AFT) due to the covariates. For example,
in a Weibull PH regression, the hazard function at time t for individual i with covariate
vector xi is

hi(t) = exp(xiβ)ptp−1 (1)

In general, we use the notation hi(t) = h(t|xi). The shape parameter p and regression
coefficients β are estimated from the data. [R] streg contains a list of those forms of
h(t) currently available in Stata.

A frailty model in the univariate case introduces an unobservable multiplicative effect
α on the hazard, so that conditional on the frailty

h(t|α) = αh(t) (2)

where α is some random positive quantity assumed to have mean one (for purposes of
model identifiability) and variance θ. Those individuals who possess α > 1 are said to
be more frail for reasons left unexplained by the covariates and will have an increased
risk of failure. Conversely, those individuals with α < 1 are less frail and will tend
to survive longer all else being equal (i.e., given a certain covariate pattern). Since α
is a multiplicative effect, it is easy to see from (1) how one can think of a frailty as
representing the cumulative effect of one or more omitted covariates.

Given the relationship between the hazard and survival functions, it can be shown
that the individual survival function conditional on the frailty is S(t|α) = {S(t)}α,
where S(t) is the survival function from a standard survival model and may include
ancillary parameters and covariate effects. The population survival function is then
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obtained by integrating out the unobservable α. If α has probability density function
g(α), then the population or unconditional survival function is given by

Sθ(t) =
∫ ∞

0

{S(t)}αg(α)dα (3)

where we use the subscript θ to emphasize the dependence on the frailty variance θ.

When α is distributed as gamma with mean one and variance θ,

g(α) =
α1/θ−1 exp(−α/θ)

Γ(1/θ)θ1/θ
(4)

and (3) becomes

Sθ(t) = [1 − θ ln{S(t)}]−1/θ

When α follows an inverse Gaussian distribution,

g(α) =
(

1
2πθα3

)1/2

exp
{
− 1

2θ

(
α − 2 +

1
α

)}
(5)

and (3) becomes

Sθ(t) = exp
{

1
θ

(
1 − [1 − 2θ ln{S(t)}]1/2

)}

2.1 Derivation of the likelihood

The unconditional probability of survival past time t is given by Sθ(t), and we can treat
this as we would any other survival function. We can take one minus this function to
get the cumulative distribution function (unconditional) of t, and then differentiate to
get the probability density function of t. Since S(t) may include covariate effects, Sθ(t)
can also be used to measure the effects of the covariates, although the interpretation
requires some special consideration (See Section 2.5). The point is that in the univariate
case, a frailty model is really just a survival model with an additional parameter θ. If
fitting a Weibull model, we would estimate p and β — with a Weibull–gamma model, we
now estimate p, β, and θ. When θ = 0, Sθ(t) reduces to the standard survival function
S(t).

The relationship between the survival function and hazard function still holds un-
conditional on α, and thus we can obtain the population hazard function using

hθ(t) = − d

dt
Sθ(t){Sθ(t)}−1

In fact, one can show equivalently that hθ(t) = h(t)E(α|T > t). That is, the uncon-
ditional hazard is the average hazard over the survivors at any given time (Hougaard
1995).
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As with the standard survival models estimated via Stata’s streg command, the
response is organized as the triple (t0i, ti, di) for i = 1, . . . , n with the ith observation
corresponding to the time span (t0i, ti], with either failure occurring at time ti (di = 1)
or the failure time being right-censored at time ti (di = 0). The log likelihood is formed
as a combination of the failures and the censored observations in the usual way as

lnL = ln
n∏

i=1

{Sθi(ti)}1−di{fθi(ti)}di

Sθi(t0i)

=
n∑

i=1

[ln{Sθi(ti)} − ln{Sθi(t0i)} + dihθi(ti)]

where we use the subscript i notation so that, for example, hθi(t) = hθ(t|xi).

2.2 Kidney data

We consider a dataset given in McGilchrist and Aisbett (1991) that examines the recur-
rence times to infection at point of catheter insertion for kidney patients using portable
dialysis equipment. The data consist of 38 patients with two recurrence times given for
each, along with each patient’s age and gender (0==male, 1==female).

The recurrence time measures the time between catheter insertion and infection,
which occurs where the catheter is inserted. When infection occurs, the catheter is
removed and the infection is treated, and then, after a pre-determined period of time,
the catheter is reinserted. When the catheter is removed for reasons other than infection,
the time to infection is treated as censored. As such, the second recurrence time may
also be censored if the follow-up period terminated prior to infection.

. use kidney, clear

. list in 1/10, nodisplay

time1 fail1 time2 fail2 age gender
1. 16 1 8 1 28 0
2. 13 0 23 1 48 1
3. 22 1 28 1 32 0
4. 318 1 447 1 31.5 1
5. 30 1 12 1 10 0
6. 24 1 245 1 16.5 1
7. 9 1 7 1 51 0
8. 30 1 511 1 55.5 1
9. 53 1 196 1 69 1
10. 154 1 15 1 51.5 0

For the purposes of our discussion of the univariate model with heterogeneity, we’ll
confine ourselves to considering the first recurrence time for each patient. However, in
subsequent sections on shared frailty models we do consider both recurrence times.

We fit a Weibull regression model with gamma-distributed heterogeneity using the
frailty(gamma) option to streg.
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. stset time1 fail1
(output omitted )

. streg age gender, dist(weibull) frailty(gamma) time nohr nolog

failure _d: fail1
analysis time _t: time1

Weibull regression -- accelerated failure-time form
Gamma frailty

No. of subjects = 38 Number of obs = 38
No. of failures = 27
Time at risk = 3630

LR chi2(2) = 4.78
Log likelihood = -48.410832 Prob > chi2 = 0.0917

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

age -.0109489 .013751 -0.80 0.426 -.0379004 .0160026
gender 1.338382 .5071762 2.64 0.008 .3443351 2.332429
_cons 3.570254 .6510318 5.48 0.000 2.294255 4.846253

/ln_p .4965479 .3129399 1.59 0.113 -.1168032 1.109899
/ln_the .3610338 .7067754 0.51 0.609 -1.02422 1.746288

p 1.643039 .5141727 .8897603 3.034052
1/p .6086281 .190464 .3295923 1.123898

theta 1.434812 1.01409 .3590763 5.733282

Likelihood ratio test of theta=0: chibar2(01) = 4.20 Prob>=chibar2 = 0.020

In addition to the usual Weibull parameters, we estimate θ̂ = 1.43 and a significant
likelihood ratio test for the presence of heterogeneity.

The above results hint towards the existence of an unobserved individual effect; how-
ever, they may also indicate a homogeneous population for which the Weibull hazard
function (which is monotone) is unsuitable. For example, if we have a homogeneous
population with a hazard function that increases at first then decreases, then by assum-
ing a monotone hazard, the model would have no choice but to attribute the observed
hazard to the frailty effect.

If we choose instead an individual hazard function that is non-monotone (say the
log-normal), we see that the frailty variance is now insignificant. In this case, the
heterogeneity may be attributed to the passage of time.

. streg age gender, dist(lnormal) frailty(gamma) nolog

failure _d: fail1
analysis time _t: time1

Log-normal regression -- accelerated failure-time form
Gamma frailty

No. of subjects = 38 Number of obs = 38
No. of failures = 27
Time at risk = 3630

LR chi2(2) = 5.02
Log likelihood = -48.351289 Prob > chi2 = 0.0813
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_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

age -.0097803 .0144447 -0.68 0.498 -.0380913 .0185307
gender 1.260102 .5566201 2.26 0.024 .1691466 2.351057
_cons 3.653898 .7309858 5.00 0.000 2.221192 5.086604

/ln_sig .1257008 .2199912 0.57 0.568 -.305474 .5568757
/ln_the -1.965189 2.298354 -0.86 0.393 -6.46988 2.539502

sigma 1.133943 .2494575 .736774 1.745211
theta .1401294 .3220669 .0015494 12.67336

Likelihood ratio test of theta=0: chibar2(01) = 0.21 Prob>=chibar2 = 0.324

The above analysis could be redone using the frailty(invgauss) option instead of
frailty(gamma) throughout — thus assuming an inverse Gaussian distribution for the
frailties — with similar results.

The log-normal homogeneous model does result in a slightly higher likelihood, yet it
is still hard to say which of the two alternate explanations best represent our data. We
could further explore this issue by considering a more flexible individual hazard function
like a piecewise exponential, and in fact we do this later when we revisit these data in
Section 3.

2.3 Obtaining predictions

Predictions are obtained in the usual way using predict, and after fitting a univari-
ate frailty model the predictions are automatically adjusted for the estimate of the
frailty variance, θ, and the assumed frailty distribution. A wide array of predictions are
available, including median times-to-failure, the hazard function, the survival function,
martingale residuals, and Cox–Snell residuals to name a few. For a complete list, see
[R] streg. In order to predict the population hazard and survival function, one could
type, for example

. predict h, hazard

. predict S, surv

which generates the new variables h and S that respectively contain estimates of hθ(t)
and Sθ(t).

We can predict the population hazard functions for both models considered in the
previous section using predict, and graph them for comparison. Before we do that,
however, for plotting purposes we append some dataset containing a grid of values of
t. For the appended data, we set the values of gender and age to baseline. Note
that since we have already stset the data prior to appending the grid, the estimation
sample will remain the same.



R. G. Gutierrez 29

. set obs 438
obs was 38, now 438

. replace _t = _n - 39 in 39/l
(400 real changes made)

. replace gender = 0 in 39/l
(400 real changes made)

. replace age = 0 in 39/l
(400 real changes made)

We can now re-estimate the two models, predict hθ(t) for both, and graph.

. quietly streg age gender, dist(weibull) frailty(gamma) time nohr

. predict h_weib in 39/l, hazard
(38 missing values generated)

. quietly streg age gender, dist(lnormal) frailty(gamma)

. predict h_lnorm in 39/l, hazard
(39 missing values generated)

. graph h_weib h_lnorm _t in 39/l, c(ll[-]) s(ii) sort /*
> */ l1title("Population hazard") /*
> */ key1(c(l) "Weibull") key2(c(l[-]) "Log-Normal")

and this produces the graph given in Figure 1.
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Figure 1: Estimated population hazard functions

Both models give very similar population hazards, even though for the Weibull
model the shape is more a result of the frailty. For the Weibull, we estimate the
individual hazard h(t) as monotone increasing (p̂ = 1.64 which is greater than one), yet
the population hazard hθ(t) starts decreasing past a certain point. For the log-normal
model, since the frailty variance is estimated to be near zero, the individual hazard
would closely resemble the estimate of hθ(t) given in Figure 1.
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2.4 Obtaining conditional predictions

The previous section serves to point out that predict used after a univariate frailty
model will give population (unconditional) predictions. That is, the predictions are
adjusted for the estimated frailty variance θ and for the assumed frailty distribution.
Should we want predictions that are instead conditional on arbitrary α, we would have
to start from the hazard function given in (2) and work our way through to how α
enters into the prediction, given the functional form of the individual hazard, parameter
estimates, and covariate values.

Of particular interest is the case where α = 1, the mean frailty. When α = 1, pop-
ulation or frailty-adjusted quantities such as hθ(t) reduce to their respective individual
quantities such as h(t). Predictions that condition on α = 1 are obtained via the option
alpha1 to predict.

For example, in order to compare the individual hazards for the Weibull/gamma ver-
sus the Log-normal/gamma models, we repeat the previous example, this time utilizing
the alpha1 option:

. quietly streg age gender, dist(weibull) frailty(gamma) time nohr

. predict ih_weib in 39/l, hazard alpha1
(38 missing values generated)

. quietly streg age gender, dist(lnormal) frailty(gamma)

. predict ih_lnorm in 39/l, hazard alpha1
(39 missing values generated)

. graph ih_weib ih_lnorm _t in 39/239, c(ll[-]) s(ii) sort /*
> */ l1title("Individual hazard") /*
> */ key1(c(l) "Weibull") key2(c(l[-]) "Log-Normal")

The above generates the graph shown in Figure 2, and demonstrates the frailty effect
in the Weibull model.
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Figure 2: Estimated individual hazard functions
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This technique may be used not only to obtain the predicted individual hazard, but
to obtain any prediction conditional on α = 1. In general, since α is a scalar one may use
the relationship in (2) to take a prediction that is conditional on α = 1 and transform it
into a prediction conditional on any α. For example, from (2) we get S(t|α) = {S(t)}α,
and so if we wanted to predict the survival function conditional on α = 0.5, say, we
would simply type

. predict S, surv alpha1

. replace S = S^0.5

Note: In general, predict, surv calculates S(t)/S(t0), and so if you are using predict,
surv to obtain S(t) over a plotting grid of values of t, be sure to set t0 equal to zero
over that grid.

2.5 A note on hazard ratios

When we analyzed the kidney data in Section 2.2, we fit a Weibull/gamma model in
the accelerated failure time metric (AFT). We chose this parameterization to ease the
comparison with the log-normal model which is parameterized as AFT. However, we
could just have easily estimated the Weibull model in the proportional hazards (PH)
metric, since both parameterizations are available in streg.

. use kidney, clear

. stset time1 fail1
(output omitted )

. streg age gender, dist(weibull) frailty(gamma) nolog

failure _d: fail1
analysis time _t: time1

Weibull regression -- log relative-hazard form
Gamma frailty

No. of subjects = 38 Number of obs = 38
No. of failures = 27
Time at risk = 3630

LR chi2(2) = 4.78
Log likelihood = -48.410833 Prob > chi2 = 0.0917

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

age 1.018152 .0251684 0.73 0.467 .9699991 1.068696
gender .1109124 .1306617 -1.87 0.062 .0110208 1.116217

/ln_p .4965477 .31294 1.59 0.113 -.1168033 1.109899
/ln_the .3610336 .7067754 0.51 0.609 -1.024221 1.746288

p 1.643039 .5141726 .8897602 3.034051
1/p .6086282 .1904641 .3295923 1.123898

theta 1.434812 1.01409 .3590761 5.733281

Likelihood ratio test of theta=0: chibar2(01) = 4.20 Prob>=chibar2 = 0.020
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The results are the same as before, except for the regression coefficients, which are now
parameterized in the PH metric and displayed (by default) as hazard ratios.

In standard models, a hazard ratio is interpreted as a proportional shift in the hazard
function due to a unit change in the associated covariate. When using a frailty model,
however, reported “hazard ratios” carry this usual interpretation only if comparing two
hazards conditional on a given α. For example, one would interpret the hazard ratio
reported for the covariate gender as “all other things equal (including the frailty α),
the hazard function for females is 0.11 times the hazard for males”.

Unconditionally, however, the proportionality of hazards does not generally hold.
When comparing two population hazards, for most distributions of the frailty the re-
ported hazard ratios are only true hazard ratios at time t = 0. The exception to this
rule is when the frailties follow a distribution from the positive stable family, in which
case the hazard ratios remain constant over time; see Hougaard (1986b).

However, for those distributions of frailty currently in Stata, namely the gamma and
inverse Gaussian, with the passage of time the effect of the covariates on the population
hazard will diminish in favor of the frailty effect. In other words, with the passage of
time, gender (for instance) becomes less of a factor and frailty becomes more of a factor
in determining the chance of remaining infection free.

It is on this point where we can see a subtle, yet important, difference between
the gamma and inverse Gaussian distributions. For gamma frailties, the relationship
between individual and population hazards is

hθ(t) = h(t)[1 − θ ln{S(t)}]−1

If we have an individual hazard h∗(t) = ch(t) for some constant c, then S∗(t) = {S(t)}c

and the ratio of the population hazards

h∗
θ(t)

hθ(t)
=

h∗(t)[1 − θ ln{S∗(t)}]−1

h(t)[1 − θ ln{S(t)}]−1

equals c at t = 0 but will tend towards 1 as t goes to infinity.

For inverse Gaussian frailties, the relationship between the individual and population
hazards is remarkably similar to that for gamma frailties

hθ(t) = h(t)[1 − 2θ ln{S(t)}]−1/2

However, in this case an individual hazard ratio of c translates to a population hazard
ratio equal to c at t = 0 tending towards

√
c as t goes to infinity. In other words, when

the frailty is distributed as inverse Gaussian the effect of the covariates diminishes with
time, but never completely vanishes as it does when frailties follow a gamma distribution.

If estimating in the AFT metric, however, the interpretation of regression coefficients
remains the same, conditionally and unconditionally. Recall that in a standard (non-
frailty) regression the AFT parameterization assumes that

S(t) = S0{exp(xβ)t}
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for some baseline survival function S0(t) = S(t|x = 0), vector of covariates x, and
regression coefficients β. That is, under this metric the effect of the covariates is to either
accelerate or decelerate the effect of time on the probability of survival. Examination
of (3) shows that this relationship still holds in a frailty model. That is,

Sθ(t) = S0
θ{exp(xβ)t}

with S0
θ (t) = Sθ(t|x = 0).

3 Shared frailty models

A natural extension of the univariate frailty model would be a multivariate survival
model where individuals are allowed to share the same frailty value. Sharing a frailty
value also generates dependence between those individuals who share frailties, whereas
conditional on the frailty those individuals are independent.

For data consisting of n groups with the ith group comprised of ni individuals
(i = 1, . . . , n), (2) generalizes to

hij(t|αi) = αihij(t)

for j = 1, . . . , ni with hij(t) = h(t|xij). That is, for any member of the ith group, the
standard hazard function is now multiplied by the shared frailty αi. For example, in
the case of Weibull PH regression, the conditional hazard for an individual is given by

hij(t|αi) = αihij(t) = αi exp(xijβ)ptp−1

and the conditional survival function is

Sij(t|αi) = {Sij(t)}αi = exp {−αi exp(xijβ)tp}

3.1 Derivation of the likelihood

The likelihood of the observed data is obtained by calculating the group-level conditional
likelihoods and integrating out the frailty. Suppose we have data for i = 1, . . . , n
groups with j = 1, . . . , ni observations per group consisting of the trivariate response
(t0ij , tij , dij), which indicate the start time, end time, and failure/censoring for the jth
individual from the ith group.

Given αi, the contribution to the likelihood of the ijth individual is thus

Lij(αi) =
Sij(tij |αi)
Sij(t0ij |αi)

{hij(tij |αi)}dij

=
{

Sij(tij)
Sij(t0ij)

}αi

{αihij(tij)}dij
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and if we define Di =
∑ni

j=1 dij , the likelihood of the ith group is

Li(αi) = αDi
i

ni∏
j=1

{
Sij(tij)
Sij(t0ij)

}αi

{hij(tij)}dij

Unconditionally, we can obtain the likelihood of the ith group by integrating out αi,

Li =
∫ ∞

0

Li(αi)g(αi)dαi

where g() is the probability density function of the frailty, given by (4) in the case
of gamma, and by (5) for the inverse Gaussian. When the frailties follow a gamma
distribution, Li can be expressed compactly as

Li =

 ni∏
j=1

{hij(tij)}dij

 Γ(1/θ + Di)
Γ(1/θ)

θDi

1 − θ

ni∑
j=1

ln
Sij(tij)
Sij(t0ij)


−1/θ−Di

When the frailties follow an inverse Gaussian distribution, the expression for Li is quite
complex, and involves integer half orders of the modified Bessel function of the third
kind (commonly known as the BesselK function).

Given the unconditional group likelihoods, we can estimate the regression parameters
and frailty variance θ by maximizing the overall log-likelihood lnL =

∑n
i=1 ln Li.

3.2 Kidney data revisited

Let’s once again consider the kidney data from Section 2.2. This time, however, we’ll
consider both recurrence times given for each patient. The data are in wide form, and
so before we stset our dataset, we need to reshape it into long form.

. use kidney, clear

. gen patient = _n

. reshape long time fail, i(patient)
(output omitted )

. list patient time fail age gender in 1/10

patient time fail age gender
1. 1 16 1 28 0
2. 1 8 1 28 0
3. 2 13 0 48 1
4. 2 23 1 48 1
5. 3 22 1 32 0
6. 3 28 1 32 0
7. 4 318 1 31.5 1
8. 4 447 1 31.5 1
9. 5 30 1 10 0
10. 5 12 1 10 0

. stset time fail
(output omitted )
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Since it is reasonable to expect some correlation between the two recurrence times
for a given patient, we can model this as a shared frailty model where the sharing takes
place on the patient level. This is easily done by adding the option shared(patient)
to our previous calls of streg, frailty().

First, we fit a Weibull/gamma shared frailty model,

. streg age gender, dist(weibull) frailty(gamma) shared(patient) time nohr nolog

failure _d: fail
analysis time _t: time

Weibull regression -- accelerated failure-time form
Gamma shared frailty

No. of subjects = 76 Number of obs = 76
No. of failures = 58
Time at risk = 7424

LR chi2(2) = 14.81
Log likelihood = -98.006931 Prob > chi2 = 0.0006

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

age -.0067052 .0102377 -0.65 0.512 -.0267707 .0133602
gender 1.506616 .3659291 4.12 0.000 .7894085 2.223824
_cons 3.557985 .5224117 6.81 0.000 2.534077 4.581894

/ln_p .2410369 .1336503 1.80 0.071 -.0209129 .5029866
/ln_the -.4546298 .4747326 -0.96 0.338 -1.385089 .475829

p 1.272568 .1700791 .9793043 1.653653
1/p .7858127 .1050241 .6047219 1.021133

theta .6346829 .3013047 .2503016 1.609348

Likelihood ratio test of theta=0: chibar2(01) = 10.87 Prob>=chibar2 = 0.000

and, as before, see a significant frailty effect when we assume that the marginal hazard
is Weibull. Sahu et al. (1997) fit a Bayesian formulation of the above model estimated
using Gibbs sampling, and obtained similar estimates to the maximum-likelihood esti-
mates displayed above, with their θ̂ = 0.585 resembling our θ̂ = 0.635.

Assuming a log-normal marginal hazard, however,

. streg age gender, dist(lnormal) frailty(gamma) shared(patient) nolog

failure _d: fail
analysis time _t: time

Log-normal regression -- accelerated failure-time form
Gamma shared frailty

No. of subjects = 76 Number of obs = 76
No. of failures = 58
Time at risk = 7424

LR chi2(2) = 16.65
Log likelihood = -97.594575 Prob > chi2 = 0.0002
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_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

age -.0067002 .0098278 -0.68 0.495 -.0259623 .0125619
gender 1.422234 .3343544 4.25 0.000 .7669111 2.077556
_cons 3.331102 .4911662 6.78 0.000 2.368434 4.29377

/ln_sig .0670784 .1187767 0.56 0.572 -.1657197 .2998764
/ln_the -1.823592 .995803 -1.83 0.067 -3.77533 .1281455

sigma 1.069379 .1270173 .8472837 1.349692
theta .1614447 .1607671 .0229295 1.136718

Likelihood ratio test of theta=0: chibar2(01) = 1.57 Prob>=chibar2 = 0.105

we find the frailty to be insignificant at the 10% level. As in Section 2.2, it is of interest
to determine which model better fits the data, the Weibull model with significant frailty
effect, or the log-normal model with insignificant frailty.

In order to answer that question, we follow the lead of Sahu et al. (1997), who also
fit via Gibbs sampling a piecewise exponential model (piecewise constant hazard) with
shared frailty. This requires that we first stsplit our records so that we can generate
the appropriate indicator variables that specify the pieces. However, before we do that
we need to re-stset our dataset and assign each record a unique identifier variable.

. gen obs = _n

. stset time fail, id(obs)
(output omitted )

. stsplit my_t, at(1(1)562) /* 562 is the max(_t) */
(7348 observations (episodes) created)

Note that we still plan on sharing frailties at the patient level, and the variable obs
used above merely uniquely identifies the individual observations (distinct recurrences
of infection) for purposes of splitting the records. Once we split the records, we generate
the indicator variables, which comprise a grid of ten intervals spanning [ 0, 60), [ 60, 120),
. . . , [ 480, 540), [ 540,∞).

. forvalues k = 1/9 {
2. gen in_‘k’ = ((‘k’-1)*60 <= my_t) & (my_t < ‘k’*60)
3. }

and the indicators are constructed so that the baseline interval (that for which all the
indicators equal zero) is the interval [ 540,∞).

We are now ready to fit the piecewise exponential/gamma shared frailty model.

. streg age gender in_*, dist(exp) frailty(gamma) shared(patient) nolog nohr time

failure _d: fail
analysis time _t: time

id: obs
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Exponential regression -- accelerated failure-time form
Gamma shared frailty

No. of subjects = 76 Number of obs = 7424
No. of failures = 58
Time at risk = 7424

LR chi2(11) = 20.90
Log likelihood = -95.241838 Prob > chi2 = 0.0344

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

age -.0060301 .0119445 -0.50 0.614 -.0294409 .0173807
gender 1.416426 .4525747 3.13 0.002 .5293963 2.303456

in_1 2.566041 1.350038 1.90 0.057 -.0799854 5.212067
in_2 3.229574 1.339194 2.41 0.016 .6048016 5.854347
in_3 2.366064 1.29691 1.82 0.068 -.1758328 4.907961
in_4 2.1349 1.305189 1.64 0.102 -.4232243 4.693024
in_5 2.44805 1.373428 1.78 0.075 -.2438189 5.139919
in_6 2.788362 1.52622 1.83 0.068 -.2029743 5.779697
in_7 2.659777 1.518699 1.75 0.080 -.3168189 5.636373
in_8 2.319784 1.501516 1.54 0.122 -.6231325 5.262701
in_9 1.233349 1.296951 0.95 0.342 -1.308628 3.775326

_cons 1.057467 1.488013 0.71 0.477 -1.858986 3.973919

/ln_the -.8007126 .5527555 -1.45 0.147 -1.884094 .2826683

theta .4490089 .2481921 .1519667 1.326665

Likelihood ratio test of theta=0: chibar2(01) = 6.62 Prob>=chibar2 = 0.005

The estimated frailty variance using maximum likelihood, θ̂ = 0.449, again compares
favorably with the Bayesian estimate of the related model of Sahu et al. (1997), for
whom θ̂ = 0.499. After assuming a more flexible individual hazard, the results seem to
favor the Weibull model over the log-normal, and we now have stronger evidence of the
existence of latent patient frailty.

3.3 Obtaining conditional predictions

When one specifies the option shared() with streg, frailty(), the default predic-
tions obtained from predict are conditional on αi = 1 for all i = 1, . . . , n. This is
different from when shared() is not specified (see Section 2.3), in which case predict
will give unconditional predictions that are averaged over the distribution of α.

The main reason for this change in behavior in predict when going from a univariate
frailty model to a shared frailty model has to do with the interpretation of “population”
functions like hθ(t) and Sθ(t). In a non-shared frailty model the interpretation is rela-
tively straightforward — the function Sθ(t) is the new generalized survival function with
all the usual interpretations and from which all the likelihood calculations are derived.

In a shared frailty model, however, the function Sθ(t) from (3) is not always a true
survival function in the strictest sense. For example, consider a hypothetical popula-
tion of groups where the relative size of each group is correlated with the frailty for
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that group. In this case the use of Sθ(t) to estimate population dynamics such as the
proportion of the population that survives past a given time t would lead to misleading
results. One can get around this problem by interpreting Sθ(t) as giving the probability
of survival, say, of a randomly chosen individual from a randomly chosen group, or
by assuming (and carefully checking the assumption) that group size is orthogonal to
frailty. In any case, there are difficulties with having a statement such as

. predict S, surv

which implies that one is getting the population “survival” function, when in fact this
might not be the case. Of course, we may still be interested in obtaining an estimate
of Sθ(t) if we are willing to make the appropriate assumptions as to its interpretation,
and this is easily accomplished as shown in Section 3.4.

For now, however, we can use predict to obtain the estimated individual hazard
functions (given αi = 1) for the three shared frailty models we have already fit.

. use kidney, clear

. gen patient = _n

. reshape long time fail, i(patient)
(output omitted )

. gen obs = _n

. stset time fail, id(obs)
(output omitted )

. stsplit my_t, at(1(1)562) /* _N == 7424, now */
(7348 observations (episodes) created)

. set obs 7824 /* add 400 observations for graphing */
obs was 7424, now 7824

. replace _t = _n - 7424 in 7425/l /* generate graphing grid */
(400 real changes made)

. replace my_t = _t in 7425/l /* indicators for exp graph */
(400 real changes made)

. replace gender = 0 in 7425/l /* baseline for graphs */
(400 real changes made)

. replace age = 0 in 7425/l
(400 real changes made)

. forvalues k = 1/9 {
2. gen in_‘k’ = ((‘k’-1)*60 <= my_t) & (my_t < ‘k’*60)
3. }

. quietly streg age gender in_*, dist(exp) fr(gamma) sh(patient) nohr time

. predict h_exp in 7425/l, hazard
(7424 missing values generated)

. quietly streg age gender, dist(weibull) fr(gamma) sh(patient) nohr time

. predict h_weib in 7425/l, hazard
(7424 missing values generated)

. quietly streg age gender, dist(lnormal) fr(gamma) sh(patient)

. predict h_lnorm in 7425/l, hazard
(7424 missing values generated)
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. graph h_exp h_weib h_lnorm my_t in 7425/l, c(ll[-]l[.]) s(iii) /*
> */ sort l1title("Individual hazard") /*
> */ key1(c(l) "Exponential") key2(c(l[-]) "Weibull") /*
> */ key3(c(l[.]) "Log-Normal")

produces the graph given in Figure 3. The graph shows that there is little agreement
among any of the individual hazards past time t = 100.
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Figure 3: Estimated individual hazard functions

3.4 Obtaining unconditional predictions

For our kidney data example, all “groups” are of size two, and we can envision a popu-
lation of patients for which two infection recurrence times are measured for each. Thus,
in this case the group size is orthogonal to the frailty and population functions such as
hθ(t) and Sθ(t) do carry their usual interpretations. For instance, Sθ(t) could be used to
evaluate the proportion of infection-free catheter insertions in the population, adjusted
for covariate values.

Overriding the default prediction for the shared frailty case (i.e., that conditional
on αi = 1) is done by specifying the unconditional option to predict. Continuing
our previous example, we now predict the population hazards for our three competing
shared frailty models and compare.

. quietly streg age gender in_*, dist(exp) fr(gamma) sh(patient) nohr time

. predict ph_exp in 7425/l, hazard unconditional
(7424 missing values generated)

. quietly streg age gender, dist(weibull) fr(gamma) sh(patient) nohr time

. predict ph_weib in 7425/l, hazard unconditional
(7424 missing values generated)

. quietly streg age gender, dist(lnormal) fr(gamma) sh(patient)

. predict ph_lnorm in 7425/l, hazard unconditional
(7424 missing values generated)
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. graph ph_exp ph_weib ph_lnorm my_t in 7425/l, c(ll[-]l[.]) s(iii) /*
> */ sort l1title("Population hazard") /*
> */ key1(c(l) "Exponential") key2(c(l[-]) "Weibull") /*
> */ key3(c(l[.]) "Log-Normal")

produces the graph in Figure 4. Note the similarity in shape of the estimated population
hazard functions, regardless of whether the shape is derived from the shape of the
individual hazard or from the frailty effect.
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Figure 4: Estimated population hazard functions

Finally, note that one may, rather than rely on defaults, be specific and use predict,
alpha1 to obtain conditional predictions and predict, unconditional for uncondi-
tional predictions, regardless of which type of frailty model (shared or univariate) is
estimated.

4 When is a frailty model equivalent to a shared frailty
model?

For certain situations, a frailty model is equivalent to a shared frailty model. For such
situations, opting for a shared frailty model either proves to be redundant or merely
a consequence of how the data are organized rather than representing a substantive
assumption as to the source of the frailty. By contrast, there also exist cases where
choosing to share frailties may appear redundant but instead represent a theoretically
distinct departure from a univariate non-shared frailty model.

In order to illustrate these cases, we return to the kidney data, where we only
consider the first recurrence time for each of the 38 patients as we did in Section 2.2.

. use kidney, clear

. gen patient = _n
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. list patient time1 fail1 age gender in 1/10

patient time1 fail1 age gender
1. 1 16 1 28 0
2. 2 13 0 48 1
3. 3 22 1 32 0
4. 4 318 1 31.5 1
5. 5 30 1 10 0
6. 6 24 1 16.5 1
7. 7 9 1 51 0
8. 8 30 1 55.5 1
9. 9 53 1 69 1
10. 10 154 1 51.5 0

4.1 Singleton groups of complete observations

We define a complete observation to be a single record representing a time span that
begins at time t = 0 and ends either in failure or right-censoring, in other words, the
most simple form of survival data. For the kidney data given above, the entry time
t = 0 is assumed for each patient since we do not specify otherwise when we stset the
data.

. stset time1 fail1, id(patient)
(output omitted )

. list patient _t0 _t age gender in 1/5

patient _t0 _t age gender
1. 1 0 16 28 0
2. 2 0 13 48 1
3. 3 0 22 32 0
4. 4 0 318 31.5 1
5. 5 0 30 10 0

Since we have only one observation per patient, specifying id(patient) when we
stset our dataset is for most purposes not necessary, but we do so anyway because we
plan on stsplitting the dataset later.

In this case, when fitting a frailty model whether we choose to share the frailties on
the patient level does not matter, and we would get identical results for either model.
In order to save space, we demonstrate this fact by only displaying the log likelihoods
for each model, but in fact all the parameter estimates, standard errors, etc. would also
be identical.

. quietly streg age gender, dist(weibull) frailty(invgauss)

. display e(ll)
-49.253638

. quietly streg age gender, dist(weibull) frailty(invgauss) shared(patient)

. display e(ll)
-49.253638
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The above seems obvious given that we are sharing frailties on groups each consisting of
one observation, but as we illustrate below, this is only true because we have singleton
groups and each singleton observation is complete.

4.2 Singleton groups with left-truncation

Left-truncated observations are those for which subjects are not observed beginning at
t = 0 but instead initially come under observation at some time t0 > 0. For example,
suppose we now assume that our 38 patients came under observation at time t = 1; i.e.,
by the time we initially observe each patient, he has already been infection free up to
time t = 1. Otherwise we would not have observed him. We represent this assumption
by specifying an entry time equal to 1 when we stset our dataset,

. stset time1 fail1, id(patient) enter(time 1)
(output omitted )

. list patient _t0 _t age gender in 1/5

patient _t0 _t age gender
1. 1 1 16 28 0
2. 2 1 13 48 1
3. 3 1 22 32 0
4. 4 1 318 31.5 1
5. 5 1 30 10 0

and observe that the only difference is that now t0==1 for all observations.

In cases where some or all observations are not complete but are instead left-
truncated, sharing frailties at the patient level will result in a different estimation,
even though the sharing still takes place across singleton groups.

. quietly streg age gender, dist(weibull) frailty(invgauss)

. display e(ll)
-49.075185

. quietly streg age gender, dist(weibull) frailty(invgauss) shared(patient)

. display e(ll)
-49.063301

In this case, since the observations are not complete, whether we share frailties at the
patient level is relevant to what we assume about the model. If we do not share frailties,
we assume that each patient has a spell-specific frailty for the unobserved period (0, 1]
and a different frailty for the period afterwords. For example, we can think of the frailty
as representing a latent time-dependent covariate with unique values over each period.
However, when we do share frailties at the patient level, for each patient the frailties for
the two periods (unobserved and observed) are assumed equal. In this case, the frailty
may represent a latent covariate that is unique to each patient, yet constant over time.
That the period (0, 1] is unobserved doesn’t matter since although we do not observe
the patient over this period, we still condition on the patient’s survival to the end of
that period when evaluating the likelihood.
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4.3 Uninformative episode splitting

Stata’s st family of commands are well-suited for dealing with multiple records per
individual, with each record representing the time span (t0, t]. Using multiple records
is necessary to deal with time-varying covariates, left truncation, and gaps in which
subjects are left unobserved. In cases where multiple records are utilized for any or all
of these purposes, the splitting of episodes for a given individual is said to be informative.
Informative episode splitting, for reasons described previously assuming that frailties
are shared over these episodes, yields different parameter estimates than those obtained
by not sharing frailties and by instead assuming that the frailties are episode-specific.

However, sometimes multiple records exist for individuals as a result of how the data
were collected or organized, and the splitting of records does not reflect time-varying
covariates, left truncation, or observation gaps. The splitting of records in this case
is uninformative, and the records could be collapsed into single complete observations
without any loss or change of information. In these situations, sharing frailties on the
groups formed by having what are really complete observations that have been split
uninformatively will produce the same results as if the frailties had not been assumed
shared.

To illustrate, let’s stsplit the complete observations in our kidney data to form a
dataset containing multiple records for each patient.

. stset time1 fail1, id(patient)
(output omitted )

. stsplit my_t, at(5(5)562)
(702 observations (episodes) created)

. list patient _t0 _t age gender if patient <= 3

patient _t0 _t age gender
1. 1 0 5 28 0
2. 1 5 10 28 0
3. 1 10 15 28 0
4. 1 15 16 28 0
5. 2 0 5 48 1
6. 2 5 10 48 1
7. 2 10 13 48 1
8. 3 0 5 32 0
9. 3 5 10 32 0
10. 3 10 15 32 0
11. 3 15 20 32 0
12. 3 20 22 32 0

Since the splitting was done arbitrarily beginning with a dataset comprised of complete
observations, the splitting of records is uninformative with no loss, gain, or change in the
information contained in the complete observations. As a result, a model with frailties
shared over the multiple records for each patient is equivalent to one with frailties
shared on the singleton groups of complete observations, and this in turn is equivalent
to a model where the frailties are not shared.
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. quietly streg age gender, dist(weibull) frailty(invgauss)

. display e(ll)
-49.253638

. quietly streg age gender, dist(weibull) frailty(invgauss) shared(patient)

. display e(ll)
-49.253638
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