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Abstract. Generalized linear mixed models or multilevel regression models have
become increasingly popular. Several methods have been proposed for estimating
such models. However, to date there is no single method that can be assumed
to work well in all circumstances in terms of both parameter recovery and com-
putational efficiency. Stata’s xt commands for two-level generalized linear mixed
models (e.g., xtlogit) employ Gauss–Hermite quadrature to evaluate and maxi-
mize the marginal log likelihood. The method generally works very well, and often
better than common contenders such as MQL and PQL, but there are cases where
quadrature performs poorly. Adaptive quadrature has been suggested to overcome
these problems in the two-level case. We have recently implemented a multilevel
version of this method in gllamm, a program that fits a large class of multilevel
latent variable models including multilevel generalized linear mixed models. As
far as we know, this is the first time that adaptive quadrature has been proposed
for multilevel models. We show that adaptive quadrature works well in problems
where ordinary quadrature fails. Furthermore, even when ordinary quadrature
works, adaptive quadrature is often computationally more efficient since it requires
fewer quadrature points to achieve the same precision.

Keywords: st0005, adaptive quadrature, gllamm, generalized linear mixed models,
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1 Introduction

Generalized linear models, see, for example, McCullagh and Nelder (1989), are regres-
sion models for different response types. The models are constructed by defining a linear
predictor

ηi = x′
iβ

specifying the functional relationship or link between this predictor and the expectation
of the response and selecting a distribution for the response given its expectation. Here
xi are explanatory variables for unit i with fixed effects β.

Generalized linear mixed models, see, for example, Goldstein (1995) and McCulloch
and Searle (2001), include both fixed and random effects in the linear predictor. The
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2 Estimation of generalized linear mixed models

models are used for grouped or clustered data where observations within a cluster can-
not be assumed to be mutually independent. Examples are panel data with repeated
observations on subjects or two-stage surveys where elementary units are nested in pri-
mary sampling units; for example, children in schools. In the simplest generalized linear
mixed models, the dependence structure of clustered data is modeled by introducing a
random intercept into the linear predictor. The random intercept is shared by all units
in the same cluster and can be interpreted as cluster level unobserved heterogeneity.
Let i index the elementary “level 1” units and j index the clusters or “level 2” units.
Conditional on the random intercept, the model is a generalized linear model with linear
predictor

ηij = x′
ijβ + u

(2)
j (1)

where xij are explanatory variables with fixed coefficients β, and u
(2)
j is a random

intercept at level 2. The random intercept is assumed to have a normal distribution
with mean 0. Models of this kind can be fitted using Stata’s panel data commands,
xtreg, xtlogit, xtpois, xtclog, and so on.

The model can be extended in two ways. First, random coefficients can be included,
allowing the effects of covariates to vary between level-2 units. Second, if the data are
multilevel with several levels of clustering (e.g., repeated observations on children in
schools), higher level random effects (intercepts and coefficients) can be included in the
model. Omitting subscripts for the units of observation, the most general form of the
linear predictor for the L-level case is

η = x′β +
L∑

l=2

z(l)′u(l)

where z(l) are covariates (generally subsets of x) with random effects u(l) at level l. The
first element of each z(l) is typically equal to 1 so that the first element of u(l) represents
a random intercept. The random effects at level l are assumed to have a multivariate
normal “prior” distribution with

u(l) ∼ N(0,Σl)

and to be independent of the random effects at any of the other levels. These multilevel
and random-coefficient models are not available among Stata’s xt panel data models
but can be fitted using gllamm; see Rabe-Hesketh et al. (2000), Rabe-Hesketh et al.
(2001a), and Rabe-Hesketh et al. (2001b), since they are special cases of “generalized
linear latent and mixed models”.

In Section 2, we discuss estimation of generalized linear mixed models and describe
in detail the implementation in gllamm of both quadrature and adaptive quadrature; in
Section 3, we describe the syntax of gllamm; and in Section 4, we analyze two datasets
that have previously been analyzed by other methods.
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2 Estimation of generalized linear mixed models

The likelihood of the observed data is a marginal likelihood where the random effects
have been “integrated out”. Unfortunately, this marginal likelihood does not generally
have a closed-form expression and approximate methods of estimation must be used.
The most commonly used methods include marginal quasi-likelihood (MQL), penalized
quasi-likelihood (PQL), Markov Chain Monte Carlo (MCMC), and Gaussian quadrature
(GQ). A promising improvement of Gaussian quadrature is adaptive Gaussian quadra-
ture (AGQ).

2.1 MQL, PQL, and MCMC

The methods MQL and PQL have been derived in a number of ways; see, for example,
McCulloch and Searle (2001). Here we summarize the description in Goldstein (1995).
The idea is that linear models can be estimated in a straightforward way by iterating
between (1) generalized least squares to estimate the fixed parameters β for a given
covariance matrix of the responses (which depends on the Σl), and (2) estimating the
Σl from the residuals y−x′β, an algorithm known as iterative generalized least squares
(IGLS). MQL and PQL are based on approximating generalized linear mixed models as
linear mixed models so that the IGLS algorithm can be applied.

In generalized linear mixed models, the expectation of the response is

µ = g−1(x′β +
L∑

l=1

z(l)′u(l)) (2)

where g−1(·) is an inverse link function. For given current parameter estimates, this
model can be approximated as a linear mixed model by expanding the inverse link
function as a Taylor series expansion and representing the variability of the response y
around its mean by a heteroskedastic error term with variance function equal to that of
the chosen distribution family. That is, for dichotomous responses,

y = µ + ε
√

π(1 − π)

where var(ε) = 1 and π is the current predicted probability.

In MQL and PQL, (2) is expanded around the “current” linear predictor. A first-
order Taylor series expansion is used with respect to the fixed effects and a first- or
second-order expansion with respect to the random effects. In MQL, the current linear
predictor is obtained by substituting current estimates for the fixed effects and zero for
the random effects. In PQL, the expansion is improved by setting the random effects
equal to their posterior means instead of zero. MQL and PQL are available in MLwiN
(see Goldstein et al. 1998) and in HLM (see Bryk et al. 1996).

MCMC is a simulation approach. By assuming an a priori distribution for the model
parameters, samples of parameter values are drawn from their posterior distribution
using simulation. Since the required joint posterior distribution is generally intractable,
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it is not possible to simulate directly from this distribution. Instead, a Markov chain
is used in which subsets of parameters are sequentially sampled from their conditional
distributions given current values of the other parameters. After a burn-in period, when
this chain has become stationary, the sampled parameter values follow the required
distribution. The mean, median, or mode of these sampled parameters are then used
as parameter estimates. The parameter estimates are essentially maximum likelihood
estimates if the prior distributions are vague or diffuse. MCMC is available in MLwiN
and in BUGS; see Spiegelhalter et al. (1996).

2.2 Gaussian quadrature

Gaussian quadrature can be used to approximate the marginal likelihood by numerical
integration. Let θ be the vector of all model parameters including the fixed coefficients
β and the non-duplicated elements of the covariance matrices Σl. Further let y(l) be
the response vector, X(l) the design matrix with rows (x′, z(2)′, . . . , z(L)′) for all units
in a particular level-l unit and U (l) = (u(l)′, . . . , u(L)′)′. Let the conditional likelihood
contribution of a level-1 unit given the random effects be denoted f (1)(θ; y(1),X(1)|U (2)).
Depending on the chosen family, this could, for instance, be a Poisson or binomial
probability. The conditional likelihood contribution of a level-2 unit given the random
effects at levels 3 and above is

f (2)(θ; y(2),X(2)|U (3)) =
∫

g(2)(u(2))
∏

f (1)(θ; y(1),X(1)|U (2))du(2)

where g(l)(u(l)) is the multivariate normal density with mean 0 and covariance matrix
Σl and the product is over all level-1 units within the level-2 unit. The conditional
likelihood contribution of an l-level unit is obtained recursively from the conditional
likelihood contributions of the (l − 1)-level units within it.

f (l)(θ; y(l),X(l)|U (l+1)) =
∫

g(l)(u(l))
∏

f (l−1)(θ; y(l−1),X(l−1)|U (l))du(l) (3)

The total likelihood is

f(θ; y,X) =
∏∫

g(L)(u(L))
∏

f (L−1)(θ; y(L−1),X(L−1)|u(L))du(L)

where y and X are the vector of responses and design matrix for all units and the first
product is over all highest level units.

For given parameter values, the multivariate integral over the Ml random effects vari-
ables u(l) at level l is evaluated by integrating over Ml independent standard normally
distributed random effects v(l) with u(l) = Clv

(l), where Cl is the Cholesky decompo-
sition of Σl, i.e., Σl = C ′

lCl. Let V (l) = (v(l)′, . . . , v(L)′)′. The integral can then be
approximated by Cartesian product quadrature as
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∫
g(l)(u(l))

∏
f (l−1)(θ; y(l−1),X(l−1)|U (l))du(l)

=
∫

φ(v(l)
Ml

) · · ·
∫

φ(v(l)
1 )
∏

f (l−1)(θ; y(l−1),X(l−1)|V (l))dv
(l)
1 · · · dv

(l)
Ml

≈
R∑

rMl
=1

prMl
· · ·

R∑
r1=1

pr1

∏
f (l−1)(θ; y(l−1),X(l−1)|ar1 , · · · arMl

, V (l)) (4)

where φ(·) is the standard normal density and pr and ar are the rth quadrature weight
and location of R-point Gauss–Hermite quadrature. Gaussian quadrature is available
for two-level models in Stata, MIXOR, see Hedeker and Gibbons (1996), and in SAS PROC

NLMIXED, see Wolfinger (1999). For multilevel models, quadrature is available in aML,
see Lillard and Panis (2000), and in gllamm.

2.3 Adaptive quadrature

Consider the quadrature approximation for the likelihood contribution of a level-2 unit
j for the simple random intercept model in (1):

f (2)(θ; y(2)
j ,X

(2)
j ) =

∫
φ(v(2)

j )
∏

i

f (1)(θ; y(1)
ij ,X

(1)
ij |v(2)

j )dv
(2)
j (5)

≈
R∑

r=1

pr

∏
i

f (1)(θ; y(1)
ij ,X

(1)
ij |ar) (6)

The approximation is exact if the product
∏

i f (1)(θ; y(1)
ij ,X

(1)
ij |v(2)

j ) is a 2R − 1 de-

gree polynomial in v
(2)
j . However, as pointed out by Albert and Follmann (2000) and

Lesaffre and Spiessens (2001), this product often has a sharp peak and is poorly ap-
proximated by a low-degree polynomial. The peak may be located between adjacent
quadrature locations so that a substantial contribution to the likelihood is lost. The
product will tend to have a sharper peak if there is a larger number of level-1 units
within the level-2 unit and if the individual densities have their peaks in similar loca-
tions (i.e., if there is a high intraclass correlation). In addition, in the case of Poisson
data, the individual terms in the product will have sharper peaks if the counts are
higher. Therefore, larger cluster sizes, larger numbers of events, and large intraclass
correlations can have similar detrimental effects on the quadrature approximation.

Note that the integrand in equation (5) is the product of the prior density of v
(2)
j

and the joint probability (density) of the responses given v
(2)
j which, after normalization

with respect to v
(2)
j , is just the posterior density of v

(2)
j given the observed responses.

For large cluster sizes, this posterior density will be approximately normal, see, for
example, Carlin and Louis (1998, 142–144). Let µj and τ2

j be the mean and variance
of the posterior density. Then for large cluster sizes, the integrand is approximately
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proportional to the normal density φ(v(l)
j ;µj , τ

2
j ) with mean µj and variance τ2

j . Writing
the integral as

f (2)(θ; y(2)
j ,X

(2)
j ) =

∫
φ(v(2)

j ;µj , τ
2
j )

{
φ(v(2)

j )
∏

i f (1)(θ; y(1)
ij ,X

(1)
ij |v(2)

j )

φ(v(2)
j ;µj , τ2

j )

}
dv

(2)
j (7)

changing the variable of integration from v
(2)
j to ζj = (v(2)

j − µj)/τj , and applying the
standard quadrature rule gives

f
(2)
j (θ; y(2)

j ,X
(2)
j ) ≈

R∑
r=1

πjr

nj∏
i=1

f
(1)
ij (θ; y(1)

ij ,X
(1)
ij |αjr)

where
αjr = µj + τjar (8)

πjr =
√

2π τj exp(a2
r/2) φ(µj +τjar) pr (9)

This approximation assumes that the ratio in brackets in equation (7) is well approxi-
mated by a low degree polynomial, which will be the case if the numerator is approx-
imately proportional to the denominator. We have therefore essentially approximated
the posterior density by a normal density with the same mean and standard deviation.
The posterior means and standard deviations can easily be computed along with the
log likelihood as suggested for Bayesian inference by Naylor and Smith (1982), and this
method is implemented in gllamm. An alternative is to approximate the posterior den-
sity by a normal density with the same mode and the same curvature at the mode; see
Liu and Pierce (1994). This first-order Laplace approximation takes µj to be the mode
and τj to be the negative inverse of the second derivative of the log posterior density
at the mode. This approach is implemented for two-level models in SAS NLMIXED, see
Wolfinger (1999), and for exploratory factor models for binary items in TESTFACT, see
Bock and Schilling (1997) and Bock et al. (1999). The approaches coincide when the
posterior density is normal. We use the approach by Naylor and Smith since it is much
easier to generalize to multilevel models. Pinheiro and Bates (1995) point out that
while ordinary quadrature is essentially a deterministic version of simple Monte Carlo
integration, adaptive quadrature is a deterministic version of importance sampling with
φ(v(2)

j ;µj , τ
2
j ) as importance density.

Figures 1 and 2 compare ordinary Gaussian quadrature (GQ) and adaptive Gaussian
quadrature (AGQ) for a hypothetical cluster with normal prior and posterior densities.
The bars represent the quadrature weights at the quadrature locations for 5-point GQ

and AGQ, respectively. It is clear that unlike GQ, AGQ centers the locations under the
peak of the integrand (proportional to the posterior density) and spreads them out
appropriately.

(Continued on next page)
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Figure 1: Prior (solid curve) and posterior (dotted curve) densities and quadrature
weights (bars) for GA.
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Figure 2: Prior (solid curve) and posterior (dotted curve) densities and quadrature
weights (bars) for AGQ.

As shown in equation (3), the likelihood for general multilevel models is obtained
by a recursive method where the likelihood contribution of a level-l unit, conditional on
higher level random effects V (l), is obtained by integrating out the random effects at
level l. In equation (4), this is done by first integrating over v

(l)
1 , then over v

(l)
2 , up to

v
(l)
M . To apply adaptive quadrature to each of these univariate integrals, we would have

to use the posterior mean and standard deviation of each random effect conditional on
all same-level and higher level random effects not yet integrated over. Since this would
require extremely heavy computation, we transform the variables so that they have zero
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posterior correlations as suggested by Naylor and Smith (1982). The marginal means
and standard deviations of the orthogonalized random effects can then be used.

Since these posterior means µ
(l)
m and standard deviations τ

(l)
m depend on the param-

eter estimates, the algorithm implemented in gllamm alternates between predicting (in
the kth iteration) the posterior means µ

(l)k
m and standard deviations τ

(l)k
m for given pa-

rameters θk−1 and updating the parameters to θk using adaptive quadrature based on
µ

(l)k
m and τ

(l)k
m . Naylor and Smith (1982) use a similar iterative method. The algorithm

can be outlines as follows:

• Obtain starting values for the parameters θ0

• Repeat for k = 1, 2, . . . until convergence:

– Predict the posterior means and standard deviations µ
(l)k
m and τ

(l)k
m :

∗ Predict the posterior means and standard deviations µ
(l)k0
m and τ

(l)k0
m

using quadrature based on µ
(l)k−1
m and τ

(l)k−1
m (0 and 1 for k = 1).

∗ Repeat for j = 1, 2, . . . until convergence:

· Predict the posterior means and standard deviations µ
(l)kj
m and τ

(l)kj
m

using adaptive quadrature based on µ
(l)kj−1
m and τ

(l)kj−1
m .

– Update the parameters to θk using adaptive quadrature based on µ
(l)k
m and

τ
(l)k
m .

Here the parameters are updated using the modified Newton–Raphson procedure im-
plemented in Stata’s ml maximize (method d0) command. A non-stringent convergence
criterion is used to determine the number of iterations of ml maximize the first time the
parameters are updated (k = 1), and a single iteration is used for k > 1 except for the
last iteration when the parameters are updated until convergence by the conventional
convergence criteria used by ml.

One consequence of keeping the adaptive quadrature points fixed during the Newton–
Raphson procedure is that we cannot use only one quadrature point since the log like-
lihood would be flat with respect to the covariance parameters Σl. In fact, in our
experience, the method often requires five or more quadrature points to work. This
is because the accuracy of posterior means and standard deviations for given parame-
ter estimates is largely determined by the number of quadrature points. In particular,
the predicted posterior standard deviations will be zero if only one of the quadrature
locations makes a real contribution to the integral.

Our program uses numerical derivatives of the numerically integrated log-likelihood
for the modified Newton–Raphson algorithm. While use of analytical derivatives would
make the program considerably faster, the derivatives themselves would require numer-
ical integration. Lesaffre and Spiessens (2001) show that the integrals required for the
analytical derivatives are often more poorly approximated by quadrature and adaptive
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quadrature than the integrals required for the marginal likelihood itself. It may there-
fore well be the case that numerical differentiation is more accurate than analytical
differentiation.

2.4 A comparison of methods

MQL and PQL are computationally the most efficient of the methods described. These
methods work well when the conditional distribution of the responses given the random
effects is close to normal, for example, with a Poisson distribution if the mean is 7 or
greater (see McCullagh and Nelder 1989), or if the responses are proportions with large
binomial denominators. The method also works well if the conditional joint densities of
the responses belonging to the clusters are nearly normal or, equivalently, if the posterior
distribution of the random effects is nearly normal. Even for dichotomous responses,
this increasingly becomes the case as the cluster sizes increase. However, both MQL

and PQL perform poorly for dichotomous data with small cluster sizes; see, for exam-
ple, Rodriguez and Goldman (1995), Breslow and Lin (1995), Lin and Breslow (1995),
Goldstein and Rasbash (1996), and Browne and Draper (2002). In such situations, PQL

is a better approximation than MQL, and second-order expansions of the random part
(MQL-2 or PQL-2) yield better results than first-order expansions (MQL-1 or PQL-1).

MCMC appears to be a promising alternative to MQL/PQL. Browne and Draper
(2002) showed that it performs better than PQL-2 in a simulation study of dichotomous
three-level data (see Section 4). Another advantage of MCMC is that the availability of
the sampled parameter values allows the properties of arbitrary functions of the param-
eters to be examined. However, the method is computationally demanding. Further, it
can be difficult to determine when the chain has reached a stationary distribution and
the method does not provide an empirical check of identification (see Keane 1992); an
important consideration in more complex multilevel latent variable models.

Gaussian quadrature tends to work well if the responses are dichotomous and the
cluster sizes are small to moderate (see [R] quadchk and [R] xtlogit), precisely in
those situations where MQL/PQL tends to fail; see Rodriguez and Goldman (2001),
Rabe-Hesketh et al. (2001c), and Stryhn et al. (2000). However, a large number of
quadrature points are often needed to obtain a close approximation to the likelihood;
see, for example, Crouch and Spiegelman (1990). Consequently, the methods can be
computationally intensive, particularly if there are a large number of random effects.
More importantly, Gaussian quadrature can fail even for binary data with small cluster
sizes if the intraclass correlation is very high; see, for example, Lesaffre and Spiessens
(2001). The approximation can also be poor if the responses are conditionally Poisson
distributed; see, for example, Albert and Follmann (2000). In contrast to MQL/PQL, the
performance of quadrature can easily be assessed by comparing solutions with different
numbers of quadrature points (see [R] quadchk).

There are two versions of adaptive quadrature that differ in the choice of location
and scale parameters µ

(l)
m and τ

(l)
m . AGQ-a sets the location µ

(l)
m equal to the mode of

the integrand and the scale τ
(l)
m equal to the standard deviations of the normal density
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approximating the integrand at the mode. When only one quadrature point is used,
AGQ-a is equivalent to using a first order Laplace approximation, which is exact for linear
mixed models; see Pinheiro and Bates (1995). AGQ-b instead uses the posterior means
and standard deviations for µ

(l)
m and τ

(l)
m , which is equivalent to AGQ-a for linear mixed

models except that µ
(l)
m and τ

(l)
m are themselves approximated by adaptive quadrature.

Adaptive quadrature is also expected to work well for other generalized linear mixed
models. First, it should work well if the posterior densities are nearly normal (e.g., large
cluster sizes and/or counts). Second, it should work well when the posterior densities
are highly nonnormal and not too peaked (e.g., dichotomous responses, small cluster
sizes and moderate intraclass correlation) since ordinary quadrature works well in this
case. Therefore, the exact positioning of the quadrature locations is not crucial. When
the posterior densities are highly non-normal but with sharp peaks (e.g., dichotomous
responses, small cluster sizes and large intraclass correlation), it is not clear whether
AGQ-a or AGQ-b is superior. While AGQ-a will capture the peak itself, the scale τ

(l)
m

may be too small to capture the remainder of the integrand since the approximating
normal density at the mode will fall off too sharply. AGQ-b, on the other hand, may
miss the exact peak, but the scale will be larger so that important contributions in the
neighborhood of the peak may be captured.

We are not aware of any empirical studies comparing adaptive quadrature with other
methods for generalized linear mixed models. Here we make such comparisons for two
examples. In the first example, the responses are large counts, and PQL is expected to
work well; whereas ordinary quadrature is expected to perform poorly. In the second
example, the data are dichotomous and PQL has been shown to be inadequate. In both
cases, adaptive quadrature is expected to perform better than ordinary quadrature in
terms of parameter recovery and computational efficiency.

3 Syntax

The program gllamm can fit a large class of “generalized linear latent and mixed models”.
Here we will confine our discussion to generalized linear mixed models. The syntax
required for such models (omitting many available options) is

gllamm depvar
[
varlist

] [
if exp

] [
in range

]
, i(varlist)

[
nrf(numlist)

eqs(eqnames) nip(numlist) adapt family(string) link(string) noconstant

offset(varname) eform
]

(Continued on next page)
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families links
gaussian identity
poisson log
gamma reciprocal
binomial logit

probit
cll (complimentary log-log)
ologit (o stands for ordinal)
oprobit
ocll
mlogit
sprobit (scaled probit)

3.1 Options

i(varlist) gives the variables that define the hierarchical, nested clusters, from the lowest
level (finest clusters) to the highest level; e.g., i(pupil class school). This option
is required.

nrf(numlist) specifies the number of random effects at each level of clustering; i.e., for
each variable in i(varlist). The default is nrf(1,...,1).

eqs(eqnames) specifies the equation names (defined before running gllamm) for the
variables multiplying the random effects. The equations for the level-2 random
effects are listed first, followed by those for the level-3 random effects, etc., with the
number of equations per level specified in the nrf() option. If required, constants
should be explicitly included in the equation definitions using variables equal to 1.
If the option is not used, the random effects are assumed to be random intercepts,
and only one random effect is allowed per level.

nip(numlist) specifies the number of quadrature points to be used for each random
effect. If only one argument is given, the same number will be used for each random
effect, the default being 8.

adapt specifies adaptive quadrature. The default is nonadaptive quadrature.

family(string), link(string), noconstant, offset(varname), and eform are defined
in glm (see [R] glm).

See the gllamm manual (which is available along with the program from
http://www.iop.kcl.ac.uk/iop/Departments/BioComp/programs/gllamm.html) for more
options and examples.
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4 Examples

4.1 Poisson regression example

We now consider the famous longitudinal epilepsy data from Thall and Vail (1990), also
analyzed by Breslow and Clayton (1993). The data come from a randomized controlled
trial comparing a new drug (treat=1) with placebo (treat=0). The outcomes are
counts of epileptic seizures during the two weeks before each of four clinic visits (visit,
coded −0.3,−0.1,0.1,0.3). Breslow and Clayton used the log of a quarter of the number
of seizures (y) in the eight weeks preceding entry into the trial (lbas) and the logarithm
of age (lage) as covariates, in addition to a dummy variable for the fourth visit (v4) to
account for a drop in seizure counts during the fourth interval. An interaction between
lbas and treat (lbas trt) was also included. Here we have subtracted the means of
the predictors so that the model constant is not comparable with that in Breslow and
Clayton.

Model II in Breslow and Clayton is a log-linear (Poisson regression) model with pre-
dictors lbas, treat, lbas trt, lage, and v4 and with a random intercept for subjects.
The seizure count yij for patient j and visit i is assumed to be conditionally Poisson
distributed with mean µij ,

log(µij) = x′
ijβ + u

(2)
0j

The subject-specific random intercept u
(2)
0j is assumed to have a normal distribution.

The parameter estimates using PQL-1 are given in the first column of Table 1.

Table 1: Parameter estimates and standard errors for Models II and IV using PQL-1, see
Breslow and Clayton (1993), and adaptive quadrature.

Model II Model IV

PQL-1 AGQ (10 points) PQL-1 AGQ (7 points)

Fixed effects
lbas 0.87 (0.14) 0.88 (0.13) 0.87 (0.14) 0.88 (0.13)
treat -0.91 (0.41) -0.93 (0.40) -0.91 (0.41) -0.93 (0.40)
labs trt 0.33 (0.21) 0.34 (0.20) 0.33 (0.21) 0.34 (0.20)
lage 0.47 (0.35) 0.48 (0.35) 0.46 (0.36) 0.48 (0.35)
v4 -0.16 (0.05) -0.16 (0.05)
visit -0.26 (0.16) -0.27 (0.16)

Random effects
SD of intercept 0.53 (0.06) 0.50 (0.06) 0.52 (0.06) 0.50 (0.06)
SD of slope for visit 0.74 (0.16) 0.73 (0.16)
covariance -0.01 (0.03) 0.00 (0.09)

Using non-adaptive quadrature

Model II is a two-level random intercept model and can be fitted using xtpois. We
initially use 10-point quadrature:
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. xtpois y lbas treat lbas_trt lage v4, i(subj) normal nolog quad(10)

Random-effects poisson Number of obs = 236
Group variable (i) : subj Number of groups = 59

Random effects u_i ~ Gaussian Obs per group: min = 4
avg = 4.0
max = 4

LR chi2(5) = 108.82
Log likelihood = -666.02733 Prob > chi2 = 0.0000

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

lbas 1.116892 .0739454 15.10 0.000 .9719621 1.261823
treat -.8948228 .2752803 -3.25 0.001 -1.434362 -.3552834

lbas_trt .3218361 .0977863 3.29 0.001 .1301785 .5134938
lage .5565262 .2038638 2.73 0.006 .1569604 .956092

v4 -.1610871 .0545758 -2.95 0.003 -.2680537 -.0541205
_cons 2.15001 .1539091 13.97 0.000 1.848354 2.451666

/lnsig2u -1.439468 .1455344 -9.89 0.000 -1.72471 -1.154226

sigma_u .4868818 .035429 .4221668 .5615173
rho .1916278 .0225442 .1512655 .2397181

Likelihood ratio test of rho=0: chibar2(01) = 303.26 Prob>=chibar2 = 0.000

The parameter estimates do not agree very well with those of Table 1. To improve the
quadrature approximation, we run the same model with 20-point quadrature:

. xtpois y lbas treat lbas_trt lage v4, i(subj) normal nolog quad(20)

Random-effects poisson Number of obs = 236
Group variable (i) : subj Number of groups = 59

Random effects u_i ~ Gaussian Obs per group: min = 4
avg = 4.0
max = 4

LR chi2(4) = 88.49
Log likelihood = -666.97139 Prob > chi2 = 0.0000

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

lbas .9495236 . . . . .
treat -1.425517 .2235628 -6.38 0.000 -1.863692 -.9873416

lbas_trt .5863269 .1101971 5.32 0.000 .3703446 .8023092
lage .697401 .2968941 2.35 0.019 .1154993 1.279303

v4 -.1599219 .0543964 -2.94 0.003 -.266537 -.0533069
_cons 2.392076 . . . . .

/lnsig2u -1.344066 .2017095 -6.66 0.000 -1.739409 -.9487225

sigma_u .5106694 .0515034 .4190753 .6222824
rho .2068422 .0330922 .149388 .2791418

Likelihood ratio test of rho=0: chibar2(01) = 301.38 Prob>=chibar2 = 0.000
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The parameter estimates have changed considerably but are no closer to the PQL

estimates. The large changes in parameter estimates together with the missing standard
errors suggest that there is a problem with the quadrature approximation as confirmed
by using quadchk:

. quadchk, nooutput

Refitting model quad() = 16
Refitting model quad() = 24

Quadrature check

Fitted Comparison Comparison
quadrature quadrature quadrature
20 points 16 points 24 points

Log -666.97139 -664.70167 -665.5398
likelihood 2.2697183 1.4315875 Difference

-.00340302 -.0021464 Relative difference

y: .94952363 .87595585 .86799166
lbas -.07356778 -.08153196 Difference

-.07747862 -.08586618 Relative difference

y: -1.4255166 -1.3410662 -1.4585471
treat .08445034 -.03303056 Difference

-.05924192 .02317094 Relative difference

y: .58632689 .60813569 .64108902
lbas_trt .0218088 .05476212 Difference

.03719563 .09339862 Relative difference

y: .69740102 .68233866 .76006521
lage -.01506236 .06266419 Difference

-.02159785 .08985389 Relative difference

y: -.15992194 -.16108712 -.16108712
v4 -.00116518 -.00116518 Difference

.00728593 .00728593 Relative difference

y: 2.3920763 2.3389251 2.4200047
_cons -.05315122 .0279284 Difference

-.0222197 .01167538 Relative difference

lnsig2u: -1.3440659 -1.345403 -1.1032861
_cons -.00133714 .24077974 Difference

.00099485 -.17914281 Relative difference

The relative differences are large indicating that Gaussian quadrature is unreliable.

Using adaptive quadrature

We will now estimate the parameters of Model II using gllamm with 10-point adaptive
quadrature. The syntax is as for xtpois except that the Poisson family is specified with
the canonical log link as the default, nip() is used instead of quad(), and the adapt
option is used:
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. gllamm y lbas treat lbas_trt lage v4, i(subj) fam(poiss) nip(10) adapt

number of level 1 units = 236
number of level 2 units = 59

Condition Number = 9.3176111

gllamm model

log likelihood = -665.29073

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

lbas .8844321 .1312308 6.74 0.000 .6272245 1.14164
treat -.9330387 .4008309 -2.33 0.020 -1.718653 -.1474245

lbas_trt .3382607 .2033363 1.66 0.096 -.0602711 .7367925
lage .484237 .347276 1.39 0.163 -.1964114 1.164885

v4 -.1610871 .0545758 -2.95 0.003 -.2680537 -.0541206
_cons 2.114303 .2197154 9.62 0.000 1.683668 2.544937

Variances and covariances of random effects

***level 2 (subj)

var(1): .25282688 (.05895623)

The standard deviation of the random effect is estimated as
√

.25282688 = 0.50. The
standard error can be obtained using the delta method as .05895623/(2

√
.25282688) =

0.06. The parameter estimates, also shown in column 2 of Table 1, agree closely with
those of Breslow and Clayton.

Breslow and Clayton also considered a random coefficient model (Model IV) in which
the effect of visit, denoted zij , varies randomly between subjects:

log(µij) = x′
ijβ + u

(2)
0j + u

(2)
1j zij

The subject specific random intercept u
(2)
0j and slope u

(2)
1j have a bivariate normal dis-

tribution. The fixed part of this model is the same as that of Model II except that the
variable visit is used instead of v4.

To fit this in gllamm, we need to define equations for the variables with random
coefficients, including the constant for the random intercept, and specify them using
the eqs() option.

. gen cons=1

. eq subj: cons

. eq subj_v: visit

. gllamm y lbas treat lbas_trt lage visit, i(subj) fam(poiss) nrf(2)/*
> */ eqs(subj subj_v) nip(7) adapt

number of level 1 units = 236
number of level 2 units = 59

Condition Number = 9.5770804
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gllamm model

log likelihood = -655.68101

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

lbas .8849558 .1314142 6.73 0.000 .6273888 1.142523
treat -.9295086 .3928139 -2.37 0.018 -1.69941 -.1596075

lbas_trt .3384994 .1974394 1.71 0.086 -.0484747 .7254735
lage .4767799 .3536353 1.35 0.178 -.2163326 1.169892
visit -.2664214 .1646942 -1.62 0.106 -.5892161 .0563734
_cons 2.100037 .2147934 9.78 0.000 1.67905 2.521025

Variances and covariances of random effects

***level 2 (subj)

var(1): .25162631 (.05813468)
cov(1,2): .00289385 (.08872316) cor(1,2): .0079133

var(2): .5314739 (.22938506)

The standard deviations are
√

0.25162631 = 0.50 for the random intercept and√
0.5314739 = 0.73 for the random slope, respectively. The delta method was used to

obtain the standard errors. As shown in Table 1, the parameter estimates agree closely
with those of Breslow and Clayton. For comparison, using non-adaptive quadrature
with 8 points per dimension (not shown) produces baseline and treatment parameter
estimates of 1.04 and −0.85, whereas 20 points per dimension gives 0.90 and −1.21,
respectively.

4.2 Logistic regression example

Rodriguez and Goldman (1995) simulated data to produce the same structure as data
from the 1987 Guatemalan National Survey of Maternal and Child Health. The outcome
of interest, whether the women received prenatal care, was simulated for 2,449 births
(level 1) by 1,558 women (level 2) from 161 communities (level 3). A logistic regression
model with one covariate at each level and random intercepts at levels 2 and 3 was used

ηijk = β0 + β1x1ijk + β2x2jk + β3x3k + u
(2)
jk + u

(3)
k

where i indexes the births, j the mothers, and k the communities.

The first of the simulated datasets (available from
http://www.blackwellpublishers.co.uk/rss/Readmefiles/goldman.htm)
has been analyzed by Browne and Draper (2002) using MQL-1, PQL-2, and MCMC with
a diffuse prior. Their parameter estimates are given in Table 2 where it is clear that
the PQL-2 parameter estimates are better than the MQL-1 estimates, as expected, but
both methods underestimate the variances considerably.
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Table 2: Parameter estimates for data simulated by Rodriguez and Goldman (1995)

True MQL-1 PQL-2 MCMC GQ AGQ

(10 points) (5 points)

β0 0.65 0.491 (0.149) 0.641 (0.186) 0.675 (0.209) 0.688 (0.207) 0.673 (0.202)
β1 1.0 0.791 (0.172) 0.993 (0.201) 1.050 (0.225) 1.042 (0.221) 1.047 (0.221)
β2 1.0 0.631 (0.081) 0.795 (0.099) 0.843 (0.115) 0.834 (0.112) 0.839 (0.112)
β3 1.0 0.806 (0.189) 1.06 (0.237) 1.124 (0.268) 1.127 (0.260) 1.120 (0.260)
σ2

2 1.0 0.000 (-) 0.486 (0.145) 0.921 (0.331) 0.886 (0.288) 0.881 (0.286)
σ2

3 1.0 0.546 (0.102) 0.883 (0.159) 1.043 (0.217) 0.974 (0.197) 0.990 (0.203)

We can fit the three-level random intercept model in gllamm by specifying the level
2 and 3 clustering variables, mother and comm in the i() option and the logit link and
binomial family in the link() and family() options, respectively. We will first use
10-point quadrature per dimension:

. gllamm care x1 x2 x3, i(mother comm) link(logit) family(binom) nip(10)

number of level 1 units = 2449
number of level 2 units = 1558
number of level 3 units = 161

Condition Number = 4.1067459

gllamm model

log likelihood = -1414.064

care Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 1.042056 .221363 4.71 0.000 .6081927 1.47592
x2 .8335885 .1122263 7.43 0.000 .613629 1.053548
x3 1.127113 .2596609 4.34 0.000 .6181868 1.636039

_cons .6881888 .2067724 3.33 0.001 .2829223 1.093455

Variances and covariances of random effects

***level 2 (mother)

var(1): .88572327 (.28812319)

***level 3 (comm)

var(1): .9736015 (.19671434)

The parameter estimates, in particular the variance estimates, are closer to the true
values than the corresponding PQL-2 estimates. Increasing the number of quadrature
points to 20 requires 20 × 20 = 400 evaluations of the integrand and is relatively slow.

We may be able to achieve good accuracy with a lower number of quadrature points
using adaptive quadrature. With 5 points (requiring 5 × 5 = 25 evaluations) we get
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. gllamm care x1 x2 x3, i(mother comm) link(logit) family(binom) nip(5) adapt

number of level 1 units = 2449
number of level 2 units = 1558
number of level 3 units = 161

Condition Number = 4.0249554

gllamm model

log likelihood = -1413.9554

care Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 1.04719 .2211608 4.73 0.000 .613723 1.480657
x2 .8386616 .1116788 7.51 0.000 .6197751 1.057548
x3 1.120168 .2597512 4.31 0.000 .6110646 1.629271

_cons .6726168 .2021648 3.33 0.001 .276381 1.068852

Variances and covariances of random effects

***level 2 (mother)

var(1): .8807801 (.28636287)

***level 3 (comm)

var(1): .98965411 (.20299419)

The estimates are very similar to the 10-point non-adaptive quadrature estimates. In-
creasing the number of quadrature points to 30 per dimension for non-adaptive quadra-
ture and to 11 per dimension for adaptive quadrature gives essentially the same results.
Therefore, we believe that the estimates are reliable.

5 Discussion

As far as we know, this is the first implementation of adaptive quadrature for multilevel
generalized linear mixed models. Adaptive quadrature appears to be suitable when
the posterior distribution is close to normal and when it is highly nonnormal, whereas
ordinary quadrature fails in the first situation and PQL fails in the second. Adap-
tive quadrature is computationally more efficient than ordinary quadrature and other
computer intensive methods such as MCMC. Another advantage of adaptive quadra-
ture is that it provides a value for the maximized log likelihood useful for example for
likelihood-ratio tests. In contrast to ordinary quadrature, adaptive quadrature also ap-
pears to give good parameter estimates for linear models, and although computationally
less efficient than other methods such as IGLS, this will be useful for complex multilevel
latent variable models that cannot yet be handled by other software. Extensive simu-
lation studies are required to assess the performance of adaptive quadrature in a wide
range of situations.

Although we have only discussed adaptive quadrature in the context of estimating
generalized linear mixed models, gllamm allows this method to be used for estimat-
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ing general multilevel latent variable models, including multilevel factor models and
multilevel structural equation models; see Rabe-Hesketh et al. (2002). In addition to
counts and dichotomous outcomes, gllamm can handle continuous, censored, ordinal,
and nominal responses and rankings, see Skrondal and Rabe-Hesketh (2002), as well as
continuous and discrete time survival data, see Rabe-Hesketh et al. (2001d).

A problem with gllamm is that it can be very slow, particularly if the models include
many random effects. This is partly because gllamm is written in ado code, which needs
to be interpreted by Stata while the program is running. Fortunately, Stata Corporation
is converting parts of gllamm to internal code, which should result in a considerable
increase in speed.
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