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Abstract.

This paper describes how to use the command hapipf and introduces the com-
mand profhap written for Stata that analyzes population-based genetic data. For
these studies, association can be linkage disequilibrium within a set of loci or al-
lelic/haplotype association with disease status. Confidence intervals for odds ratios
are calculated with or without adjustment for possible factors that are confound-
ing the relationship. Additionally, this command allows the specification of many
models of association that are not widely implemented.

Keywords: st0003, haplotype analysis, association tests, profile likelihood, odds
ratio

1 Introduction

Many genetic analysis programs are written as stand-alone programs. This may be
more efficient in terms of computer resources but not in terms of ease of use, flexibility,
and availability. This paper describes advanced use of the command hapipf introduced
in Mander (2001) and covers the issues adjusting for confounders, missing data, effect
modification, calculating odds ratios with confidence intervals, and grouping haplotypes.
The code for hapipf has been updated for Stata 7 and now includes a Windows interface
to help users specify the correct syntax.

The command discussed here permits analysis of population-based association stud-
ies and is similar to packages such as EH described in Terwilliger and Ott (1994).
This command extends the methods by allowing models that are not the saturated
model to be fitted. Analysis using haplotypes requires an EM algorithm to resolve
phase uncertainty, see Long, Williams, and Urbanek (1995); Fallin and Schork (2000);
Hawley and Kidd (1995); Sham (1998); and Mander (2001). Here, a log-linear model
is embedded within the EM algorithm to estimate the expected haplotype/allele fre-
quencies rather than a counting algorithm, see Chiano and Clayton (1998), and allows
a range of intermediate models. In genetic analysis, the dimensionality of the model
is often large (due to the number of haplotypes/alleles) and maximum likelihood es-
timation of the log-linear model is performed using the iterative proportional fitting
algorithm, see Agresti (1992). This algorithm always converges when the maximum
likelihood estimates exist even when the likelihood is badly behaved.

c© 2001 Stata Corporation st0003
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In association studies, interest lies in testing for association between a set of loci
and disease status. Odds ratios are calculated to show the strength and direction of
this association. Confidence intervals for the odds ratio can be obtained by using boot-
strap methods, see Efron and Tibshirani (1993), or can be constructed from the profile
likelihood using a constrained log-linear model.

A significant allelic/haplotype association may be due to population admixture or
ethnic stratification. In order to test for this unseen stratification, a set of unlinked
markers can be used to investigate whether there are any associations between them,
see Pritchard and Rosenberg (1999). If these data are unavailable, one approach is to
obtain some information about this stratification using surrogate measures such as the
origin of relatives. These data are included as part of a stratified analysis using log-linear
modeling either to adjust for confounders or to investigate possible effect modifiers.

2 Syntax

hapipf varlist
[
using exp

] [
, ldim(varlist) display ipf(string) start known

phase(varname) acc(#) ipfacc(#) nolog model(#) lrtest(#,#)

convars(string) confile(string) menu mv mvdel
]

profhap
[
if exp

]
, or(string) ipf(string)

[
by(varlist) acc(#) level(#)

hapacc(#) savegraph
]

2.1 Options for hapipf

ldim(varlist) specifies the variables that determine the dimension of the contingency
table. By default, the variables contained in the ipf option define the dimension.

display specifies whether the expected and imputed haplotype frequencies are shown
on the screen.

ipf(string) specifies the log-linear model. It requires special syntax of the form
l1*l2+l3. l1*l2 allows all the interactions between the first two loci, and locus 3
is independent of them. This syntax is used in most books on log-linear modeling.

start specifies that the starting posterior weights of the EM algorithm are chosen at
random.

known specifies that phase is known.

phase(varname) specifies a variable that contains ones where phase is known and zeros,
where phase is unknown.

acc(#) specifies the convergence threshold of the change of the full log likelihood.

ipfacc(#) specifies the convergence threshold of the change in the log likelihood of
the log-linear model.
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nolog specifies whether the log likelihood is displayed at each iteration.

model(#) specifies a label for the log-linear model being fitted. This label is used in
the lrtest option.

lrtest(#,#) performs a likelihood-ratio test using two models that have been labeled
in the model option.

convars(string) specifies a list of variables in the constraints file.

confile(string) specifies the name of the constraints file.

menu specifies that the syntax is specified using a window interface.

mv specifies that the algorithm should replace missing data (“.”) with a copy of each of
the possible alleles at this locus. This is performed at the same stage as the handling
of the missing phase when the dataset is expanded into all possible observations. If
this option is not specified but some of the alleles do contain missing data, the
algorithm sees the symbol “.” as another allele.

mvdel specifies that people with missing alleles are deleted.

2.2 Options for profhap

or(string) specifies first the case–control variable and then two haplotypes/alleles.
The first haplotype/allele indicates that the unexposed group and the other hap-
lotype/allele is the exposed group; for example, or(D 1 2) specifies that the case–
control variable is D and that the allele 1 represents the unexposed group and allele
2 the exposed.

ipf(string) is the same as for hapipf.

by(varlist) specifies the stratifying variable.

acc(#) specifies the accuracy of the estimated upper and lower bounds of the confidence
interval.

level(#) specifies the significance level of the confidence interval.

hapacc(#) specifies the convergence threshold of both hapipf and ipf.

savegraph specifies that the profile graph is saved to file profile.gph.

3 Methods

3.1 Resolving phase using the EM algorithm

For illustration, take two diallelic loci with alleles a and/or A at the first locus and b
and/or B at the second locus. The haplotype is the set of alleles that occur on the same
chromosome, for example, the ab haplotype. When phase is unknown, the parent origin
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of the alleles cannot be determined and hence the haplotype cannot be constructed.
Using the two diallelic loci, the unphased genotype for the double heterozygote may be
represented as (a,A, b,B) and is henceforth referred to as the phenotype.

For subject i, when phase is unknown, the genotype frequencies follow a mixture
distribution ∑

g̃i∈Gi

πg̃i

where Gi is the set of all possible phases conditional on the phenotype, and πg̃i
is

the probability of genotype g̃i. Not all subjects will have phase ambiguity and this
information is used to resolve phase in the EM algorithm. However, in order to determine
phase in subjects that are heterozygotes, the Hardy–Weinberg assumption is needed.
Under this assumption, the genotype probability is the product of the two haplotype
probabilities, πgi

= ph1i
ph2i

, and hence the EM algorithm is used to estimate haplotype
probabilities.

The algorithm consists of the “E-step”, which calculates the posterior probability of
each phase. The jth estimate of a particular phase g∗i for subject i is ẑ(j)

g∗
i

. This phase
probability is given below. Note that the expression is conditional on the previous
estimates of the haplotype probabilities.

ẑ
(j)
g∗

i
=

p̂
(j−1)
h1i

p̂
(j−1)
h2i∑

Gi

p̂
(j−1)
h1i

p̂
(j−1)
h2i

The “M-step” maximizes the full likelihood, given below, conditional on the phase
probabilities.

n∏
i=1

∏
g∗

i
∈Gi

{ph1i
ph2i

}ẑ
(j)
g∗

i

Traditionally this is performed by a counting algorithm but this command uses a log-
linear model with the phase probabilities as weights. The most efficient algorithm
for estimating these expected frequencies when there are numerous cells is iterative
proportional fitting (IPF).

3.2 Iterative proportional fitting

This algorithm calculates the expected frequencies of a contingency table, see Agresti
(1992). For a 2 × 2 × 2 table, let the observed frequencies be nijk and the expected
frequencies mijk. The algorithm consists of the following steps:

• Set m̂(0)
ijk to exhibit less structure than the model being fitted. In other words, the

initial expected frequencies come from a model that is nested in the model being
fitted.
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• Successively adjust m̂(0)
ijk using appropriate scaling factors so they match each

marginal table in the set of minimal sufficient statistics.

• Continue until changes in the likelihood are small.

The log-linear model is specified by the syntax first introduced by Wilkinson and Rogers
(1973), where a “+” symbol indicates independence and the “*” indicates interaction.
Given three factors X, Y and Z and the model X ∗ Y +X ∗Z + Y ∗Z (this is a model
with all interactions except the three-way interaction), the minimal sufficient statistics
are nij., ni.k and n.jk, where the “.” represents summation over that margin. The suf-
ficient statistics can be identified by the marginal models, terms separated by the +
symbol. In this example, there are three marginal models and the algorithm consists of
the repetition of the following three steps:

m̂
(1)
ijk = m̂

(0)
ijk

(
nij.

m̂
(0)
ij.

)
(1)

m̂
(2)
ijk = m̂

(1)
ijk

(
ni.k

m̂
(1)
i.k

)
(2)

m̂
(3)
ijk = m̂

(2)
ijk

(
n.jk

m̂
(2)
.jk

)
(3)

For the first step it can be seen that m̂(1)
ij. = nij., and the X − Y margin is matched.

For the other equalities the margins X −Z and Y −Z have expected frequencies equal
to the observed frequencies, respectively.

This algorithm can be adapted to estimate models that have constrained parameters
using initial expected frequencies from a model that is not nested in the fitted model.
It can be shown that this initial structure remains unchanged during the steps. Let the
factors in the above example all have two levels (0 or 1) and the model being fitted
be X + Y + Z. If m(0)

111 = 2 and 1 for the other cells, then from the initial expected
frequencies the odds ratio (in the 2× 2 X − Y sub-table) when Z = 1 is 2 (when Z = 0
the odds ratio is 1). This relationship does not change during the iterations. The model
actually fitted is the base model X + Y +Z, with the X.Y interaction parameter being
fixed by the initial values.

4 Allelic association in case–control data

To show that a disease is associated with a particular marker allele, frequencies are
compared between cases and controls. The algorithm ignores subjects and analyses
the chromosome data under the assumption of Hardy–Weinberg Equilibrium (HWE).
Deviations from HWE have an impact on the significance of the association test as
the phase information changes, see Fallin and Schork (2000). Cases and controls are
assumed to be representative of the affected and unaffected underlying population, the
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study base. When the locus is diallelic (e.g., a SNP locus), a simple chi-squared test
can be performed on the resulting 2× 2 table to test for the association. The same test
can be obtained using the log-linear model approach by constructing a variable, D, say,
with two levels, where 1/0 represent case/control status respectively. Let the variable
L1 represent the diallelic locus with levels 1 and 2, which represent the alleles. When
there is no association, the locus is independent of disease status and the expected
allele frequencies are the same in cases and controls, this model is L1 +D and the odds
ratio is 1. The alternative model, where the allele frequencies depend upon disease
status, is L1 ∗D and the odds ratio is the maximum likelihood estimate. The test for
allelic association is the likelihood-ratio test comparing the model L1 + D to L1 ∗ D,
which is equivalent to testing whether the maximum likelihood estimate of the odds
ratio is not equal to 1. This test has 1 degree of freedom (df), but for polymorphic
markers, the degrees of freedom will increase, losing power to detect an association. High
dimensional contingency tables occur when investigating highly polymorphic marker loci
and algorithms that require derivatives of the likelihood will be slower than IPF.

4.1 Stata output and commands

The command here requires a variable list consisting of paired alleles and disease status,
where the rows are the individuals. For illustration, data are taken from Sham (1998).
The format of the data is shown below for the first six lines of the dataset (identification
number is contained in id). The two columns a1 and a2 are the alleles for one autosomal
locus and D is the variable of case/control data. As phase is not a problem for one allele,
the first pair of columns are actually the genotype.

id a1 a2 D
1 1 2 1
2 2 2 1
3 1 2 0
4 2 2 0
5 1 1 1
6 1 2 1

The association command hapipf requires a variable list of paired alleles. The log-
linear model is specified using the ipf() option and takes the notation discussed above
with loci labeled l1, l2, l3, . . . , and so on, in order of the list of paired variables (for a
single locus this is l1). The likelihood and df can be saved internally using the model()
option to label the models, and then the likelihood-ratio test can be automatically
calculated using the two labeled models in the lrtest() option–the model with the
fewer parameters is entered last.

. hapipf a1 a2, ipf(l1*D) model(0)
(output omitted )
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. hapipf a1 a2, ipf(l1+D) model(1) lrtest(0,1)
(output omitted )

Likelihood Ratio Test Comparing Model l1+D to l1*D

llhd2 (df2) = -395.60522 1
llhd1 (df1) = -391.78348 0

-2*(llhd2-llhd1) = 7.6434815
Change in df = 1
p-value = .00569778

There is a significant association (p = 0.006) between the locus and the disease status.
This does not explain which of the two alleles increase the risk of disease or by how
much.

The expected frequencies can be obtained by using the display option as seen in
the first command below.

. hapipf a1 a2, ipf(l1*D) display

. hapipf a1 a2 using filename, ipf(l1*D)

Alternatively, the expected frequencies can be stored as a Stata datafile by using the
using option. In the example above, the file filename.dta contains the frequencies.

4.2 Odds ratios and profile likelihood

To describe the relationship between the alleles and disease status, the odds ratio is
calculated for the 2 × 2 table. The saturated model L1 ∗ D from the last analysis
gave estimates of the expected allele frequencies for cases and controls, and these are
displayed below.

locus D efreq eprob
1 0 32 .10738255
1 1 87 .29194631
2 0 76 .25503356
2 1 103 .34563758

To calculate the appropriate odds ratio, the analyst needs to identify which of the
alleles is the exposed group and which is the unexposed group. In this case, interest
is in the effect of the allele 1 on the probability of being a case and the odds ratio is
87 × 76/(103 × 32) = 2.006. Approximate confidence intervals can be obtained using
the standard error of a log-odds ratio, see Clayton and Hills (1993), assuming normality.
Alternatively, approximate confidence intervals can be obtained from a profile likelihood
approach, see McCullagh and Nelder (1989). Let the parameter of interest in the 2× 2
table be the odds ratio, θ, say, and let the 100(1−α)% confidence interval be (θl, θu). The
maximum likelihood estimate of the odds ratio is θ̂ and the log likelihood calculated
at this point is l(θ̂). Thus, the 100(1 − α)% confidence interval is the set of values
{θ : 2l(θ̂) − 2l(θ) ≤ χ2

1,1−α}. To find θl and θu requires an algorithm to calculate the
likelihood for various values of the odds ratio, a constrained log-linear model.

To fit a model that has an odds ratio value of x, say, requires a specific set of initial
starting values in the IPF algorithm, see Section 3.2. The model L1 +D has the odds
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ratio fixed at 1, and the following initial values will constrain the odds ratio to x. The
base model should contain all the parameters that are not fitted by the initial values.
In this example, the base model is L1 + D and the L1.D interaction is fitted by the
initial values.

l1 D Ifreq
1 0 1
1 1 1
2 0 1
2 1 x

If x was the maximum-likelihood estimate of the odds ratio, then the model being fitted
is L1 ∗ D. The following constraints file, with a missing value instead of x, allows
estimation of the maximum likelihood estimate of the odds ratio,

l1 D Ifreq
1 0 1
1 1 1
2 0 1
2 1 .

where the “.” corresponds to a missing data point. For the data used in the previous
section, the likelihood is calculated for a set of values for x in order to obtain the profile
likelihood and confidence intervals. In the example dataset, the profile likelihood 95%
confidence interval is (1.222, 3.343) and the profile is plotted in Figure 1 using a cubic
spline to join the points. There are numerous points close to the edge of the confidence
interval as the algorithm searches for the upper and lower bounds to a specified accuracy.
The graph can sometimes be used to check that the model is specified correctly. The
maximum likelihood estimate of the odds ratio is estimated without the constraint files,
and if the base model is misspecified the maximum likelihood estimate will not lie on the
correct profile. The profile likelihood can be used for two parameters of interest to deliver
profile contours of a bivariate distribution of parameters but this is not implemented
here.

(Graph on next page)
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Figure 1: The profile likelihood for the odds ratio parameter in a diallelic locus associ-
ation with disease.

4.3 Stata commands and output

The command profhap is used to obtain the profile likelihood estimates of the confidence
intervals as it requires estimation of the likelihood using hapipf multiple times. profhap
constructs the values of the odds ratio that are passed to hapipf, and it uses very
similar syntax to hapipf. The command needs the set of loci as paired variable list and
additionally requires the or() option that contains, in order, the case–control variable,
what is the exposed category, and which is the unexposed.

. profhap a1 a2 , ipf(l1+D) or(D 2 1) hapacc(1e-11) acc(1e-4)
(output omitted )

Case-control table

Cases Controls
Alleles 2 103.0000 76.0000

1 87.0000 32.0000

OR = 2.0061 with 95% CI interval (1.2221 ,3.3429 )

Note that here the odds ratio is slightly different from the one in the saturated model.
This is because the constrained IPF algorithm does not converge in one step and is
subject to the convergence criteria on the log likelihood. The convergence criteria is
controlled by the option hapacc(). The option acc() specifies the accuracy of the
estimated bounds of the confidence interval.

5 Haplotype analysis

The previous models and descriptions have been on contingency tables with four cells
and therefore only one odds ratio is calculated. As the dimension of the tables increase,
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there are many more models and odds ratios. When analyzing haplotypes, the phase
is usually unknown and resolving the phase requires an EM algorithm. When phase
is unknown, the haplotypes are not observed and the table of frequencies can not be
constructed.

The EM algorithm expands the dataset over all possible haplotypes per phase and
subject; this is a high-dimensional contingency table of imputed frequencies. As part of
the expectation step (E-step), these frequencies are scaled by their posterior probability,
assuming HWE and current estimates of the haplotype frequencies. The log-linear model
is fitted to the imputed frequencies as part of the maximization step (M-step). For the
saturated model, the imputed frequencies and the expected frequencies are equal.

5.1 Linkage disequilibrium (LD) in two loci

Association between marker loci is described as linkage disequilibrium, the simplest
dataset has two diallelic marker loci. For illustration, the alleles are labeled 1 or 2 at
each loci and the possible haplotypes can be seen in Table 1.

Table 1: The possible haplotypes for a two loci system.

Loci 2
1 2

Loci 1 1 n11 n12

p1p2 + δ p1(1 − p2) − δ
2 n21 n22

(1 − p1)p2 − δ (1 − p1)(1 − p2) + δ

In Table 1, nij is the number of haplotypes that have allele i at locus 1 and allele j at
locus 2. Below the counts are the probabilities that a random individual from the same
population has that haplotype (pi is the probability of allele i), and δ is the coefficient of
linkage disequilibrium, see Terwilliger and Ott (1994). If loci are in linkage equilibrium,
then the haplotype frequencies are the product of the corresponding allele frequencies.
This occurs when δ = 0 and corresponds to a nonsignificant χ2 test of association
between loci. A significant test would suggest that δ �= 0 and linkage disequilibrium is
present between the loci.

In terms of log-linear models, the count data in the table is the dependent variable
and for locus i, Li is a factor variable with two levels 1 and 2. When there is linkage
equilibrium the two factors are independent and when LD is present, there will be an
interaction between the factors. The model of linkage equilibrium (independence) is
L1 +L2. The extra term δ is included in the model by an interaction between the loci,
L1.L2, in other words, the model L1 ∗ L2. The estimated coefficient of the term L1.L2

is not a direct estimate of δ as the model has been reparameterized.

The likelihood ratio comparing the models L1 ∗L2 and L1 +L2 is the test for linkage
disequilibrium. These tests can be extended to polymorphic markers; however, the de-
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grees of freedom will increase, and the power to detect significant linkage disequilibrium
will therefore decrease.

5.2 Stata commands

Data are taken from Terwilliger and Ott (1994), and the form of the data is shown
below. For the first 6 lines of data, the first two columns represent the alleles for one
autosomal locus and the last pair of variables are the alleles for the second locus.

a1 a2 b1 b2
1 1 1 1
1 2 1 1
2 2 1 1
1 1 1 2
1 2 1 2
2 2 1 2

The syntax for linkage disequilibrium testing is nearly exactly the same as for allelic
association. The main differences are that there are four variables and that the D term
of the ipf() option is replaced by the second locus term l2.

. hapipf a1 a2 b1 b2, ipf(l1*l2) model(0)
(output omitted )

. hapipf a1 a2 b1 b2, ipf(l1+l2) model(1) lrtest(0,1)
(output omitted )

Likelihood Ratio Test Comparing Model l1+l2 to l1*l2

llhd2 (df2) = -303.28056 1
llhd1 (df1) = -298.83431 0

-2*(llhd2-llhd1) = 8.8925028
Change in df = 1
p-value = .00286344

As seen from the output, the p-value is significant, and the removal of the L1.L2 term
leads to a large drop in the log likelihood indicating that it should not be removed. In
terms of the genetic hypothesis, this confirms there is strong evidence in support of LD

between the two loci.

5.3 Testing LD in a region with more than 2 loci

Section 5.1 showed the test for LD using two loci, and now these tests will be applied
to k(> 2) loci of interest. The loci factor variables are L1, L2 . . . , Lk, with the alleles
as levels. The test for linkage disequilibrium is similar to the two loci case where
comparison, by the likelihood-ratio test, is between the saturated model, L1∗L2∗· · ·∗Lk,
and the model of independence between the set of loci, L1 + L2 + · · · + Lk. The
second model assumes that the haplotype frequencies can be obtained by multiplying
the corresponding alleles frequencies. In other words, the second model assumes linkage
equilibrium. If the loci are all diallelic, then the degrees of freedom of the test is 2k − 1.
If every locus has n alleles, there are nk − 1 degrees of freedom.
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We take data from Bitti et al. (2000), in particular three loci in the HLA region, A,
B, and DR. Interest lies in the one haplotype A30*B18*DR3 in the HLA region. Each
of the loci are coded with two levels, i.e., whether the allele is present or not. The test
statistic comparing models L1 ∗ L2 ∗ L3 with L1 + L2 + L3 is 331.1 on 4 degrees of
freedom, a hugely significant result, and confirms that there is a huge amount of LD in
the HLA region in this population.

Intermediate models

In the last section each haplotype is considered distinct. A parsimonious approach
would be to group “similar” haplotypes. While this raises the question of the definition
of “similar”, this approach increases the power to detect an association since there
are fewer parameters. For example, the structural relationship between loci along the
chromosome may be a first-order Markov process. In log-linear terms, a first order
process is represented as L1 ∗ L2 + L2 ∗ L3 + · · · + Lk−1 ∗ Lk, see Chiano and Clayton
(1998).

5.4 Case–control data

The likelihood-ratio test for an association between the set of haplotypes and disease
compares the model L1 ∗L2 ∗ · · · ∗Lk ∗D to L1 ∗L2 ∗ · · · ∗Lk +D. This test may be less
informative than a conditional independence approach. If the loci are ordered along the
chromosome from 1 to k, then the end loci, 1 and k, are tested for an association with
disease conditional on the alleles at the other loci. For example, the model D ∗ L2 ∗
· · ·Lk + L1 ∗ · · ·Lk allows L1 to be independent of disease status given the other loci.
This is compared to the saturated model to test whether L1 is conditionally independent
of disease. A nonsignificant likelihood-ratio test indicates that locus 1 could be removed
from the analysis. With enough power, and if the disease is affected by a single locus,
this method should be able to reduce the set of loci to the locus that is closest to the
disease locus. However, for polymorphic markers it still may not have enough power.

5.5 Stata command and output

For the HLA data, there are three loci A, B, and DR (in chromosomal order). From a
univariate analysis, it is suggested that the allelic association was predominantly from
the B locus. Because the DR locus was further away from B than A, this locus was
tested for conditional independence.

. hapipf a1 a2 b1 b2 dr1 dr2, ipf(l1*l2*l3*D) model(0)
(output omitted )
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. hapipf a1 a2 b1 b2 dr1 dr2, ipf(l2*l1*D+l1*l2*l3) model(1) lrtest(0,1)
(output omitted )

Likelihood Ratio Test Comparing Model l1*l2*D+l1*l2*l3 to l1*l2*l3*D

llhd2 (df2) = -1661.3706 4
llhd1 (df1) = -1660.9831 0

-2*(llhd2-llhd1) = .77505058
Change in df = 4
p-value = .94176124

For this analysis, the likelihood-ratio test is not significant. This suggests that the DR

locus appears to be conditionally independent of disease given the A and B loci. In
Bitti et al. (2000), the analysis continued on the table of frequencies collapsed over the
DR margin.

6 Confounding and effect modification

When there is population admixture or ethnic stratification, any association may be
confounded. The usual approach to this problem is to stratify the analysis by variables
that may be confounding the association.

To demonstrate this, data are taken from a case–control study with one diallelic
locus. The association between locus and disease can be summarized by the odds ratio.
If there is a stratifying variable S with r levels, then the odds ratio comparing alleles with
disease can be calculated for each level of S. Let these be θ1, θ2, . . . , θr. These odds
ratios are estimated from the saturated model L1 ∗ D ∗ S. The classic epidemiology
approach to control for the stratifying variable is by assuming a constant odds-ratio
model. This means that the θi’s are all equal to a common value θ.

The model L1 ∗ S +D ∗ S is when L1 and D are conditionally independent given S,
and all the θi’s are 1. If S is a binary variable (two strata), the model to obtain the
maximum likelihood estimate of the odds ratios θ1 and θ2 must include the terms L1.D
and L1.D.S (this is the saturated model). Dropping the L1.D.S interaction constrains
the odds ratios to be equal; θ1 = θ2. The model L1 ∗ S + L1 ∗D + D ∗ S is therefore
the model for a common odds ratio, and θ1 is the adjusted odds ratio controlling for
S. Inclusion of the L1.D.S term allows the stratifying variable to be an effect modifier.
Comparison of the common odds-ratio model to the saturated model in this example
allows for the test of effect modification or an interaction test.

The common odds-ratio model, L1 ∗ S + L1 ∗ D + D ∗ S, can also be fitted using
constraint files.

The base model is L1 ∗ S + D ∗ S and the other parameters can be fitted using
constraints. The Stata data file (strata1.dta) is needed to fit the L1.D term and is
given below.
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l1 D Ifreq
1. 1 0 1
2. 1 1 1
3. 2 0 1
4. 2 1 .

There is only one odds ratio in the L∗D margin, and the missing value in the constraint
file specifies that the command will produce the maximum likelihood estimate. For this
file, the marginal model, L1 ∗D, is defined by the variables included in the file, L1 and
D. In conjunction with the base model, this is the common odds-ratio model.

To fit the additional L1.D.S term requires the following file (strata2.dta):

l1 D Ifreq S
1. 1 0 1 0
2. 1 0 1 1
3. 1 1 1 0
4. 1 1 1 1
5. 2 0 1 0
6. 2 0 1 1
7. 2 1 . 0
8. 2 1 . 1

The two missing values specify that the two odds ratios of the L ∗D ∗S margin are the
maximum likelihood estimates and are not constrained. Similarly, the three variables
L1, D and S in this data file specify the marginal model to be L1 ∗D ∗ S, allowing two
separate odds ratios to be fit.

6.1 Stata commands and output

The confile() option must be used to specify the Stata constraint datafiles (the file
extension .dta is not needed). The first two commands use the constraint files and
second two fit the same models, respectively, without the constraints.

. hapipf a1 a2, ipf(S*D+l1*S) confile(strata2) convars(l1 D S)
(output omitted )

. hapipf a1 a2, ipf(S*D+l1*S) confile(strata1) convars(l1 D)
(output omitted )

. hapipf a1 a2, ipf(S*D*l1) model(0)
(output omitted )

. hapipf a1 a2, ipf(S*D+l1*S+D*l1) model(1) lrtest(0,1)
(output omitted )

Likelihood Ratio Test Comparing Model S*D+l1*S+D*l1 to S*D*l1

llhd2 (df2) = -1567.1607 1
llhd1 (df1) = -1565.9427 0

-2*(llhd2-llhd1) = 2.435933
Change in df = 1
p-value = .11858334

From the p-value, it can be seen that there is no evidence that the stratifying variable
is an effect modifier.
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Probably of more interest is the estimate of the common odds ratio and its confidence
interval. This is estimated using profile likelihood, and by using the first file, the dot
can be replaced by a series of specific odds ratios to obtain the profile. The use of the
profhap command is very similar to the last example, except that a by() option is
required to specify the stratifying variable. The default is to calculate the odds ratio
in a randomly chosen strata, and hence the summary tables can differ from run to run,
but as each strata shares a common odds-ratio model, the command will estimate the
same odds-ratio and confidence interval.

. profhap a1 a2, ipf(S*D+l1*S) or(D 1 2) by(S) acc(1e-5)
(output omitted )

Case-control table

Cases Controls
Alleles 1 36.8863 186.1137

2 15.1138 43.8863

OR = 1.7376 with 95% CI interval (1.2212 ,2.4555 )

7 Confounding and effect modification using haplotypes

For the two diallelic loci example with a binary stratifying variable, there will be three
odds ratios per stratum. There are four possible haplotypes labeled H1,H2,H3,H4.
Let the odds ratio comparing haplotype Hi to H1 in stratum j be θ(i)

j . The model

L1∗L2∗D∗S estimates the maximum likelihood values for the odds ratios θ(i)j . Removing

the L1.L2.D.S term constrains the odds ratios according to the rule θ(i)0 = θ
(i)
1 for all i;

the model is L1 ∗L2 ∗S+S ∗D+L1 ∗L2 ∗D. In this model, each haplotype is considered
as a separate parameter, but could easily be the Markov model when dealing with a
large number of loci. The test for effect modification of the stratifying variable is the
likelihood-ratio test between this model and the saturated model (a 3 df test).

7.1 Grouping haplotypes

For two diallelic loci, there are 4 possible haplotypes. If there is some a priori reason that
the association is due to only one of the haplotypes, then the effect modification test
discussed previously will have lower power than one that groups the other 3 haplotypes
as the comparison group. This would result in only one odds ratio per stratum and a
1 df test. As the phase is unknown, the raw data cannot be grouped and the desired
model can only be achieved by constraining the odds ratios θ(i)j = 1 when i �= 3, thus

giving the odds ratios of interest as θ(3)j for j = 1, 0.

Constraint files can specify the relationship between θ
(3)
0 and θ

(3)
1 . The common

odds-ratio model is when θ(3)0 = θ
(3)
1 , and this is compared to the model where θ(3)0 �= θ

(3)
1

for the test of effect modification. The base model will be L1 ∗ L2 ∗ S + S ∗D with the
L1 ∗ L2 ∗D margin being fit using the constraint files. The file strata3.dta below is
the constraint file for the common odds model. Note that only one odds ratio is freely
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estimated, and all the cells in the L1 ∗ L2 ∗ D margin are specified and the exposure
haplotype is 2.2.

l1 l2 D Efreqold
1. 1 1 0 1
2. 1 1 1 1
3. 1 2 0 1
4. 1 2 1 1
5. 2 1 0 1
6. 2 1 1 1
7. 2 2 0 1
8. 2 2 1 .

The file (strata4.dta) below is the constraint file for the effect modification for one
specific haplotype. All the cells in the L1 ∗L2 ∗D ∗S margin are specified and two odds
ratios are allowed, and the base model is exactly the same.

l1 l2 D Efreqold S
1. 1 1 0 1 0
2. 1 1 0 1 1
3. 1 1 1 1 0
4. 1 1 1 1 1
5. 1 2 0 1 0
6. 1 2 0 1 1
7. 1 2 1 1 0
8. 1 2 1 1 1
9. 2 1 0 1 0
10. 2 1 0 1 1
11. 2 1 1 1 0
12. 2 1 1 1 1
13. 2 2 0 1 0
14. 2 2 0 1 1
15. 2 2 1 . 0
16. 2 2 1 . 1

It may be that it is unreasonable that only one haplotype is associated with disease.
Alternatively, there may be a “dose–response” relationship. In this case, three odds
ratios, θ(i)

0 , may have a functional relationship to the odds ratios in the other strata,
e.g., αθ(i)0 . Then the test of effect modification is the test of whether α = 1, i.e., a 1 df
interaction test. These types of model are not handled by this command.

7.2 Stata commands

The grouping of haplotypes requires the use of the constraint files. The following com-
mands obtain the likelihood for both models:

. hapipf a1 a2 b1 b2, ipf(S*D+l1*l2*S) confile(strata3) convars(l1 l2 D)

. hapipf a1 a2 b1 b2, ipf(S*D+l1*l2*S) confile(strata4) convars(l1 l2 D S)

From the output the likelihood-ratio test statistic is .82741365 on 1 df, which is not
significant at the 5% level.

It is also possible to perform the 3 df test of effect modification using the commands
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. hapipf a1 a2 b1 b2, ipf(S*D*l1*l2)

. hapipf a1 a2 b1 b2, ipf(S*D+l1*l2*S+l1*l2*D)

The 3 df test statistic is 6.0321425, which is not significant as well.

8 Conclusions

This paper has discussed two commands: one for testing (hapipf) and one for calculat-
ing confidence intervals (profhap). Embedding the log-linear modeling within the EM

algorithm has allowed a lot of flexibility in modeling. Although most of the discussion
has been focused on case–control studies, the hapipf command allows the dependent
variable to have many levels.

Missing-marker information is also handled by the algorithm assuming it is “missing
at random”, see Little and Rubin (1987). The missing marker is assumed to be one of
the observed alleles, and this is implemented when creating the imputed frequencies in
the EM algorithm. The Stata option is mv.

Application of this command is ideal for SNP association studies as the degrees
of freedom are low. The command can also be applied to polymorphic loci, but the
power to detect an association may be low. Due to the sparse nature of these data the
degrees of freedom may be overstated. Another possibility is in discovering relationships
between loci that can lower the number of parameters in the saturated model.
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