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Abstract. The post-estimation command prcounts for generating predicted prob-
abilities after using poisson, nbreg, zip, and zinb is introduced and illustrated.
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1 Overview

Stata’s poisson and nbreg commands estimate Poisson and negative binomial regres-
sion models for count outcomes. zip and zinb estimate zero-inflated Poisson and neg-
ative binomial models, which are useful when there are high frequencies of zero counts.
After estimating a model using any of these four commands, our post-estimation com-
mand prcounts may be used to generate predicted probabilities. prcounts generates
new variables that contain the predicted rate, the probability of each count from 0 to
a user-specified maximum, and the cumulative probabilities that a count is less than
or equal to each count from 0 to a user-specified maximum. When the plot option is
specified, prcounts will also generate variables for the graphical comparison of observed
and expected counts.

2 Syntax

prcounts name
[
if exp

] [
in range

] [
, max(maxvalue) plot

]
where name specifies the prefix for the new variables that are created by prcounts.
name cannot be the name of an existing variable.

3 Options

max(maxvalue) is the maximum count for which predicted probabilities should be com-
puted. The default is 9.

plot specifies that variables for plotting expected counts should be generated.

Note that if and in restrict the sample for which predictions are made. By default,
prcounts computes predicted values for all cases in the estimation sample.
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4 Variables created

In the following, name represents the prefix specified as the argument to prcounts.
y is the dependent count variable and each prediction is conditional on the variables
included in the count regression model. Specific definitions of each predicted quantity
are given in the Methods and formulas section below.

namerate is the predicted rate or count E (y).

nameprk is the predicted probability Pr(y = k) for k = 0 to maxvalue. By default,
maxvalue is 9.

nameprgt is the predicted probability Pr(y > maxvalue).

namecuk is the predicted cumulative probability Pr(y ≤ k) for k = 0 to maxvalue. By
default, maxvalue is 9.

For zip and zinb, prcounts also generates

nameall0 is the predicted probability of being in the “always zero” (i.e., inflate = 1
group for zip and zinb models.

When the plot option is specified, more new variables are created with the average
predicted probabilities. Note that this will include out of sample predictions if the
estimation command included if or in conditions, but these conditions were not spec-
ified with prcounts. When these variables are generated, only the first maxvalue + 1
observations are nonmissing; these observations correspond to the counts 0 through
maxvalue.

nameval is the specific value k of the count y ranging from 0 to maxvalue.

nameobeq is the observed probability Pr(y = k).

nameoble is the observed cumulative probability Pr(y ≤ k).

nameobeq is the average predicted probability Pr(y = k).

nameoble is the average predicted cumulative probability Pr(y ≤ k).

5 Example

Using data on the scientific productivity of biochemists (Long 1997), the dependent
variable art is the number of articles published in the three years prior to receiving
the Ph.D. The independent variables are gender (fem), whether the scientist is married
(mar), the number of children under age 5 (kid5), the prestige of the Ph.D. department
ranging from .75 to 5 (phd), and the number of articles published by the scientist’s
mentor in the last three years (ment). We begin by estimating a Poisson regression.
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. poisson art fem mar kid5 phd ment, nolog

Poisson regression Number of obs = 915
LR chi2(5) = 183.03
Prob > chi2 = 0.0000

Log likelihood = -1651.0563 Pseudo R2 = 0.0525

art Coef. Std. Err. z P>|z| [95% Conf. Interval]

fem -.2245942 .0546138 -4.11 0.000 -.3316352 -.1175532
mar .1552434 .0613747 2.53 0.011 .0349512 .2755356

kid5 -.1848827 .0401272 -4.61 0.000 -.2635305 -.1062349
phd .0128226 .0263972 0.49 0.627 -.038915 .0645601

ment .0255427 .0020061 12.73 0.000 .0216109 .0294746
_cons .3046168 .1029822 2.96 0.003 .1027755 .5064581

Next, we run prcounts and then summarize the generated variables. Note that we
have chosen the prefix pois to indicate that the created variables came from a Poisson
regression, but any other name could have been used.

. prcounts pois, max(8) plot

. summarize pois*

Variable Obs Mean Std. Dev. Min Max

poisrate 915 1.692896 .6685824 .8883344 9.627207
poispr0 915 .2092071 .0794247 .0000659 .4113403
poispr1 915 .3098447 .0634931 .0006345 .3678775
poispr2 915 .242096 .0311473 .0030544 .2706704
poispr3 915 .1346656 .0415861 .0098018 .2240418
poispr4 915 .0611696 .0383808 .0106732 .1951233
poispr5 915 .0249554 .0287183 .0018963 .1742638
poispr6 915 .0099346 .0201179 .0002808 .1603728
poispr7 915 .0041384 .0137756 .0000356 .1428533
poispr8 915 .001877 .0094055 3.96e-06 .1206255
poiscu0 915 .2092071 .0794247 .0000659 .4113403
poiscu1 915 .5190518 .1395755 .0007004 .7767481
poiscu2 915 .7611477 .1407294 .0037549 .9390502
poiscu3 915 .8958133 .1126566 .0135567 .9871097
poiscu4 915 .956983 .0824803 .0371477 .9977829
poiscu5 915 .9819384 .0589296 .0825709 .9996792
poiscu6 915 .991873 .0423403 .155454 .9999599
poiscu7 915 .9960114 .0310561 .2556911 .9999956
poiscu8 915 .9978884 .023188 .3763166 .9999995

poisprgt 915 .0021116 .023188 4.77e-07 .6236834
poisval 9 4 2.738613 0 8

poisobeq 9 .1101396 .1153559 .0010929 .3005464
poispreq 9 .1108765 .1174511 .001877 .3098447
poisoble 9 .8150577 .2373893 .3005464 .9912568
poisprle 9 .8122127 .2760109 .2092071 .9978884

To compare alternative count models, we can estimate each model in turn and use
prcounts to generate predicted counts using prefixes that reflect which model was
estimated. The commands are as follows:
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. nbreg art fem mar kid5 phd ment, nolog

. prcounts nbreg, max(8) plot

. zip art fem mar kid5 phd ment, inf(fem mar kid5 phd ment) nolog

. prcounts zip, max(8) plot

. zinb art fem mar kid5 phd ment, inf(fem mar kid5 phd ment) nolog

. prcounts zinb, max(8) plot

By specifying the plot option after prcounts, we generate additional variables that
contain the observed probability of each count from 0 to 8 (the maximum count spec-
ified by max()) and the average predicted probabilities of each count. Using the list
command to display the values of the new variables created with the plot option for
our Poisson model illustrates further what this option does.

. list poisval poisobeq poispreq poisoble poisprle in 1/10

poisval poisobeq poispreq poisoble poisprle
1. 0 .3005464 .2092071 .3005464 .2092071
2. 1 .2688525 .3098447 .5693989 .5190518
3. 2 .1945355 .242096 .7639344 .7611477
4. 3 .0918033 .1346656 .8557377 .8958133
5. 4 .073224 .0611696 .9289618 .956983
6. 5 .0295082 .0249554 .9584699 .9819384
7. 6 .0185792 .0099346 .9770492 .991873
8. 7 .0131148 .0041384 .9901639 .9960114
9. 8 .0010929 .001877 .9912568 .9978884
10. . . . . .

We can then compute the difference between the observed probability of each count and
the prediction from each of the four models.

. generate devpois = poisobeq - poispreq
(906 missing values generated)
. generate devnbreg = poisobeq - nbregpreq
(906 missing values generated)
. generate devzip = poisobeq - zippreq
(906 missing values generated)
. generate devzinb = poisobeq - zinbpreq
(906 missing values generated)
. label var devpois "poisson"
. label var devnbreg "nbreg"
. label var devzip "zip"
. label var devzinb "zinb"
. label var poisval "Count"

Finally, the results can be plotted:

. graph devpois devnbreg devzip devzinb poisval, /*
> */ c(llll) s(OSTp) xlab(0 1 to 8) ylab(-.1,-.05,0,.05,.1) /*
> */ yline(-.1,-.05,0,.05,.1) l2title("Deviation from Observed") gap(4)

This leads to the plot in Figure 1.
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Figure 1: An example plot from prcounts.

This figure plots the difference between the observed proportions for each count
and the mean probability from the four models. We see immediately that the major
failure of the Poisson regression model is in predicting the number of zeros, with an
underprediction of about 0.1. The ZIP model does much better at predicting zeros, but
has poor predictions for counts one through three. The negative binomial regression
model predicts the zeros very well and also has much better predictions for the counts
from one to three. The ZINB model slightly overpredicts zeros and underpredicts ones,
with similar predictions to the negative binomial model for other counts. Overall, the
negative binomial model provides the most accurate predictions, which are slightly
better than those for the ZINB model.

6 Methods and formulas

Details on these models can be found in Chapter 8 of Long (1997) or Cameron and Trivedi
(1998). More information on using Stata with count outcomes can be found in Long and Freese
(2001). See also the manual entries for poisson, nbreg, zip, and zinb. Here we briefly
review only the calculation of predicted rates and probabilities.

6.1 The Poisson regression model

The predicted rate is calculated as

µi = E(yi = k|xi) = exp(xiβ) (1)

The probability of observing a specific count given xi is computed as

Pr(yi = k|µi) =
e−µiµk

i

k!
, k = 0, 1, 2, . . .
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6.2 The negative binomial regression model

In this model, the mean structure remains the same as Equation (1), but the variance in
the predicted counts is increased through the addition of a single parameter, generally
referred to as α. The predicted rate is still calculated by Equation (1), but the predicted
probabilities now have a negative binomial distribution

Pr(yi = k|xi) =
Γ(k + α−1)
k!Γ(α−1)

(
α−1

α−1 + µi

)α−1 (
µi

α−1 + µi

)k

, k = 0, 1, 2, . . .

6.3 Zero-inflated regression models

The zero-inflated models introduce unobserved discrete heterogeneity to differentiate
those who will always have zero counts and those who are only “at risk” of having a
zero count. The ZIP model combines the Poisson regression model with a binary logit
or probit model differentiating those who will always have a zero count from those who
will not always have a zero count. The ZINB model combines the negative binomial
regression model with a binary model.

In Stata’s zip and zinb commands, the idea of inflation is used to define those in the
“always zero” class. This class is defined as those for which inflate = 1. The probability
of being in this class equals

Pr(always 0|xi, zi) = Pr(inflate = 1|xi, zi) = F (ziγ) = ψi

where F is the cumulative density function (cdf) for the logistic if logit is used or the
cdf for the normal if probit is used for the binary model. The predicted rate combines
the results for those who are always zero with those who are not always zero, using the
equation

E(yi|xi, zi) = [0 × ψi] + [µi × (1 − ψi)] = µi − µiψi

To calculate the probability of observing a particular count, the results from the count
equation must be adjusted according to the probability of the observation being in the
always zero category. For example, for Poisson regression,

Pr(yi = 0|xi, zi) = Pr(always 0) + Pr(0 by chance)
= ψi + (1 − ψi)e−µi

For non-zero counts,

Pr(yi = k|xi) = (1 − ψi)
e−µiµk

i

k!

6.4 Probabilities for plotting

A useful, informal method for comparing predictions across models is to plot the mean
predicted probability for each count value against the observed probability. The mean
predicted probability for a given count model is defined as
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Pr(y = m) =
1
N

N∑
i=1

Pr(yi = m|µi)

When comparing across several models, it is useful to subtract the predicted probability
from the observed probability, as shown in our example above.
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