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Abstract. In the first part (sections 1 and 2), this article describes the automated
process that is used to certify Stata prior to shipment of new releases or updates.
The second part (section 3) describes how these techniques can be adopted to your
own work.

Keywords: pr0001, certification scripts, ado-files, cscript

1 Introduction

Whenever a new version, release, or update of Stata is created, it is tested before being
put into production or being posted at www.stata.com. Many users suspect that this
testing is done by other users (beta testing) or by Stata employees using Stata just as
a user would. In fact, we seldom use beta testing and, while Stata developers will of
course use Stata to try out their changes and additions, as a testing method it is not
trustworthy because it is not reproducible and neither is it sufficient.

In our experience, a person sitting at a computer can, for short bursts, execute one
Stata command every three seconds. Even if they could keep that rate up for 8 hours,
that would amount to issuing “only” 9,600 Stata commands (invoking, via ado-files,
the execution of around 59,000 total commands), and the tester could not, in the three
seconds allotted to each command typed, look carefully enough at the output to detect
any problems that might arise.

Stata is instead tested using an automated procedure that involves running 1,064
do-files containing 158,391 lines that cause Stata to execute 38,343,139 commands and
produces just over 16 megabytes (473,859 lines) of output. The whole process, from
beginning to end, requires typing “do testall”. While this automated procedure solves
the input problem, reviewing 16 megabytes of log files would require a herculean effort.
Moreover, there are currently 28 different versions of Stata once one counts Windows,
Macintosh, and Unix platforms, and running tests on all of them results in 28×16 = 448
megabytes of log files.

We maintain certified versions of these logs and use computer techniques to compare
the certified logs to the output produced, but it is rare indeed that this method actually
detects problems. The primary way Stata is certified involves the construction of the
test scripts themselves: The scripts not only set up problems and run them, but also
include code to verify that the results are as expected. If a result deviates from what is
expected, the test script produces error messages and stops.
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30 Statistical software certification

Since Stata is programmable, Stata is used to certify itself. The test scripts exploit
Stata’s ability to save and later to reaccess calculated results and couples that with
Stata’s assert command. assert allows one to state what should be true. If the
statement is true, assert does nothing. If the statement is false, assert issues an
error. For instance, if one has a dataset in which the mean of x should be 3, one can
type

. use dataset, clear

. summarize x

. assert r(mean)==3

If one places those commands in a do-file, and if the assertion applied to these data
should turn out to be false, Stata will issue an error message and the do-file will stop:

. do testit

. use dataset, clear

. summarize x

Variable Obs Mean Std. Dev. Min Max

x 74 21.43243 6.05473 12 41

. assert r(mean)==3
assertion is false
r(9);

end of do-file
r(9);

. _

That the test failed cannot be missed.

As mentioned, we use 1,064 do-files to test Stata, but the do-files are nested, with
do-file calling do-file, and all that is required to perform the tests is to launch Stata,
change to the directory containing the test scripts, and type

. do testall

The result of that is either to produce

(output omitted)
end of do-file

. _

or

(output omitted)
assertion is false
r(9);

end of do-file
r(9)

. _

In the first case, Stata passes certification. In the second, there is a problem.
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2 Organization and procedures used at StataCorp

The test scripts are nothing more than a collection of do-files. The top-level testall.do
file reads

top of testall.do
clear
discard
set more off

cd base
quietly log using test, replace
do test
quietly log close

cd ../ado1
quietly log using test, replace
do test
quietly log close

(lines omitted)

* end of testall.do
end of testall.do

The purpose of this do-file is to run a sequence of do-files located in subdirectories of
which, currently, there are 46. Each subdirectory contains a file test.do. Here is the
test.do file from the subdirectory named base:

top of base/test.do
about
query compilenumber

do assert /* assert */
do merge /* merge/append */
(lines omitted)
do nchi2 /* nchi2() function */

end of base/test.do

test.do is another file that simply causes other do-files to run. It is the files assert.do,
merge.do, and nchi2.do that are the actual test scripts. There are 1,064 files for testing
Stata, one of which is testall.do and 46 of which are the test.do files in the 46
subdirectories, so there are 1,017 files like assert.do, merge.do, and nchi.do.

The division into the 46 subdirectories is based on nothing more than convenience.
As previously mentioned, the result of running all the tests produces 16 megabytes of log
files. A single 16 megabyte file is difficult to deal with. We instead produce a separate
log in each subdirectory, so the 16 megabytes are spread over 46 separate logs with the
average log being 348 kilobytes long. The actual logs vary between 4,978 bytes and
1,105,298 bytes.

Before shipment, a formal round of certification runs are made and the logs are
collected and archived, but Stata is also continually subjected to certification. Every
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developer at StataCorp has the test scripts on his or her computer and runs the test
scripts, in whole or in part, often.

Developers can run the whole suite by typing “do testall”, and this takes about
an hour on the median computer at StataCorp, with the actual times varying from just
over half an hour on the fastest computers to 8 hours on the slowest. A developer can
also change to one of the subdirectories and type “do test” to run one of the 46 subsets
of tests which, on the median computer, can be run on average in about 1.3 minutes.
Alternatively, a developer can run one of the particular tests. A developer could type
“do assert”. The particular tests can be run in a few seconds on the median computer.

This constant access to the test suite, both in whole and in part, actually speeds
development. Stata is a tightly integrated system where commands call other commands
to act as their subroutines, and changes to a command can have unintended side effects,
both positive and negative. It is, in general, not sufficient for a developer to convince
himself or herself that the changes to a particular command, whether in internal C code
or the ado-files, are as desired. He or she must also establish that the changes do not
interact with some other feature of some other command in unexpected ways.

From this description, the test suite may seem to be a static, carefully thought out
collection of files. Nothing could be further from the truth. As of the instant of this
writing, the test suite contains 1,064 files in 46 directories, but as of tomorrow, the
number of files or even number of subdirectories might grow. Every time a new feature
is added to Stata, or a bug reported and fixed, or a change made to the code, additions
are made to the test scripts. Every developer at StataCorp has a copy of the test suite
on their computer and, because the test suite is nothing more than a collection of files,
they can change or make additions to any part of it. And they do. There is then a
procedure that they go through to submit their changes so that the changes become
part of the official certification scripts, just as there is a procedure for changes to the
Stata code itself. In fact, the submission of changes and additions to the test script is
a required part of submission of code.

Thought is given to the individual test scripts, but the overall design and thrust of
the suite simply evolves as changes and additions are made to its individual components.

2.1 Test scripts

The first test script of the first test suite directory is assert.do. It is the purpose of
this script to establish that assert is working. This makes sense because all of the
remaining test scripts use assert to establish that the results are correct.

It is, however, not important that assert be tested first; it is merely important that,
at some point, assert be tested.

Each particular test script focuses on some aspect of Stata, typically a command.
The purpose of a test script is to establish that the feature under consideration works as
intended and, in the test, the script may assume that all the remaining features of Stata
work just as they should. Thus, in testing feature A, one writes the script assuming
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features B and C work. Other test scripts will establish that B works conditional on A
and C, and that C works conditional on A and B. The result of running the entire suite
will be to establish that A, B, and C all work unconditionally.

The only caution that must be exercised in this approach is that, if the test of
A conditional on B and C working fails, one cannot jump to the conclusion that the
problem is with A. The problem might be with B or C, and that is often the case. Say
that, as a developer, I am working on a preexisting ado-file xyz.ado. Somewhere in the
test scripts, there is a corresponding xyz.do file that tests xyz.ado. As I work on the
xyz.ado, I either add to the existing xyz.do file, or perhaps create a new, additional
test script, xyz2.do that I insert somewhere in the suite.

There is no rule at Stata that there be a one-to-one correspondence between com-
mands and test scripts; the rule is merely that there be at least one test script for each
and every command. In fact, Stata currently has 630 user commands (ignoring ado-files
that are subroutines to commands users type). Given that there are 1,017 test scripts,
there are, on average, 1.6 test scripts per command.

Anyway, I am working on xyz.ado and continually rerunning the particular test
script xyz.do and perhaps xyz2.do and, one assumes, adding to it. Satisfied, I think
that all is working. It is now of vital importance that I run the whole suite. If a problem
arises, and if xyz.ado is the only file that has changed, I can be certain that the problem
is with xyz.ado, even if the test that fails intends to test abc.ado under the assumption
that xyz.ado is working.

The tight integration of Stata which, at first blush, makes it seem that Stata will be
more difficult to test and certify, in fact makes it more likely that bugs will be uncovered
by tests that were never intended to uncover bugs where they are found.

Returning to the issue of StataCorp procedures, there is no danger that a developer
will forget to run full certification. Individual developers use and continually run the
test scripts, but those private actions are separate from the official runs made before
software is shipped, at which point the process becomes very officious and bureaucratic.
Logs are then collected and compared to certified logs in another lengthy procedure, the
entirety of which takes almost a week. As an aside, individual developers run the tests
scripts privately not only because they care or it makes software development easier, but
also to avoid embarrassment. The worst shame a developer can experience is to turn in
changes and have them fail in the official certification round. This is not policy but is
simply a result of the work that all developers must go to during an official certification
round. If certification fails at this point, everyone at StataCorp must back up, and the
other developers make their feelings about the extra work well known to the culprit.
There is not one developer at StataCorp who has not made this mistake, but most make
it only once.
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2.2 Log comparison

Running the test scripts produces 46 log files containing a total of 473,859 lines or
16,248,046 characters. In an official certification round, which occurs prior to the release
of an update or new version of Stata, these logs are collected, compared to official
versions of the logs, and archived. The comparison is performed on a Unix computer
using the Unix diff(1) command.

As mentioned previously, problems are seldom uncovered at this step because most
problems are detected by the test scripts themselves; the certification run fails with the
error message “assertion is false”; r(9). The only problems that should be detected at
this stage are problems with Stata’s output engine. The calculation has been made
correctly and the result has been stored correctly, but somehow, in the presentation
of that correct result on the page, it became corrupted. Log comparison did detect
problems during the development of SMCL in Stata 7, when the output engine itself
was being rewritten. Log comparison was also useful during the development of Stata 7
with the introduction of long variable names. Test scripts could detect problems with
the use of long variable names, but they could not detect problems with tables that
no longer lined up properly because a long variable name violated the column-width
assumptions.

Putting those two cases aside, the detection of problems at the log-comparison step
is rare and, in most instances, indicates a problem with the test script in that the test
script should have detected the problem and stopped the certification run. When such
problems are detected, the test script is changed. Sometimes, the test script did not
check something because the command did not save it. In that case, the command is
modified, and that is why, if you type return list or estimates list after a command,
you will sometimes find results saved that are not documented in the manual. The extra,
“uninteresting” results were included to allow certification.

3 Adoption

Stata is a unique package in that users can and do make additions to Stata, and there is
a large and active user community not only doing that but also making those additions
available to other Stata users over the Internet. The methods that we use to certify
Stata are easily adopted to personal use.

The materials that we use to construct our official test scripts are available and
are installed in every copy of Stata, although they are not documented in the manual.
Documentation can be found by typing “help cscript”. Those tools, however, are
not a necessary ingredient; they just make writing a test script a little easier. What
is required is a little organization and an understanding of what should appear in an
individual test script.

Program authors will find test scripts to be well worth the effort. It is not uncommon
that authors need to go back and make changes to their programs to improve the output
or improve the input, and it is convenient to have a quick way to verify that the changes
just made did not break the program. In this regard, even short, incomplete test scripts
work well.
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3.1 Organization

Begin by duplicating our organization:

1. Create a directory called bench, placing the directory wherever you find conve-
nient. The directory can be c:\bench, d:\mystata\bench,
/home/me/wherever/bench, :mydrive:analysis:bench, or anything else that
appeals. In the future, when you want to run your certification scripts, you will
change to that directory and type “do testall”.

2. Create a subdirectory from bench for your first (and perhaps only) collection of
tests. Call this first subdirectory bench/first.

Notice our use of the forward slash character (/). Paths in Windows are typically
written using backslashes and paths in Macintosh using colons, but Stata itself
understands the forward-slash notation and so that single notation can be used
on all operating systems. When writing Stata do-files, using the forward-slash
notation will allow your scripts to run on any operating system should the need
ever arise.

3. Create file testall.do in the bench directory that contains

top of testall.do
clear
discard
set more off

cd first
quietly log using test, replace
do test
quietly log close

cd ..
end of testall.do

or

top of testall.do
clear
discard
set more off

cd first
do test

cd ..
end of testall.do

depending on whether you plan to collect logs. Although we at StataCorp collect
logs, it is not nearly as important that you collect logs since no ado-file you write
could modify the Stata output engine. If you collect logs and examine them, it
will be more likely that you will detect problems with misformatted tables, but
misformatted tables do not impose great costs on users. They are inconvenient,
but no one is misled into accepting a result as correct that is not.
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If later you want to add a second directory of tests, you can edit testall.do and
add “cd second” and “do test”.

4. Change to the first subdirectory and create test.do:

top of first/test.do
about

do firsttest
end of first/test.do

This is nearly identical to the test.do style we use, with the omission of the line
query compilenumber after the about. query compilenumber is not documented
in the manuals, but every compile of Stata has a number that we use in tracking
the logs we collect.

5. Finally, create file first/firsttest.do, which we will make just a stub of a
program that we will fill in later:

top of first/firsttest.do
cscript "stub of test script"
display "to be filled in"

end of first/firsttest.do

Doing all of this, you should be able to launch Stata, change to the bench directory,
type “do testall”, and see the following result:

. do testall

. clear

. discard

. set more off

. cd first
/home/wwg/bench/first

. do test

. about

Intercooled Stata 7.0 for Unix
Born 17 Sep 2001
Copyright (C) 1985-2001

2-user Stata for Linux (network) perpetual license:
Serial number: 1034

Licensed to: William Gould
StataCorp

. do firsttest

. cscript "stub of test script"
------------------------------------------------------BEGIN stub of test script
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. display "to be filled in"
to be filled in

.
end of do-file

.
end of do-file

.

. cd ..
/home/wwg/bench

.
end of do-file

3.2 Test scripts

While the goal of a test script is to establish that a command works—that it gives
the correct answers in all cases—that is a goal that no test script can achieve. Real
tests scripts do nothing more than establish that the command works in some cases
and, because the test script will be run repeatedly in the future, that the command
continues to produce the same answers as changes are made to the command, to the
environment in which it runs, and to Stata itself.

A test script is nothing more than a do-file, and most test scripts are inelegant collec-
tions of lines that use datasets, make calculations, and verify that results are as antici-
pated. A few of the test scripts used at StataCorp are elegant programs themselves—the
do-file includes the definitions of tens of programs that then run the command being
tested over and over and verify the consistency of the results—but that is very much
the exception. The typical test script looks like

top of summarize.do
cscript summarize
which summarize

use auto
summarize mpg
assert r(N)==74 & r(sum_w)==74 & r(min)==12 & r(max)==41 & r(sum)==1576
assert reldif(r(mean), 21.29729729729730) < 1e-14
assert reldif(r(Var), 33.47204738985561) < 1e-14
assert r(sd) == sqrt(r(Var))

summarize mpg if foreign
assert r(N)==22 & r(sum_w)==22 & r(min)==14 & r(max)==41 & r(sum)==545
(lines omitted)

end of summarize.do

All test scripts begin with the cscript command. This command merely clears
things that previous test scripts might have left in memory such as values labels, macros,
and the like.
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Note that test scripts do not start with a version command. The purpose of a test
script is to establish that the command works under whatever is the current version of
Stata. An exception to this rule would be a test script that intended to test a command
that changed from one version to the next. In that case, the older test script might very
well start with a version command to verify that, in backward compatibility mode, the
command still works as it used to work. At the time of the change, you would take the
test script and make two test scripts from it. In one copy, you add a version command
at the top and use the resulting script to test backward-compatibility mode. In the
other, you add no version statement but you update the script to reflect the more
modern usage. In neither case do you worry that some parts of the two test scripts are
covering the same ground.

An important rule of test-script writing is never to delete. Instead, you should add.
The more you test a command, the better. It is not important that a test script look
pretty, be elegant, or appear well organized. In fact, if you are collecting and comparing
logs, organization can make comparison more prone to error. At StataCorp, when a
command incorporates a new feature, we never change the middle of a script. We add
to the bottom of the script or create a new script so that, when the computer lists the
log differences, we can see the new output collected together and know that the old
output did not change.

Finding correct answers with which to compare

In writing real test scripts, finding answers with which to compare can be daunting,
difficult, or impossible. Sometimes, you can do pencil-and-paper calculations for some
simple cases. Sometimes, you can find examples in books, although just because results
have been published does not mean that they are right. Sometimes, there is simply
nothing with which to compare.

The problem of determining whether results are right is nothing new and is inde-
pendent of test scripts. What is new is that you will codify some answer into the test
script, and some programmers simply cannot bring themselves to codify an answer that
they are not absolutely certain is right. To the extent that this causes them to work
harder to verify they have correct answers to which to compare, that is good. To the
extent that it prevents them from creating a test script because of their uncertainty,
that is bad. Test scripts can be changed just as the underlying program can be changed.
You code the answers you think are right and if, later, it turns out you were wrong, you
change the test script just as you change the software.

Test scripts do not so much verify that results are right as they verify that results
continue to be the same in the future. With age, the tests in your certification scripts
become verification of correctness.

You convince yourself that you have right answers the first time just as you have
always convinced yourself that you have right answers. If there is nothing with which
to compare, you look at consistency—do the residuals sum to zero, are the predictions
in line with the actual values, etc.—and having done that outside the test script, you
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declare the answer produced by your code to be “correct”. This is exactly what was
done in the sample summarize.do above. Working outside the test script, the devel-
oper convinced himself that summarize was producing the correct answers and then, in
producing the test script, the developer simply took answers produced by summarize
and codified them into assert statements.

In the case of estimators and tests, we at StataCorp often perform simulations and
check that coverage is correct. That is not part of the test script because we do not
want to wait for simulations to run in the future. We check those things once and then,
convinced that the routine is producing correct answers, we accept the answers being
produced by the routine at that instant as correct and codify them.

You do the work to obtain correct answers just as you ordinarily would and with
the same care and caution that you do ordinarily.

Precision and false precision

It is very common that, in the production of test scripts, after convincing oneself that
the results are correct, one simply copies the results from the command into the script.
In testing summarize, the developer interactively typed

. summarize mpg

Variable Obs Mean Std. Dev. Min Max

mpg 74 21.2973 5.785503 12 41

. return list

scalars:
r(N) = 74

r(sum_w) = 74
r(mean) = 21.2972972972973
r(Var) = 33.47204738985561
r(sd) = 5.785503209735141

r(min) = 12
r(max) = 41
r(sum) = 1576

and then copied the results from return list into the script, editing them to produce
the appropriate assert statements:

assert r(N)==74 & r(sum_w)==74 & r(min)==12 & r(max)==41 & r(sum)==1576
assert reldif(r(mean), 21.29729729729730) < 1e-14
assert reldif(r(Var), 33.47204738985561) < 1e-14
assert r(sd) == sqrt(r(Var))

Assume that you have a new command xyz.ado, that it produces the result
.13698414276846993, and that you are reasonably convinced that .13698414276846993
is “correct”. You might then be tempted to code in your do-file

assert r(result)==.13698414276846993

You argue thusly: I am reasonably certain that .13698 is correct to −5 digits. I just ran
my program on the data and it produced .13698414276846993, which could be correct
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and presumably is more precise than .13698. I want to be certain that my program
continues to produce the same answers in the future, so I will code in my script

assert r(result)==.13698414276846993

You do that and all works well. Next year, you buy a new computer and perhaps
change operating systems. You run your certification scripts and Stata reports, “asser-
tion is false”; r(9).

How can it be that the answer changed? If you changed operating systems, you
will probably decide that there must be a bug in Stata. In the case where you did not
change operating systems, you begin to wonder if all the files copied correctly.

You have just encountered the problem of false precision. Given the way modern
computers work, the same code can produce slightly different answers due to the way
coprocessors are designed and employed. Double precision floating point numbers are
stored using 64 bits. Coprocessors, however, use 80 bits, providing extra guard bits to
improve accuracy. On the coprocessor, calculations are made using 80 bits and are then
handed back to the CPU rounded to 64 bits. If you were to calculate (a + b)/(c + d),
part of it or all of it is performed at 80-bit accuracy, and whether it is all or part makes
a difference. On some computers, the result will be to calculate (a+ b)/(c+ d) using 80
bits and then to round the result to 64 bits. On others, a+b will be calculated at 80-bit
accuracy and the result then rounded to 64 bits, c + d calculated similarly, and then
the two 64-bit results divided (with 80 bits of precision) and rounded to 64 bits. The
problem can be even worse than that. If your code calculates z = (a + b)/(c + d) and
later uses z in a subsequent calculation, with some computer/compiler combinations,
z will continue to reside on the coprocessor in its full 80-bit glory and, on others, the
64-bit rounded version will be used.

The outcome is that the same calculation will yield slightly different results.

There are other, more traditional problems that can affect accuracy. Try the follow-
ing experiment:

. use auto, clear

. sort mpg

. probit foreign mpg weight

. mat b1 = e(b)

. sort make

. probit foreign mpg weight

. mat b2 = e(b)

. display mreldif(b1, b2)

You will discover that b1 differs from b2 by about 1.915e–16. probit went through
the same calculation in both cases, but the dataset was in a different order, and the
calculation of the probit estimator involved the calculations of sums. Although addition
is associative mathematically, in finite-precision floating point arithmetic, it is not. A
small difference arose because the sums over the data were performed in a different
order.

The result of all of this is that you do not want to code
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assert r(result)==.13698414276846993

You want to code

assert reldif(r(result), .13698414276846993) < 1e-5

or

assert reldif(r(result), .13698414276846993) < 1e-6

Judging how many digits to include is virtually impossible unless you have lots of
different computers and run the script on all of them, and even then, you have to make
a judgment because you know there are computers on which you have not tested. At
StataCorp, we would probably code

assert reldif(r(result), .13698414276846993) < 1e-14

and wait for a computer to complain, in which case we might trim the comparison back
to 1e–13. We tend to require lots of precision, even false precision, because we want to
know when an answer changes, even if it is just a little bit. As the code changes, the
answer will change a little and we will have to modify our test script. In our case, we
want to exercise lots of control, and we are willing for test scripts to raise lots of false
alarms. In your case, it would not be unreasonable to restrict the comparison to the
number of digits you actually believe.

Testing extreme cases

No test script can prove that a command works by verifying just a few examples, even
when the answers are known with certainty. One of the best ways to test routines is
with extreme cases. Extreme cases put considerable stress on your code and, if the
code can handle that, the chances that it is getting interior cases correct are greatly
improved.

R2 = 1 regressions; xt estimators run on a single panel or multiple, single-observation
panels, or on dependent variables that do not vary; all form fruitful examples worth ex-
ploring. Many estimators, in such extreme contexts, reduce to other, simpler estimators
to which results may be compared. Moreover, it is worth remembering that users will
use your program in inappropriate circumstances if, due to nothing else, by accident.

These problems are easily set up, and easily run, and nearly always detect problems
in the underlying code.

In summarize.do, another part of the test script reads
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top of summarize.do
(lines omitted)
clear
set obs 1000
gen double x = 1/9
summarize
assert r(mean)==1/9 and r(Var)==0
(lines omitted)

end of summarize.do

This particular test is extremely taxing and few packages could pass it. One-ninth is
both a repeating decimal and a repeating binary; that the mean comes out to be exactly
one-ninth (to 64-bit precision) and the variance to be zero establishes that Stata’s quad-
precision (128 bit) routines are working.

Testing for errors

It is not sufficient to test that your code works in circumstances where it should. You
must also test that your code does not work in circumstances where it should not. This
is not unlike testing extreme cases except that, in extreme cases, you are expecting an
answer and, in this case, you are simply expecting that your code will refuse to run.
For example, in testing probit, one might code

use auto, clear
gen outcome = 1
rcof "noisily probit outcome mpg weight" == 2000
replace outcome == 0
rcof "noisily probit outcome mpg weight" == 2000

rcof is one of the more useful commands in the cscript suite; see help rcof. Test
scripts stop when an error arises, which is to say, when the return code is not zero.
Thus, it would seem impossible to include intentional errors in test scripts. rcof solves
that problem. rcof runs a command and verifies that the return code is as stated. If it
is, rcof is satisfied and there is no error, rcof’s return code is zero. If the return code
is not as stated, rcof itself returns a nonzero return code, stopping the test.

rcof can be used to test that the return code is a particular number, as we did
above, or simply to establish that some error did indeed occur:

rcof "noisily probit outcome mpg weight" ~= 0

Testing for syntax errors

If the command has complicated or nonstandard syntax, verify that the command gives
the appropriate error message if used inappropriately:

rcof "noisily summarize mpg, detail meanonly" ~= 0

The above line appears in the official test script for summarize. Options detail and
meanonly are mutually exclusive.
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Testing data-management commands

Not just statistical commands require testing. Statistical commands return results in
r() or e(), and it is simply a matter of verifying that saved results are as expected. In
data-management commands, results are seldom returned. Instead, the dataset itself is
modified.

Determining correct answers in data-management commands is easy. Asserting those
results sometimes requires more code than the testing of statistical commands. For
instance, verifying that sort works with one variable is easy enough:

sort x
assert x>=x[_n-1] if _n>1

Establishing that reshape works takes more lines:

input id sex inc80 inc81 inc82
1 0 5000 5500 6000
2 1 2000 2200 3300
3 0 3000 2000 1000
end

reshape groups year 80 81 82
reshape vars inc
reshape cons id sex
reshape q
reshape long
sort id year
assert _N==9
assert id==1 in 1/3
assert id==2 in 4/6
assert id==3 in 7/9
assert sex==0 in 1/3
assert sex==1 in 4/6
assert sex==0 in 7/9
assert inc[1]==5000 & inc[2]==5500 & inc[3]==6000
assert inc[4]==2000 & inc[5]==2200 & inc[6]==3300
assert inc[7]==3000 & inc[8]==2000 & inc[9]==1000
by id: assert year==80+_n-1

The above are some of the 161 lines that appear in the official reshape.do file for testing
reshape.ado.

Testing graphical commands

Most graphical commands return nothing except a graph on the screen. All graphical
commands, however, include option saving(filename, replace) for saving the graph
into a file, and that provides the key for comparing graphs created in test script with
graphs that have been carefully reviewed and previously saved.

Test scripts for graphical commands should specify the saving(filename,replace)
option. In addition, so that test scripts can be run without having to clear the graph
before the script continues, one should set more off in the test script before drawing
graphs.
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Review the graphs created by the test script and then copy them to another directory
so that, next time, you can verify that the .gph files are the same by comparing the
files the test script produces with the certified copies. This comparison must be done
outside of Stata using something like the Unix cmp(1) command.

At StataCorp, we copy files to a Unix computer from our Windows and Macintosh
certification runs. Unix-style tools are available for free for Windows from the Cygwin
project (Cygwin Group 2001, http://www.cygwin.com). The modern Macintosh OS X
operating system is based on Unix and includes the cmp command.

Testing if and in

Errors in honoring if exp and in range can easily occur in Stata code, and so it is of
importance that you test these components. In summarize.do appears the following
lines:

summarize mpg if foreign
assert r(N)==22 & r(sum_w)==22 & r(min)==14 & r(max)==41 & r(sum)==545
assert reldif(r(mean), 24.77272727272727) < 1e-14
assert reldif(r(Var), 43.70779220779221) < 1e-14
assert r(sd)==sqrt(r(Var))

It is sometimes useful to place the assertions for a particular case into a program so
that they can be used repeatedly. A piece of summarize.do could have read

program define check_if_foreign
assert r(N)==22 & r(sum_w)==22 & r(min)==14 & r(max)==41 & r(sum)==545
assert reldif(r(mean), 24.77272727272727) < 1e-14
assert reldif(r(Var), 43.70779220779221) < 1e-14
assert r(sd)==sqrt(r(Var))

end

use auto, clear
summarize mpg
rcof "check_if_foreign" ~= 0 /* verify test script works */

keep if foreign
summarize mpg
check_if_foreign

use auto, clear
summarize mpg if foreign
check_if_foreign

Many Stata test scripts read like this.

Simultaneous authoring

The writing of test scripts can actually speed development if you write the test script
as you write the code. Most complicated commands do not come into existence all at
once. You begin writing the command and, early on, it handles some simple problem
while the parts of the code to handle other parts of the problem are still missing, then
it handles more parts, and so on.
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Write test scripts as each piece of the program is made to work. The advantage of
this is that, as you delve deeper into the problem, you will sometimes need to rewrite
portions of the code to make those parts more general. As the program grows in
complexity, you can run your partial test script to verify that those portions still work.
Moreover, when a piece fails certification, you know exactly where to look in the code
to address the problem.

At StataCorp, most developers work with three windows open at once. In one
window is the command being developed. In another is the test script. In the third is
Stata where both the test script and the command can be run.

A test script for xttest3

Let us write a test script for xttest3, a program by Christopher F. Baum of Boston
College. xttest3 can be found in the Boston Archive. You can most easily find and
install the program by typing “findit xttest3”. (Editor’s note: unexpectedly and
randomly, xttest3 also appears in this issue of the Journal, see Baum (2001).)

We are going to write the new test script first/xttest3.do. As we write the test
script, we will test it by launching Stata, changing to the bench/first directory, and
typing “do xttest3”. Once we are satisfied with the script, we will add the line “do
xttest3” to first/test.do, so that when we type “do test” from bench/first we
run all the tests in the first subdirectory. When we type do testall from the bench
directory, test script xttest3.do will be run automatically.

xttest3 was chosen because the author provided a well-written help file that in-
cluded a reference to a dataset from a published source, (Greene 2000, p. 598), which
can be used to establish that xttest3 gives correct answers. In the help file, the author
gave as an example

. use http://fmwww.bc.edu/ec-p/data/greene2000/tbl15-1.dta,clear

. iis firm

. xtreg i f c if firm~=2, fe

. xttest3

and that, as a matter of fact, will become the basis of the first part of the test script.
The first thing to do, however, is to type

. copy http://fmwww.bc.edu/ec-p/data/greene2000/tbl15-1.dta tbl15-1.dta

so that you have a copy of the dataset in the first subdirectory. This is a rule of
test-script writing: test scripts should not refer to files outside of the directory in which
the test script resides. They should not even refer to files in other subdirectories of the
test suite. Each subdirectory of the test script forms an independent component, and all
the materials for that component should appear in the directory along with the do-file.
At StataCorp, this rule extends even to datasets shipped with Stata: if you want to use
auto.dta, copy the file from the Stata directory into the test subdirectory. You never
know when or how StataCorp might change the file, and you want your test script to
continue working in the future.
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I began xttest3.do as follows:

top of xttest3.do
cscript xttest3
which xttest3

use tbl15-1, clear
iis firm
quietly xtgls i f c, panels(heteroskedastic)
xttest3

end of xttest3.do

The published source indicated that xttest3 should report a χ2 value of 14,681.3 with
5 degrees of freedom. In fact, xttest3 reported a value of 14,948.19. This difference
was caused by xttest3 using the FGLS estimate of the overall variance, whereas in the
published example, the source used the OLS estimate. The source also noted that either
variance estimate could be used and, one would suspect, the FGLS estimate should be
more general. In addition, but of no importance in this case, xttest3 obtained variance
estimates by dividing by n, whereas the published source used n− 1. Pencil-and-paper
calculation certified the value of 14,948.19, and so the test script was modified to read

top of xttest3.do
cscript xttest3
which xttest3

use tbl15-1, clear
iis firm
quietly xtgls i f c, panels(heteroskedastic)
xttest3
assert r(df)==5 & reldif(r(wald), 14948.19)<.000001
assert r(p)==chi2tail(r(df), r(wald))

end of xttest3.do

The help file that accompanied xttest3 suggested typing

. xtgls i f c if firm~=2, panels(heteroskedastic)

. xttest3

and that was next added to the script, but twice. In the first rendition, added was

keep if firm~=2
xtgls i f c
xttest3

and the answer produced was declared to be correct under the assumption that if
xttest3 worked with one dataset in which the answer was carefully verified, it would
work equally well with a similar dataset. Note, however, that I did not assume that
xttest3 could correctly restrict itself to the estimation subsample rather than using all
the data in memory. In the code above, all observations are used. Then the answer just
produced was used to certify

xtgls i f c if firm~=2, panels(heteroskedastic)
xttest3
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The test script now read

top of xttest3.do
cscript xttest3
which xttest3

use tbl15-1, clear
iis firm
quietly xtgls i f c, panels(heteroskedastic)
xttest3
assert r(df)==5 & reldif(r(wald), 14948.19)<.000001
assert r(p)==chi2tail(r(df), r(wald))

keep if firm~=2
quietly xtgls i f c, panels(heteroskedastic)
xttest3
assert r(df)==4 & reldif(r(wald), 5903.67)<.00001
assert r(p)==chi2tail(r(df), r(wald))
use tbl15-1, clear
iis firm
quietly xtgls i f c if firm~=2, panels(heteroskedastic)
xttest3
assert r(df)==4 & reldif(r(wald), 5903.67)<.00001
assert r(p)==chi2tail(r(df), r(wald))

end of xttest3.do

This was an important test to add. While xttest3 itself does not explicitly allow an if
exp, it is implicitly a function of the estimation sample. It would be very easy for the
programmer of xttest3 to have not properly restricted the calculation to the estimation
subsample. We have now verified that the e(sample) is indeed respected because we
got the same result both ways.

Concerning the subsample, I also decided to test that xttest3 would respond grace-
fully when the data had disappeared altogether. Interactively, I typed

. drop _all (to drop the data)

. xtgls (to verify that estimation results were still present)

. xttest3 (to see what would happen)

and discovered that xttest3 reported “f not found”; r(111), which I viewed as satisfac-
tory. I then added to the test

drop _all
xtgls /* verify estimation results still present */
rcof "noisily xttest3" == 111

xttest3 can be used after xtgls and xtreg, fe. I had no published results with
which to compare, so on the side I ran a simulation of the test. In the process I discovered
that the test performed very poorly when T is small relative to the number of panels
but, as T increased, the coverage converged to what was expected. I then used some of
the code from my simulation to add to the test script:
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* test after xtreg, fe

* make dataset
clear
set seed 10394
set obs 50
gen id = _n
gen u1 = invnorm(uniform())
expand 120 /* if T=20, test performs poorly */
gen u2 = invnorm(uniform())
corr2data x1 x2, mean(1 2) corr(1 .4 .4 1)
gen y = x1 + x2 + u1 + u2
quietly xtreg y x1 x2, fe i(id)

xttest3
assert r(df)==50 & reldif(r(wald), 60.95)<.0001
assert r(p)==chi2tail(r(df), r(wald))

In the above, I simulated a dataset under the null hypothesis. Note that I set the
random-number seed so that, each time the script is run, I will get the same results.
This then allowed me to assert the answer produced by xttest3.

That done, I added one more test to verify that xttest3 would not run after xtreg,
re. I knew that xttest3 would run after xtreg, fe, and I was concerned that it would
inappropriately run after any xtreg command. I added the lines

use tbl15-1, clear
iis firm
quietly xtreg i f c, re
rcof "noisily xttest3" == 301 /* last estimates not found */

Finally, this being an xt estimator, I wanted to try extreme cases: one example of
there being one panel with lots of observations, and the other being lots of panels, each
with one observation. Interactively, to see how xttest3 would respond, I typed

. use tbl15-1, clear

. gen id1 = 1

. iis id1

. xtgls i f c, panel(hetero)

. xttest3

I discovered that in this case xttest3 reported a χ2 of zero but, when I did a return
list, I discovered that the actual value was about 2e–30. Looking at the code, I could
see how such a small number could arise.

I then tried the many panels, each with one observation case:

. gen id2 = _n

. iis id2

. xtgls i f c, panel(hetero)

. xttest3

xttest3 again reported a χ2 of zero and this time, return list reported that the result
was exactly zero.
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In any case, I was greatly reassured about the accuracy of xttest3 by these two
tests and added them to the test script:

use tbl15-1, clear
gen id1 = 1
gen id2 = _n
iis id1
quietly xtgls i f c, panels(heteroskedastic)
xttest3
assert r(df)==1 & r(wald)<1e-29

iis id2
quietly xtgls i f c, panels(heteroskedastic)
xttest3
assert r(df)==100 & r(wald)==0

The final test script read

top of xttest3.do
cscript xttest3
which xttest3

use tbl15-1, clear
iis firm
quietly xtgls i f c, panels(heteroskedastic)
xttest3
assert r(df)==5 & reldif(r(wald), 14948.19)<.000001
assert r(p)==chi2tail(r(df), r(wald))

keep if firm~=2
quietly xtgls i f c, panels(heteroskedastic)
xttest3
assert r(df)==4 & reldif(r(wald), 5903.67)<.00001
assert r(p)==chi2tail(r(df), r(wald))
use tbl15-1, clear
iis firm
quietly xtgls i f c if firm~=2, panels(heteroskedastic)
xttest3
assert r(df)==4 & reldif(r(wald), 5903.67)<.00001
assert r(p)==chi2tail(r(df), r(wald))

drop _all
xtgls /* verify estimation results still present */
rcof "noisily xttest3" == 111

* test after xtreg, fe

* make dataset
clear
set seed 10394
set obs 50
gen id = _n
gen u1 = invnorm(uniform())
expand 120 /* if T=20, test performs poorly */
gen u2 = invnorm(uniform())
corr2data x1 x2, mean(1 2) corr(1 .4 .4 1)
gen y = x1 + x2 + u1 + u2
quietly xtreg y x1 x2, fe i(id)
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xttest3
assert r(df)==50 & reldif(r(wald), 60.95)<.0001
assert r(p)==chi2tail(r(df), r(wald))

* verify does not work after random-effects estimation
use tbl15-1, clear
iis firm
quietly xtreg i f c, re
rcof "noisily xttest3" == 301 /* last estimates not found */

* extreme cases
use tbl15-1, clear
gen id1 = 1
gen id2 = _n
iis id1
quietly xtgls i f c, panels(heteroskedastic)
xttest3
assert r(df)==1 & r(wald)<1e-29

iis id2
quietly xtgls i f c, panels(heteroskedastic)
xttest3
assert r(df)==100 & r(wald)==0

end of xttest3.do

This is an adequate test script. Although it is long, the entire assembly time was
about five minutes, ignoring the problems with the mismatch with the source (which
took about half an hour to work out) and the side production of a simulation to verify
coverage (another hour). Had I instead just done a pencil-and-paper calculation with
a small dataset, I could have skipped the simulation, but since I was not familiar with
this test, I wanted to do more than simply verify that a calculation had been carried
out correctly.
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