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Abstract. Since its introduction to a wondering public in 1972, the Cox pro-
portional hazards regression model has become an overwhelmingly popular tool in
the analysis of censored survival data. However, some features of the Cox model
may cause problems for the analyst or an interpreter of the data. They include
the restrictive assumption of proportional hazards for covariate effects, and “loss”
(non-estimation) of the baseline hazard function induced by conditioning on event
times. In medicine, the hazard function is often of fundamental interest since it
represents an important aspect of the time course of the disease in question. In the
present article, the Stata implementation of a class of flexible parametric survival
models recently proposed by Royston and Parmar (2001) will be described. The
models start by assuming either proportional hazards or proportional odds (user-
selected option). The baseline distribution function is modeled by restricted cubic
regression spline in log time, and parameter estimation is by maximum likelihood.
Model selection and choice of knots for the spline function are discussed. Interval-
censored data and models in which one or more covariates have non-proportional
effects are also supported by the software. Examples based on a study of prognostic
factors in breast cancer are given.

Keywords: st0001, parametric survival analysis, hazard function, proportional haz-
ards, proportional odds

1 Introduction

Cox proportional hazards regression has essentially become the automatic choice of
analysis tool for modeling survival data in medical studies. However, the Cox model
has intrinsic features that may cause problems for the analyst or the interpreter of the
data:

• It treats the baseline distribution of the observations as a high-dimensional nui-
sance parameter. For example, a typical estimate of the baseline hazard function
following Cox is a “noisy” step function.

• It assumes that covariate effects act proportionally on the baseline hazard function,
independent of time. This strong assumption is often not checked.

• Extending it to allow for nonproportional hazards is by no means a trivial modeling
exercise.

c© 2001 Stata Corporation st0001



2 Flexible alternatives to the Cox model

• It does not give a complete probability specification for the data. Validation of the
model and simulation of datasets realistically similar to a given one are impeded.

Hjort (1992) aptly noted that

“A parametric version [of the Cox model], . . . if found to be adequate, would
lead to more precise estimation of survival probabilities and . . . concurrently
contribute to a better understanding of the phenomenon under study.”

In the present article, I will present parametric versions of the Cox model and
more. The idea of spline-smoothing the distribution function was suggested by Efron
(1988) and was taken up by other authors, as indicated below. The models are imple-
mented in an ado-file called stpm. Further details and additional examples are given by
Royston and Parmar (2001).

Visualisation of the survival function for censored survival data is easily done by
using the Kaplan–Meier plot. In the Cox model, however, the baseline hazard function
is regarded as a high-dimensional nuisance parameter and is highly erratic. The behavior
of the hazard function is certainly of potential interest because it directly reflects the
time course of the process under study. To estimate it informatively (i.e., smoothly),
some type of parametric model may be appropriate. For example, Gelfand et al. (2000)
proposed a parametric method based on a mixture of Weibull distributions. Other
significant recent contributions to hazard regression include Kooperberg et al. (1995)
and Rosenberg (1995).

A second important issue is how to deal with nonproportional hazards. Although
the Cox model may be extended to allow for nonproportional hazards, such as by incor-
porating time-varying regression coefficients. See, for example, Hastie and Tibshirani
(1993) or Hess (1994). There is no natural, widely-accepted approach, and obtaining a
satisfactory model can be complicated. There are further concerns about the complexity
involved in the practical interpretation of the coefficients and in the robustness of such
models.

The proportional hazards model is well known, but the proportional odds model for
survival data also has a fairly long history. It was first described in a semiparamet-
ric framework by Bennett (1983), was further developed by several authors including
Yang and Prentice (1999), and was adapted by Rossini and Tsiatis (1996) for modeling
current status (i.e., interval censored) data.

Here, I will present the Stata ado-file stpm, which implements the flexible parametric
models described by Royston and Parmar (2001). Generically, such models are based
on transformation of the survival function by a link function g (.),

g {S (t; z)} = g {S0 (t)} + β′z
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where S0 (t) = S (t;0) is the baseline survival function and β is a vector of parameters to
be estimated for covariates z. Within this framework, Younes and Lachin (1997) used
the parameterized link function of Aranda-Ordaz (1981),

g (x; θ) = log
x−θ − 1

θ

where θ = 1 corresponds to the proportional odds model and θ → 0 to the proportional
hazards model. Younes and Lachin (1997) took a related approach, estimating the
baseline hazard function by B-splines and determining S0 (t) by integration. Shen (1998)
used sieve maximum likelihood and monotone splines with variable orders and knots to
estimate very flexible proportional odds models.

The Royston and Parmar (2001) approach is to use natural cubic splines to model
g [S0 (t)] within the Aranda-Ordaz family of link functions. They chose to work only
with the odds (θ = 1) and hazards (θ → 0) scaling, rather than with more general
values of θ for which the interpretation of covariate effects is obscure. Models with a
probit link function, which extend the lognormal distribution, are also supported by
stpm, but are not further described here. When smoothing of g [S0 (t)] is implemented
on the log-time scale, as here, the fitted function is typically gently curved or nearly
linear, and is usually very smooth. The smoothness tends to reduce the chance of
artifacts in the estimated hazard function. The estimate of g [S0 (t)] must theoretically
be monotone in t, whereas natural cubic splines, which are constrained to be linear
beyond certain extreme observations, are not globally monotone. However, the linearity
constraint imposes monotonicity in the tail regions where the observed data are sparse,
whereas in regions where data are dense (and provided the sample size is not too small),
monotonicity is effectively imposed by the data themselves.

When the relationship between the baseline log cumulative hazard or log cumulative
odds of failure and log time is modeled as linear rather than by using splines, the
approach reduces to fitting Weibull or log-logistic distributions. The Weibull is, of
course, familiar as a model for lifetimes. The (generalized) log-logistic distribution has
been used for survival modeling by Mackenzie (1996) and for modeling recurrent event
data by Mackenzie (1997).

Extensions of the basic models to include models with nonproportional scaling for
some subset of the covariates are also briefly mentioned. The covariates may be of any
type (binary, categoric, or continuous). Nonproportionality is induced by multiplicative
interactions between the covariates and the spline basis functions. Such models are
more complex than the basic ones and require extra care in construction, evaluation of
appropriateness, and interpretation. Even under statistically significant but quantita-
tively mild departures from proportionality, the proportionately scaled models may give
a description of the data which is adequate for practical purposes.



4 Flexible alternatives to the Cox model

2 Syntax

stpm is a regression-like command with the following syntax:

stpm
[
varlist

] [
if exp

] [
in range

]
, model complexity

scale(hazard | normal | odds)
[
left(leftvar) stratify(strat varlist)

noconstant nolog offset(offsetvar) spline(splinevar derivativevar)

theta(est | #)
]

where model complexity is df(#) or knots(
[
l|%]knotlist) or knots(u#1 #2 #3).

stpm is for use with st data. You must stset your data first.

3 Options

Note that the complexity of the spline part of the model is defined by either df() or
knots(), so one (but not both) of these options must be specified.

df(#) specifies the degrees of freedom for the natural spline function, and must be
between 1 and 6. The knots() option is not applicable, and the knots are placed at
the following centiles of the distribution of the uncensored log times:

df Centile positions

1 (no knots)
2 50
3 33 67
4 25 50 75
5 20 40 60 80
6 17 33 50 67 83

>6 (not allowed)

knots(
[
l|%]knotlist) defines the internal knot positions for the spline. If you specify

knots(knotlist), then knotlist should consist of values of log time. If you specify
knots(lknotlist), then the values in knotlist are taken to be times and are automat-
ically log transformed by stpm. (This is a convenience feature; it is easier to enter
times than it is to enter log times.) If you specify knots(%knotlist), then the values
in knotlist are taken to be centile positions in the distribution of the uncensored log
times.

knots(u#1 #2 #3) also defines the internal knots for the spline. #1 knots are assigned
at random uniformly distributed positions between #2 and #3, where #2 is the
lowest centile position of the uncensored log times you wish to entertain and #3 is
the highest. A suggested choice is #2 = 10, #3 = 90; knots are to be placed at
random positions between the 10th and 90th centiles of the uncensored log times.
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scale(hazard | normal | odds) is not optional and specifies the scale of the model.
The hazard, normal and odds options fit models on the scale of the log cumulative
hazard, normal equivalent deviate, or log-cumulative odds of failure respectively.

left(leftvar) specifies that some or all of the survival-time observations are interval-
censored. The rules for specifying values of leftvar and their meanings in terms of
interval censoring are as follows:

leftvar d Meaning

. or t 0 Right censored at t

. or t 1 Event at t
0 0 Right censored at t
0 1 Interval censored, event in (0, t]
< t 0 Late entry at leftvar , right censored at t
< t 1 Interval censored, event in [leftvar , t]

Note that stpm does not support datasets with late entry (specified via the enter()
option of stset and generating positive values of the variable t0) and interval censoring
together, except when the late entry is specified by way of leftvar and d as in the above
table.

stratify(strat varlist) stratifies the spline functions according to the variables in
strat varlist. It will rarely make sense for the variables in strat varlist not to be
among those in varlist , but this is not checked.

noconstant suppresses the constant term in the xb equation.

nolog suppresses the iteration log while the model is fit.

offset(offsetvar) defines the offset for the xb equation. offsetvar is added to the linear
predictor.

spline(splinevar derivativevar) allows you to specify the baseline spline function and
its derivative with respect to log( t). For a given model where the spline function
has been estimated, splinevar can be created by using, for example,

. predict < splinevar>, zero < scale option>

where <scale option> is cumodds, cumhazard, or normal. derivativevar can be cre-
ated by using, for example,

. predict < derivativevar>, dzdy

theta(est | #) only applies with scale(odds) and estimates the transformation pa-
rameter θ or performs estimation with θ set to #. The transformation of the (base-
line) survival function S0(t) is then

gθ{S0(t)} = ln
{
S0(t)−θ − 1

θ

}
Thus, theta = 0 corresponds to the cumulative hazards model. With theta(est),
θ is estimated and presented on a log scale, i.e., ln(θ). With theta(#), # must be
positive.
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4 Example: Breast cancer data

I will use a subset of the data for 686 node-positive breast cancer patients analyzed in
great detail by Sauerbrei and Royston (1999). The data are provided in bc.dta. The
full dataset is available on web site http://www.blackwellpublishers.co.uk/rss/. The
outcome of interest is the recurrence-free survival time; that is, the duration in years
from entry into the study (typically, the time of diagnosis of primary breast cancer) until
either death or disease recurrence, whichever occurred first. There were 299 events for
this outcome, and the median follow-up time was about 5 years. The dataset in bc.dta
has already been stset. In addition, three prognostic groups of about equal size have
been created for use in this exercise. The grouping is based on prognostic model III
of Sauerbrei and Royston (1999), and takes into account the patient’s age, number of
positive lymph nodes (a number that is positively and strongly associated with a poor
prognosis), the tumor grade, the tumor progesterone receptor status, and whether the
patient had received hormonal treatment. The three groups are labeled Good, Medium,
and Poor. Figure 1 shows the Kaplan–Meier survival curves for these groups.

Survival by prognostic group

S
(t

)

Recurrence-free survival time, years
0 1 2 3 4 5 6 7

0.00

0.25

0.50

0.75

1.00

Good

Medium

Poor

Figure 1: Kaplan–Meier survival curves for prognostic groups in the breast cancer data.

bc.dta also contains dummy variables group2 and group3 which are indicators of
membership in the Medium and Poor groups, respectively. (The Good group is therefore
indicated by group2==0 and group3==0.) The output from running stcox is as follows:

. stcox group2 group3

failure _d: censrec
analysis time _t: rectime/365.25

Iteration 0: log likelihood = -1788.1731
Iteration 1: log likelihood = -1734.3879
Iteration 2: log likelihood = -1731.1803
Iteration 3: log likelihood = -1731.1664
Refining estimates:
Iteration 0: log likelihood = -1731.1664
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Cox regression -- Breslow method for ties

No. of subjects = 686 Number of obs = 686
No. of failures = 299
Time at risk = 2111.978097

LR chi2(2) = 114.01
Log likelihood = -1731.1664 Prob > chi2 = 0.0000

_t
_d Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

group2 2.316138 .3969696 4.90 0.000 1.655292 3.240815
group3 5.041443 .8295395 9.83 0.000 3.651697 6.960093

Clearly the prognostic grouping is highly significant, with hazard ratios (HRs) of 2.3
and 5.0 for the Medium and Poor groups compared with the Good group.

What of the proportional hazards assumption? We re-estimate the Cox model and
save the Schoenfeld and scaled Schoenfeld residuals and then carry out Stata’s test of
the PH assumption, stphtest:

. stcox group2 group3, schoenfeld(sch*) scaledsch(sca*)
(output omitted )

. stphtest, rank detail

Test of proportional hazards assumption

Time: Rank(t)

rho chi2 df Prob>chi2

group2 -0.10829 3.49 1 0.0616
group3 -0.18132 9.41 1 0.0022

global test 9.56 2 0.0084

The results show that there is definite evidence of nonproportional hazards overall
(p = 0.008) and nonproportional hazards for at least the second dummy variable (p =
0.002).

Let us now reanalyze the data using stpm. We will fit models with two different
metrics for the covariates: proportional hazards (PH) and proportional odds (PO). The
former metric is familiar. The latter metric is also familiar; it is the one usually used
in logistic regression of a binary outcome variable on covariates, where the regression
coefficient expresses the effect of a covariate on the odds of an event. For survival
analysis, see Bennett (1983). The assumption of proportional odds means that the effect
of the covariate on the cumulative odds of an event is independent of time. If S (t) is
the survival function, then the cumulative odds function is defined as {1 − S (t)} /S (t).
Compare this with the proportional hazards assumption, which may also be expressed
in terms of the cumulative hazard function.
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4.1 Parametric proportional hazards modeling

The command to fit a parametric PH model to the breast cancer data is, for example,

. stpm group2 group3, df(2) scale(hazard)

initial: log likelihood = -619.87786
rescale: log likelihood = -619.87786
rescale eq: log likelihood = -619.87786
Iteration 0: log likelihood = -619.87786
Iteration 1: log likelihood = -619.37792
Iteration 2: log likelihood = -619.37621
Iteration 3: log likelihood = -619.37621

Number of obs = 686
Wald chi2(2) = 104.33

Log likelihood = -619.37621 Prob > chi2 = 0.0000

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

s0
_cons 2.774104 .2680826 10.35 0.000 2.248671 3.299536

s1
_cons .2184732 .0377998 5.78 0.000 .144387 .2925595

xb
group2 .8344981 .1712758 4.87 0.000 .4988036 1.170193
group3 1.61209 .1641745 9.82 0.000 1.290314 1.933866
_cons -3.088731 .1713793 -18.02 0.000 -3.424628 -2.752834

Deviance = 1238.752 (686 observations.)

The syntax resembles that of stcox, but with the addition of two options: df(2)
and scale(hazard). The latter is self-explanatory. The df() option determines the
complexity of the model for the baseline distribution. For now, we will take df(2) and
return to that issue later.

The output from stpm is divided into several parts, with each part representing the
different “equations” that have been estimated. Equations s0, s1, . . . relate to modeling
of the baseline distribution; we will return to them later. The final equation, xb, contains
the usual regression coefficients expressed here as log-hazard ratios. Compare these
coefficients with those from stcox:

. stcox group2 group3, nohr
(output omitted )

_t
_d Coef. Std. Err. z P>|z| [95% Conf. Interval]

group2 .8399011 .1713929 4.90 0.000 .5039772 1.175825
group3 1.617692 .164544 9.83 0.000 1.295192 1.940193

The log hazard ratios and their standard errors are almost identical to those from
stpm. Note that stpm also gives us an intercept term, [xb] cons = −3.088731, which
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in the Cox model is absorbed into the baseline hazard function and is not estimated
explicitly.

predict may be used following stpm to provide (among several possibilities) an
estimate of the hazard function, evaluated at each observed time and conditional on the
covariates:

. predict haz, hazard

Figure 2 shows the behavior of this estimated hazard function according to time
since diagnosis.

Hazard function, assuming proportional hazards
 

h(
t)

Recurrence-free survival time, years
0 1 2 3 4 5 6 7

0

.2

.4

Figure 2: Hazard function for prognostic groups in the breast cancer data

The hazard function rises to a maximum of about 1.5 years after diagnosis, then
steadily falls. To give some meaning to the numbers on the y-axis, note that the all-
cause hazard of death for a female aged 85 years in the UK is approximately 0.1, rising
to approximately 0.4 at age 100 years. Thus, the risk of recurrence or death for a breast
cancer patient in the worst of our 3 prognostic groups is comparable with the force of
mortality experienced by a woman of over 85 years old.

4.2 Comparison with Weibull model

The prototype PH parametric survival model is the Weibull (or the exponential, which
is a Weibull with a constant hazard function, or equivalently a Weibull with shape
parameter p = 1). With the Weibull model, the hazard function is proportional to tp−1,
where t is time. The hazard is therefore monotone in t. We will compare the Weibull
with the PH spline model just presented. First we fit a Weibull model to the breast
cancer data using Stata’s streg command:
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. streg group2 group3, dist(weibull)
(output omitted )

Weibull regression -- log relative-hazard form

No. of subjects = 686 Number of obs = 686
No. of failures = 299
Time at risk = 2111.978097

LR chi2(2) = 122.53
Log likelihood = -638.45432 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

group2 2.331564 .3993457 4.94 0.000 1.666692 3.261666
group3 5.325107 .8746166 10.18 0.000 3.859434 7.347389

/ln_p .3218311 .048409 6.65 0.000 .2269512 .4167111

p 1.379652 .0667876 1.254769 1.516964
1/p .7248206 .0350879 .6592114 .7969597

The deviance is −2× (−638.45) = 1276.9, compared with 1238.8 for the parametric
model, showing that the Weibull fits less well. Next, we will compare the log cumulative
hazards estimated from the two models with the empirical log cumulative hazards from
the Nelson–Aalen estimator:

. for num 1 2 3: predict sX if group==X, surv \ gen lnHweibX=ln(-ln(sX))

. * Fit stpm model and predict log cumulative hazard functions

. stpm group2 group3, df(2) scale(hazard)
(output omitted )

. for num 1 2 3: predict lnHX if group==X, cumhaz

. for num 1 2 3: sts gen naX=na if group==X \ gen lnaX=ln(naX)

Figure 3 shows the resulting functions plotted against log time.

(Graph on next page)
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log cumulative hazard function, assuming PH
Solid: Nelson-Aalen. Long dashes: Weibull. Short dashes: PH spline.
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(t
)

Recurrence-free survival time, years, log scale
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-2

0

Figure 3: Log cumulative hazard functions for prognostic groups in the breast cancer
data.

This graph shows several features. First, the proportional hazards assumption seems
to break down in that the empirical log cumulative hazard functions do not appear
parallel between the prognostic groups; the functions become closer together at large t.
Second, there is curvature, which is not captured by the Weibull model. The curvature
is somewhat better accommodated by the spline model, though far from perfectly, since
the PH assumption is still imposed on the data. Thirdly, the empirical functions are
highly variable for low values of t. This would be more evident if we were to show 95%
pointwise confidence limits for them. Clearly, there is scope for finding models that fit
the data better.

We have not shown the estimated hazard functions from the Weibull model. Since
p > 1, they are monotone increasing and look extremely different from those shown in
Figure 2.

4.3 Parametric proportional odds modeling

The command to fit a parametric proportional odds model to the breast cancer data is,
for example,

. stpm group2 group3, df(2) scale(odds)

initial: log likelihood = -616.3553
rescale: log likelihood = -616.3553
rescale eq: log likelihood = -616.3553
Iteration 0: log likelihood = -616.3553
Iteration 1: log likelihood = -615.49536
Iteration 2: log likelihood = -615.49431
Iteration 3: log likelihood = -615.49431
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Number of obs = 686
Wald chi2(2) = 110.24

Log likelihood = -615.49431 Prob > chi2 = 0.0000

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

s0
_cons 2.914762 .2978938 9.78 0.000 2.330901 3.498623

s1
_cons .1910632 .0442298 4.32 0.000 .1043744 .2777519

xb
group2 1.052285 .206176 5.10 0.000 .6481878 1.456383
group3 2.170996 .2093211 10.37 0.000 1.760734 2.581258
_cons -3.451212 .2030715 -17.00 0.000 -3.849225 -3.053199

Deviance = 1230.989 (686 observations.)

The regression coefficients for group2 and group3 are now log-odds ratios. The
deviance for the model is 1230.99, which is about 8 lower than for the PH model. These
deviances cannot be converted to a significance test since the models are nonnested.
Figure 4 compares the hazard function from the proportional odds model, computed
using predict, with that from the PH model.

Hazard function
Solid lines: PH model; dashes: PO model

h(
t)

Recurrence-free survival time, years
0 1 2 3 4 5 6 7

0

.2

.4

Figure 4: Hazard functions for PH and PO models in the breast cancer data.

The main difference between the hazard functions for the models is that the hazard
for the Poor group eventually approaches that for the other two groups with the PO

model, whereas with the PH model, a constant hazard ratio is maintained indefinitely.
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4.4 Comparison with log-logistic model

The prototype PO parametric survival model is the log-logistic model. The hazard
function is usually unimodal in t, though monotone functions are also possible. Here we
will somewhat extend the earlier example. We will compare the estimated log cumulative
hazard functions from the Nelson–Aalen estimator, the log-logistic model, and the PO

spline model just presented. The required Stata instructions are as follows:

. streg group2 group3, dist(llogistic)
(output omitted )

Log-logistic regression -- accelerated failure-time form

No. of subjects = 686 Number of obs = 686
No. of failures = 299
Time at risk = 2111.978097

LR chi2(2) = 129.65
Log likelihood = -625.5647 Prob > chi2 = 0.0000

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

group2 -.6229638 .1201301 -5.19 0.000 -.8584144 -.3875132
group3 -1.28827 .1182966 -10.89 0.000 -1.520127 -1.056413
_cons 2.13636 .0986964 21.65 0.000 1.942918 2.329801

/ln_gam -.5622217 .0483756 -11.62 0.000 -.6570362 -.4674073

gamma .5699414 .0275713 .5183855 .6266248

The deviance is −2 × (−625.56) = 1251.1, compared with 1231.0 for the PO spline
model, showing that the log-logistic fits less well. Next, the log cumulative hazard
functions:

. for num 1 2 3: predict sX if group==X, surv \ gen lnHllogX=ln(-ln(sX))

. * Fit stpm model and predict log cumulative hazard functions

. stpm group2 group3, df(2) scale(odds)
(output omitted )

. for num 1 2 3: predict lnHX if group==X, cumhaz

. for num 1 2 3: sts gen naX=na if group==X \ gen lnaX=ln(naX)

Figure 5 shows the resulting functions plotted against log time.

(Graph on next page)
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Log cumulative hazard functions, assuming PO
Solid: Nelson-Aalen. Long dashes: Log-logistic. Short dashes: spline.
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Figure 5: Log cumulative hazard functions for prognostic groups in the breast cancer
data.

The spline model seems to fit better than the log-logistic at low t, but as already
noted, the fit is hard to appraise in that region due to the high variance of the Nelson–
Aalen estimate. Figure 6 illustrates this point.

Log cumulative hazard functions, Good group, assuming PO
Solid: Nelson-Aalen. Long dashes: Log-logistic. Short dashes: spline.
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Figure 6: Log cumulative hazard functions and 95% CI for Nelson–Aalen, Good prog-
nostic group.
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The improvement in fit from the log-logistic to the spline model is subtle and is
somewhat masked by the cumulative nature of the plot. Small differences in the cumu-
lative hazard function may result in much larger differences in the hazard function (its
first derivative), as illustrated in Figure 7.

Hazard functions
Long dashes: Log-logistic. Short dashes: spline.
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Recurrence-free survival time, years
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Figure 7: Hazard functions for prognostic groups, log-logistic and PO spline models.

The hazards estimated by the spline model are more peaked and diminish more
rapidly than those from the log-logistic model. Confirmation of the pattern would
require a substantial independent dataset.

5 Some methodological details

5.1 Proportional odds and proportional hazards models

The general proportional hazards model for survival data with a covariate vector z is
defined through the hazard function h (t; z) as

h (t; z) = h0 (t) exp (β′z)

where h0 (t) = h (t;0) is the baseline hazard function. The model may be written in
integrated form as

H (t; z) =
(∫ t

0

h0 (u) du
)

exp (β′z) = H0 (t) exp (β′z)

where H (t; z) is the cumulative hazard function. By analogy, the general proportional
(cumulative) odds model with covariate vector z, see Bennett (1983), may be defined
as

O (t; z) =
1 − S (t; z)
S (t; z)

= O0 (t) exp (β′z)
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where O0 (t) = O (t;0) and O (t; z) is the odds of an event occurring in (0, t) for an
individual with covariate vector z. Covariates in the model act multiplicatively on
the odds of an event, as with the more familiar logistic regression model for a binary
outcome Y , where, for example, O0 (t) is replaced with the baseline odds

Pr (Y = 1 |z = 0) /Pr (Y = 0 |z = 0)

5.2 Survival, density, and hazard functions

The approach used by Royston and Parmar (2001) to estimate the hazard, density,
and survival functions is to smooth either the baseline cumulative odds function or the
baseline cumulative hazard function. With the notation of the previous section, but
for the time being suppressing z, suppose that T is a survival-time random variable
having a log-logistic distribution with location parameter µ and scale parameter σ. Let
x = ln t. We have

S (t) =
{

1 + exp
(
x− lnµ

σ

)}−1

so that

lnO(t) = ln
1 − S (t)
S (t)

=
x− lnµ

σ

is linearly related to x. If T has a distribution similar to a log-logistic, the log cumulative
odds function will be curvilinearly related to x by a function s = s (x). The survival,
density, and hazard functions are then

S (t) = (1 + exp s)−1

f (t) =
ds

dt
exp (s) (1 + exp s)−2

h (t) =
ds

dt
exp (s) (1 + exp s)−1

Suppose now that T has a Weibull distribution with characteristic life µ and shape
parameter p (or scale parameter σ = p−1). Let the cumulative hazard function be
H(t) = − lnS (t) . Then

lnH(t) = ln
{(

t

µ

)p}
= px− p lnµ =

x− lnµ
σ

which is linear in x. If T has a distribution similar to Weibull, then lnH(t) will again be
curvilinearly related to x by a function s. The survival, density, and hazard functions
are

S (t) = exp (− exp s)

f (t) =
ds

dt
exp (s− exp s)

h (t) =
ds

dt
exp (s)
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5.3 Spline-based parametric survival models

Since the distribution of survival times may be neither log-logistic nor Weibull, more
flexible models are needed. The approach taken by Royston and Parmar (2001) is to
model the logarithm of the baseline cumulative odds or hazard function as a natural
cubic spline function of log time, so the general function s (x) of the previous section is
approximated by a spline. The PH spline model with fixed covariate vector z may be
written

ln {− lnS (t; z)} = lnH (t; z) = lnH0 (t) + β′z = s (x) + β′z

whereas for the PO spline model,

ln
{
S (t; z)−1 − 1

}
= lnO (t; z) = lnO0 (t) + β′z = s (x) + β′z

Therefore,
PH spline model: lnH (t; z)
PO spline model: lnO (t; z)

}
= s (x) + β′z

Since ln {− lnS (t; z)} = lnH (t; z), a PH model may also be regarded as one in which
the covariates act linearly on the complementary log-log probability of an event in
(0, t). Also, due to the nonlinear transformation of the log time scale, the metric for
covariate effects with these models is the log (cumulative) hazard, complementary log-
log probability, or log odds scale. An accelerated failure time interpretation is not
available.

Natural cubic splines are defined as cubic splines constrained to be linear beyond
boundary knots kmin, kmax. Such knots are usually, but not necessarily, placed at the
extreme observed x-values. In addition, m internal knots k1 < · · · < km with k1 > kmin

and km < kmax are specified. One can show that the natural cubic spline may be written
as

s (x) = γ0 + γ1x+ γ2v1 (x) + · · · + γm+1vm (x)

where the jth basis function is defined for j = 1, . . . ,m as

vj (x) = (x− kj)3+ − λj (x− kmin)3+ − (1 − λj) (x− kmax)
3
+

and

λj =
kmax − kj

kmax − kmin

(x− a)3+ = max
{

0, (x− a)3
}

The curve complexity is governed by the number of degrees of freedom (df), which
ignoring γ0 equals m+ 1. By convention, m = 0 is taken to mean that no internal and
no boundary knots are specified. The straight line model s (x) = γ0 + γ1x with df = 1
is then obtained.



18 Flexible alternatives to the Cox model

5.4 Model extension

The model may be extended by allowing any of the coefficients γ1, . . . , γm of the spline
basis functions to depend on covariates (typically, subsets of z). For example, consider
PH models with no spline terms, i.e., Weibull models. The time-related component is
γ1 ln t, where γ1 is the Weibull shape parameter. By including covariates in γ1, one
can model variations in the shape parameter. If the covariates are categoric, one is
effectively stratifying the model by them. To ensure that appropriate spline functions
are obtained, it is important to include any such covariates in all of γ1, . . . , γm and z.

6 Implementation in stpm

As already mentioned, the df() option determines the complexity of the model for
the baseline distribution. This is done via the number of knots chosen for the spline
function s (x) discussed above. With df(1), the parent distribution is obtained (Weibull
for scale(hazard), log-logistic for scale(odds)). With df(2), a single internal knot is
placed at the median of the uncensored log survival times. Alternatively, the knots()
option may be used to choose knot positions manually, either directly as log times, for
example knots(-0.5 0.2 0.8), or indirectly as centile positions, e.g., knots(%50 70
80).

Each of the coefficients γ1, . . . , γm+1 is associated with an equation in the output
from stpm. The constant term γ0 is represented by coefficient [xb] b[ cons] in equation
[xb], and covariates z act at this level of the model. γ1 is represented by [s0] b[ cons],
γ2 by [s1] b[ cons], and so on.

Extensions to the model are handled using the stratify() option. For example, to
fit a separate 2 df spline model to the log cumulative odds function at each level of the
variable group in the breast cancer dataset, one could enter

. stpm group2 group3, df(2) scale(odds) stratify(group2 group3)

initial: log likelihood = -616.3553
rescale: log likelihood = -616.3553
rescale eq: log likelihood = -616.3553
Iteration 0: log likelihood = -616.3553
Iteration 1: log likelihood = -612.80513
Iteration 2: log likelihood = -612.62289
Iteration 3: log likelihood = -612.62274
Iteration 4: log likelihood = -612.62274

Number of obs = 686
Wald chi2(2) = 3.18

Log likelihood = -612.62274 Prob > chi2 = 0.2035
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_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

s0
group2 -2.443586 1.70277 -1.44 0.151 -5.780955 .8937817
group3 -2.859845 1.646575 -1.74 0.082 -6.087074 .3673827
_cons 5.583426 1.605347 3.48 0.001 2.437003 8.729849

s1
group2 -.2769887 .221613 -1.25 0.211 -.7113421 .1573647
group3 -.3284494 .2154241 -1.52 0.127 -.7506728 .093774
_cons .5036676 .2068428 2.44 0.015 .0982631 .9090721

xb
group2 1.683409 .436123 3.86 0.000 .8286242 2.538195
group3 2.8153 .4185716 6.73 0.000 1.994915 3.635686
_cons -4.045346 .3831531 -10.56 0.000 -4.796313 -3.29438

Deviance = 1225.245 (686 observations.)

The coefficients γ1 and γ2, represented by equations [s0] and [s1], respectively,
now depend on the prognostic group. For example, the log cumulative odds function in
the Medium group (group2==1) is estimated as

(−4.045 + 1.683) + (5.583 − 2.444)x+ (0.504 − 0.277) v1 (x)

The term stratify is perhaps slightly misleading, since the concept is more general than
that applied in the context of the Cox model. The covariates in stratify() are not
required to be categoric. They could be continuous, e.g., age. If you wish to indicate a
categoric variable with more than 2 levels, you could use the xi: prefix. For instance,

. xi: stpm i.group, df(2) scale(odds) stratify(i.group)

7 Model selection

Royston and Parmar (2001) suggest selecting the df for the spline part of the model by
minimizing the Akaike Information Criterion (AIC). The AIC is defined as the deviance
(i.e., −2 times the log likelihood) plus twice the number of model parameters, and is
stored by stpm in the post-estimation scalar e(aic). The AIC may also be used to
select the scale for the model. For example, Table 1 shows the AIC for the breast cancer
data for PH and PO models with between 1 and 6 df (0 and 5 knots), using default
knot positions provided by stpm. The values in the table were obtained by using the
following commands:

. for num 1/6, nohead: quietly stpm group2 group3, scale(hazard) df(X)\
display X, e(aic)

1 1284.9086
2 1248.7524
3 1248.0013
4 1247.0252
5 1249.0723
6 1250.6245
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. for num 1/6, nohead: quietly stpm group2 group3, scale(odds) df(X)\
display X, e(aic)

1 1259.1294
2 1240.9886
3 1241.521
4 1240.5969
5 1242.6683
6 1244.0632

Table 1: AIC values for several spline survival models for the breast cancer data.

df No. of AIC AIC

knots (PH model) (PO model)
1 0 1284.9 1259.1
2 1 1248.8 1241.0
3 2 1248.0 1241.5
4 3 1247.0 1240.6
5 4 1249.1 1242.7
6 5 1250.6 1244.1

The model minimizing the AIC is the PO model with 3 knots, for which AIC = 1240.6.
However, the more parsimonious model with 1 knot has almost as low an AIC (1241.0),
and is to be preferred since the evidence favoring greater complexity is weak.

A large topic is the problem of model selection when there are many candidate
predictors, some of which may be continuous. There is a convenient pragmatic approx-
imation available that eases the mechanics of searching many such models within the
stpm framework. It turns out that the regression coefficients for the covariates z and the
functional forms of continuous covariates are largely robust to misspecification of the
baseline distribution function. Therefore, the process of choosing z for PH models may
be explored within the Cox framework using stcox, which in Stata runs fast. Similarly,
it turns out that PO scale models may be investigated within the log-logistic model
(which in stpm is obtained by specifying scale(odds) df(1)). This is no great advan-
tage since Stata’s streg command, which also implements the log-logistic model, is not
particularly fast. However, the log-logistic distribution is not dissimilar to the lognormal
distribution, and Stata’s cnreg command for estimating a censored (log)normal regres-
sion model is fast. Therefore, covariate exploration may be performed using cnreg.
The final model will be fitted using stpm with scale(odds) and as many knots as are
indicated by the AIC.

8 Knot selection

The placement of the internal knots is an issue. Royston and Parmar (2001) chose to
place boundary knots at the extreme uncensored log survival times, and internal knots
at positions given in the help file for stpm. Following Durrleman and Simon (1989),
the knots are placed at predefined percentiles of the uncensored log survival times.
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Experience so far suggests that models with df > 4 are required infrequently. Models
with df > 6 are not entertained since the resulting curves are likely to be unreliable.

While the default knot positions may be fine in many cases, the choices are predefined
and can always be improved on to some extent. The aim of the present section is
to suggest a simple strategy to check whether any vastly better knot position(s) are
available with the given data. One might quite reasonably be tempted to regard knot
positions as parameters and attempt to estimate them by maximum likelihood, but
except for the case of one knot, this is not in general practicable since the likelihood
surface may be multimodal. An alternative is to assign knots at random positions
and evaluate the likelihood of each resulting model. Random knot positioning may be
achieved by using the knots(u ...) option of stpm (u signifying a random uniform
distribution). The procedure may be repeated say 50 or 100 times, with the model
with the lowest deviance being regarded as the “best” among those entertained. The
resulting AIC can be adjusted approximately by adding two for each knot position thus
“estimated”.

Table 2 shows an example of this procedure applied 100 times to the breast cancer
data.

Table 2: AIC values for several proportional odds models for the breast cancer data.
The default knot placement is compared with partially optimized knot positions.

No. of Centiles AIC Centiles AIC

knots (default) (default) (‘Best’) (‘Best’)
1 50 1241.0 21 1242.5
2 33, 67 1241.5 72, 75 1242.3
3 25, 50, 75 1240.6 36, 41, 58 1245.3
4 20, 40, 60, 80 1242.7 11, 34, 46, 48 1246.2

Clearly, there is nothing to be gained in this example from attempting to optimize
the knot positions, since increasing the model dimension always increases the AIC. The
default model with one knot at the 50th centile remains the most satisfactory choice.

Figure 8 compares the baseline hazard functions (i.e., the hazards in the Good group)
from the preferred model with one knot and the model with four “optimized” knots at
the 11, 34, 46 and 48 centiles.

(Graph on next page)
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Long dashes: 1 default knot. Short dashes: 4 optimised knots.
Optimised knot positions are shown as vertical lines.
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Figure 8: Hazard functions with one default and four “optimized” knots

The optimized hazard function looks implausible and quite unstable, with sharp
corners at about 1.4 and 1.8 years.

9 Prediction

9.1 Basics

Prediction (additional estimation) following stpm is performed by using predict. The
syntax is

predict
[
type

]
newvarname

[
if exp

] [
in range

] [
, statistic

at(varname | #|vn [
varname | #|vn . . .

]
) noconstant nooffset stdp

time(#|vn) zero
]

where

statistic Result
xb index (linear predictor)
cumodds log cumulative odds function
cumhazard log cumulative hazard function
normal normal deviate function
spline fitted spline function
dzdy derivative of fitted spline function with respect to ln( t)
density density function
hazard hazard function
survival survival function
centile(#) #th centile of survival time distribution
tvc(varname) time-varying coefficient for varname
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tvc(varname) stands for “time-varying coefficient” and computes the estimated
coefficient for varname, a covariate in stpm’s varlist . If varname is time fixed, then
newvarname will be a constant. If varname is included in strat varlist , then newvar-
name will depend on t, and may be interpreted as the time-varying effect of varname
on the chosen scale of the model (proportional hazards, proportional odds or probit).
For example, in a hazards-scale model (scale(hazard)), newvarname multiplied by
varname will give an estimate of the time-varying log cumulative hazard ratio for var-
name (compared with varname = 0) at every observed value of varname. newvarname
alone will give the log cumulative hazard ratio for a one-unit change in varname. Note
that the time-varying log cumulative hazard ratio for varname will not be identical to
the time-varying log hazard ratio for varname.

Prediction is conditional on the observed values of the covariates z, unless particular
values of the covariates are specified by using the at() or zero options. Similarly,
predictions are evaluated at values of the st time variable t, unless particular time
values are specified by using the time() option. All statistics are available both in and
out of sample; type predict . . . if e(sample) if prediction is wanted only for the
estimation sample. The default is linear prediction of the covariate part of the model,
i.e., for statistic xb. You can predict any of the above statistics for any scale() model.

9.2 Options for predict

at(varname #|vn . . .) computes the various statistics at value(s) (# or vn). . . of model
covariates varname. . ., where vn means “variable name”. The at() option is a
convenient way of specifying out-of-sample prediction for some or all of the covariates
in the model. Covariates in stpm’s varlist that are not listed in at() are used
in computing predicted values, unless the zero option is specified, in which case
adjustment is to value 0 of such predictors.

noconstant is relevant only if you specified predict, xb. It removes the constant (if
any) in equation xb.

nooffset is relevant only if you specified offset() for stpm. It modifies the calculations
made by predict, xb so that they ignore the offset variable.

stdp computes the standard error of statistics xb, cumhazard, cumodds, or normal, or
of the log survival time for centile(). stdp is not implemented for other statistics,
but note that confidence intervals for the survival function may be found by back-
transformation of confidence intervals for the cumulative hazard or odds or normal
function.

time(#|vn) predicts at time # or at the time values in variable vn. If time() is not
specified, prediction is at time t.

zero predicts at zero values of covariates in varlist and similarly for strat varlist, if
stratify() is specified. See also option at().



24 Flexible alternatives to the Cox model

10 More on hazards

Suppose, for example, you wished to predict the hazard function for group 3 (i.e., for
group3==1 & group 2==0) from a PO model for the breast cancer dataset. Having
already executed stpm, you would enter

. predict haz3, at(group2 0 group3 1)

Note that prediction with the at() option is across the whole sample. Thus, in
the above example, haz3 will be the hazard function for group 3 evaluated at every
observation time, irrespective of the values of group2 and group3 for those observations.
This feature is useful for computing the hazard ratio between covariate levels. For
example,

. predict haz1, at(group2 0 group3 0)

. predict haz2, at(group2 1 group3 0)

. predict haz3, at(group2 0 group3 1)

. gen hr2 = haz2/haz1

. gen hr3 = haz3/haz1

By using the at() option, the hazard functions haz1, haz2 and haz3 are defined for
all observations, enabling the computation of hazard ratios hr2 and hr3. Use of if to
restrict calculation to each group separately will not work, since the resulting hazards
will be defined for nonoverlapping subsets of the data.

It is interesting to compare estimates of the baseline hazard function from stcox
and stpm. Unfortunately, a “proper” estimate of the baseline hazard function is not
provided directly by stcox, but it may be computed by numerical differentiation of the
cumulative hazard function (generated by option basechazard()). The simplest way to
compute the baseline hazard function following stpm is via the zero option of predict:

. predict h0, hazard zero

Figure 9 compares estimates of the baseline hazard function calculated from stpm
and by numerical differentiation following stcox.

(Graph on next page)
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Hazard functions according to stcox and stpm
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Figure 9: Estimates of the baseline hazard function by stcox and stpm.

Notice how extremely noisy the stcox-estimated function is. Effectively, an estimate
of the hazard function is made for every non-censored observation time. Plotting on a
logarithmic y-axis makes it easier to see the shape of the function.

10.1 Centiles of the survival-time distribution

Another useful feature of predict is to compute centiles and standard errors of the
survival-time distribution. For example, one might want the median (50th centile)
together with 95% confidence intervals according to values of covariates. We could
obtain these for the breast cancer data as follows:

. predict median, centile(50)

. predict sem, centile(50) stdp

. gen lci = exp(ln(median)-1.96*sem)

. gen uci = exp(ln(median)+1.96*sem)

Note that predict estimated the 50th centile on the time scale but that the standard
error is on the log time scale. The results are shown in Figure 10.

(Graph on next page)
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Median survival time and 95% CI
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Figure 10: Median recurrence-free survival time and 95% confidence intervals by prog-
nostic group.

Although the Kaplan–Meier survival curve for the Good group does not reach 0.5
during the observation period (see Figure 1), the model has extrapolated a median
survival time of 11 years, with a very wide confidence interval of (8, 15) years. Depending
on your point of view, such extrapolation may be seen as a weakness or a strength of a
parametric approach to modeling!

11 Other aspects

Interval-censored data is not infrequently encountered in practice. An event is known
to have happened within a certain time interval, but exactly when it occurred is not
known. An example in cancer studies is when patients are followed up for an event such
as disease recurrence or progression. The patient may be found to have progressed at a
scheduled follow-up visit, but the recurrence may have occurred at some unknown point
after the previous visit. stpm handles such data by way of the left() option, which
specifies the left-hand endpoint of the intervals.

The stratify() option may be used to assess the PH or PO assumption for a
dataset. Details of the principle are given by Royston and Parmar (2001). Rather than
describe this aspect in detail here, the topic will be deferred to a later article in which
a separate command, stsctest, to test for appropriateness of scale will be introduced.

Estimation of confidence intervals for the hazard function or hazard ratio is another
topic that will be deferred to a later article. An ado-file called stpmhaz is under de-
velopment that will use the bootstrap to provide confidence intervals for hazard and
density functions and for hazard ratios.

Models based on the lognormal distribution and its generalization by using spline
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functions are also implemented in stpm. These models may be seen as the survival
analysis version of logistic regression models with a probit link (the probit command
in Stata). Sometimes such models are useful, but they will not be described further
here.

12 Conclusion

The Cox model, with its associated machinery and extensions, remains a vital tool for
the analysis of censored survival data. I have tried to show that other approaches are
available which can throw light on additional important aspects of the data, aspects the
Cox model is not designed to examine. In particular, they can enable the analyst to
model the hazard function flexibly and they can provide smooth curves to approximate
more or less any desired baseline distribution function. I believe that such models are
well worth further study and use by practitioners, and I have therefore made them
available in Stata.
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