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1. INTRODUCTION

The goal of cost-allocation estimation is to assign whole-farm (total) variable costs to each
of the farms’ enterprises (production activities). Despite the fact that parametric estimation of
cost-allocation coefficients is fairly common in applied economics research, we are not aware
of any application of semi-parametric modeling. The previous estimation methods can broadly
be sorted into three branches: (i) classical (parametric) econometric modeling based on Least
Squares (LS) (e.g. Dixon, Batte & Sonka 1984, Hornbaker, Dixon & Sonka 1989, Just, Zil-
berman, Hochman & Barshira 1990, Hallam, Bailey, Jones & Errington 1999); (ii) General-
ized Maximum Entropy (GME)/Generalized Cross-Entropy (GCE) (e.g. Lence & Miller 1998,
Léon, Peeters, Quinqu & Surry 1999, Zhang & Fan 2001, Peeters & Surry 2003); and Positive
Mathematical Programming (PMP) (e.g. Howitt 1995). A problem, though, with the two latter
branches of estimation methods is that they are not solidly grounded on statistical asymptotic
theory, which, therefore, precludes proper statistical inference and we will not consider them
any further in this paper.

In contrast to previous studies, this paper proposes semi-parametric estimation of a non-
stationary Random-Coefficients Model (NS-RCM).1 Specifically, our proposed NS-RCM is
based on the semi-parametric varying-coefficients model developed by Li, Li, Huang, Li &
Fu (2002) and further extended by Li & Racine (2010). That is, we estimate a linear cost-
allocation model that allows the coefficients to be an unknown (unspecified) function of some
selected covariates, here region and economic size, and an additive random error. That is, the
cost-allocation coefficients are estimated non-parametrically, albeit in a semi-parametric set-
ting. This modeling approach is more general than the parametric NS-RCM in that it dispenses
with the need to impose a functional form on the cost-allocation coefficients.

The purpose of the paper is to introduce a semi-parametric methodology to the field of
classical econometric modeling, branch (i), to enable more flexible specifications of the cost-
allocation coefficients.

The proposed methodology does not only include the estimation procedure of a semi-parametric
random-coefficient model, but also constrained estimation and model testing.2

The semi-parametric methodology is applied to farm-level data extracted from the French
Farm Accountancy Data Network (FADN), for the year 2006. The data set contains information
on a total of 920 specialized multi-crop farms located in nine French FADN regions.

The remainder of the paper is organized as follows. Section 2 discusses the conceptual mod-
eling framework and the basic estimation approach. Section 3 focuses on the basic properties
of the constrained kernel-estimation method. Section 4 describes the model-selection process.
Section 5 gives an overview of the data and Section 6 presents the empirical results. Section 7
concludes the paper.

1We have adopted the terminology ’non-stationary’ versus ’stationary’ RCM from Hsiao (2002, p. 142). The
latter is a model where the coefficients have constant means and variance-covariances while the counterparts of
the coefficients of the former model are not constant either due to a stochastic trend or due to some exogenous
variables. In our case the latter is true. Thus our modeling should not be confused with non-stationary time-series
modeling.
2The model testing framework is designed to test parametric models, classical econometric modeling; branch (i),
against semi-parametric specifications.
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2. CONCEPTUAL MODEL AND ESTIMATION APPROACH

In choosing the conceptual modeling framework, we follow Dixon et al. (1984), Hornbaker
et al. (1989) and Just et al. (1990) among others, who suggested a linear model with varying
(random) cost-allocation coefficients.3

2.1. Basic Setup of the Model. The basic cost-allocation model can be stated as follows:

(2.1) Xi = Y ′i βi = Y ′i
[
β̄(Zi)+νi

]

where Xi is total specific (variable) cost for farm i and Yi is a K× 1 vector of output values
for farm i (see definitions in Table 1). The mean coefficient vector β̄(·)4 is a K× 1 vector of
unknown functions of Zi which in turn is a Q×1 vector of exogenous variables (here economic
size and region; i.e. Q = 2), and νi is a K × 1 vector of random errors. Let us denote the
compound error as ζi ≡ Y ′i νi for which we make the following assumptions:

E(ζi|Yi,Zi) = 0,(2.2)

V (ζi|Yi,Zi) = E(ζ2
i |Yi,Zi) =

K

∑
k=1

γk(Zi)Y 2
ki,(2.3)

E(ζiζ j|Yi,Zi) = 0, if i 6= j.(2.4)

Note that assumption (2.2) implies E(ζi) = 0 through the "law of iterated expectations"; that is,
it is assumed that Yi and Zi are independent of the compound error term.5 The heteroskedas-
ticity assumption in (2.3) is broadly similar to Hornbaker et al., yet we have added unspecified
heteroskedasticity conditioning on Zi. That is, economic size and region are assumed to cause
heteroskedasticity. By incorporating the assumption in (2.4), which we also adopted from Horn-
baker et al., ensures that any cross-sectional correlation in the error term is ruled out.

In this respect, it should be noted that the crop farms have been sampled by stratification on
the basis of economic size and region. Given this stratification procedure, it is natural to in-
clude a regional indicator and economic size as elements of Zi. Accordingly, the cost-allocation
mean coefficients are allowed to vary by region and economic size. This, however, remains a
rather strong assumption. It means, for instance, that land allocations are homogeneous across
crop farms from the same region and economic size. On the other hand, the assumption is
less restrictive than (i) the assumption underlying the stationary RCM, which implies that the
variation in input costs, Xi, is independent of the exogenous variables; and (ii) the assumption
underlying the parametric non-stationary RCM, in that no explicit choice is needed concerning
the functional form of the mean coefficient vector.

To obtain a feasible estimator of the cost-allocation mean coefficients, pre-multiply equation
(2.1) by Yi. Moreover, by taking the expectation conditional on Zi = z, we get

E(YiXi|z) =
[
E(YiY ′i |z)

]
β̄(z).

Then, multiplying both sides by [E(YiY ′i |z)]−1 yields

(2.5) β̄(z) =
[
E(YiY ′i |z)

]−1 E(YiXi|z).

3This model choice, which is standard in applied work, is motivated by the fact that it considerably simplifies the
estimation procedure. However, a disadvantage of this choice is that it strongly restricts the underlying technology
(for furter details see Chambers & Just 1989).
4In the stationary RCM the coefficient vector is βi = β̄ + νi and , β̄, is denoted the mean coefficient vector (of
constants) because E(βi|Yi) = β̄. In the case of the non-stationary RCM there is instead a mean coefficient vector
of functions, E(βi|Yi,Zi) = β̄(Zi).
5A less restrictive assumption is that E(Yiζi|Zi) = 0. However, such an assumption would render the variance in
Eq. (2.3) much more complicated.
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2.2. Kernel Estimation. The mean coefficient vector in (2.5) is estimable by the local constant
estimator

ˆ̄β(z) =

[
(I)−1

I

∑
i=1

YiY ′i K (Zi,z,H)

]−1

(2.6)

×
[
(I)−1

I

∑
i=1

YiXiK (Zi,z,H)

]

where

(2.7) K (Zi,z,H) = `×κ
is a product kernel. In the current setting, the product kernel consists of one univariate kernel to
deal with unordered categorical data, `, and a univariate kernel to deal with continuous data, κ.
The bandwidth vector, H, contains one bandwidth, λ, for the unordered kernel and second one,
h, for the continuous kernel.

The unordered kernel, for the regional indicator, is defined as

`(Zig,zg,λ) =
{

1, Zig = zg
λ ∈ [0,1], otherwise(2.8)

where the index g is used to denote the region component of z. Note further that if λ = 0, the
kernel reduces to a simple indicator function, which acts as a collection of regional dummy
variables. Conversely, if λ = 1, the kernel turns into a uniform weighting function, where cost-
allocation coefficients become identical across all regions. In finite samples, there will always
be a λ > 0 for which kernel smoothing is MSE efficient compared to estimators based on sample
splitting/dummy variables (Brown & Rundell 1985, Wikström 2011).

For the economic size variable, we use a second-order normal kernel, designed for continuous
data, which is defined as

(2.9) κ(Zie,ze,h) = φ
(

Zie− ze

h

)

where φ(·) is the standard normal density function, and e indexes the economic size component
of z.

A crucial step in non-parametric estimation is to select an appropriate bandwidth vector. We
follow the Least-Squares Cross-Validation (LSCV) procedure proposed by (Li & Racine 2010),
for which they have outlined the theoretical underpinnings necessary to ensure consistency and
asymptotic normality of the estimator in (2.6).

2.3. Treatment of Heteroskedasticity. The model defined in (2.1) through (2.4) incorporates
heteroscedastic due to both Yi and Zi. The estimation procedure described above is robust to the
presence of heteroskedasticity. Yet, in order to gain some efficiency, we decided to employ a
heuristic two-step procedure akin to the FGLS estimator used for parametric linear models.

In Step 1 we estimate ˆ̄β(z) by (2.6) and compute the residuals ζ̂i = Xi−Y ′i
ˆ̄β(z) to obtain the

variance estimates σ̂2
i by the linear regression Ê(ζ̂2

i |Yi,Zi) = ∑K
k=1 γ̂k(Zi)Y 2

ki. In Step 2 we re-
estimate (2.6) based on the transformed variables Ỹi ≡ Yi√

σ̂2
i

and X̃i ≡ Xi√
σ̂2

i
are used. Finally we

iterate this procedure until the changes in ˆ̄β(z) are negligible.6

6It should be emphasized that the theoretical properties of the proposed GLS-type transformation are not yet fully
established for the semi-parametric estimation. Nevertheless, we conducted some Monte Carlo simulations which
provide support for this approach. It was found that the GLS-type transformations improved the MSE of ˆ̄β(Zi).
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3. CONSTRAINT ESTIMATION

Economic theory puts obvious (accounting) restrictions on the cost-allocation coefficients.
First, the cost-allocation mean coefficients should all be positive:

(3.1) β̄(Zi)≥ 0.

Second, there are also upper limit constraints on the cost-allocation mean coefficients. In the
present case, total specific cost (total variable cost) is used as the dependent variable. Total
revenue Y ′i 1 has to cover total specific cost Xi =Y ′i

[
β̄(Zi)+ vi

]
. Since our focus is on estimating

the cost-allocation mean coefficients, conditional on region and economic size, we should get

E(Yi|Zi)′1−E(Yi|Zi)′β̄(Zi)≥ 0(3.2)
⇔

E(Yi|Zi)′β̄(Zi)≤ E(Yi|Zi)′1
⇔

β̄(Zi)≤ 1
where 1 is a K×1 vector of ones.

In this study we impose the restrictions in (3.1) and (3.2) by means of recently developed
constrained kernel estimation (Racine & Parmeter 2010). Consider the following generalization
of the estimator (2.6) in Section 2:

(3.3) ˆ̄β(z|p) =
I

∑
i=1

AiXi pi

where

(3.4) Ai =

[
I

∑
j=1

YjY ′jK
(
Z j,z,H

)
]−1

IYiK (Zi,z,H)

Note that if pi = p = 1/I for all i = 1, . . . , I, (3.3) collapses to the unconstrained estimator
(2.6) in Section 2. Let pu be the I-vector of uniform weights and p the vector of weights to be
selected. To impose constraints, Racine & Parmeter (2010) in line with Hall & Huang (2001)
propose to minimize the distance from p to the uniform weights pu. Racine & Parmeter (2010)
make use of the L2-metric and the minimization problem becomes

min
p

D(p) = (pu− p)′ (pu− p)(3.5)

subject to 0≤ ˆ̄β(z|p)≤ 1 and ∑
i

pi = 1.(3.6)

The idea behind (3.5) is to select the estimator which is "closest" the unconstrained estimator
given the constraints in (3.6). An important advantage of the L2-metric is that the minimization
problem represented by (3.5) and (3.6) can be solved as an ordinary quadratic-programming
problem which most statistical software packages have as a standard procedure (see Racine &
Parmeter 2010, for detailed examples).

However, establishing the theoretical properties in terms of possible efficiency gains is beyond the scope of the
present paper.



SEMI-PARAMETRIC COST ALLOCATION ESTIMATION 5

4. MODEL SELECTION

Despite the fact that the model with fixed (constant) mean coefficients is overly restrictive, re-
searchers continue to use it in applied work. If the fixed mean coefficient assumption is correct,
obvious efficiency gains can be achieved compared to the more general non-stationary RCM.
Therefore, it is of primary importance to test less flexible parametric specifications against the
more general semi-parametric model proposed in Section 2.

4.1. Testing Parametric Specifications. Let us state the null hypothesis as

(4.1) H0 : Pr
[
β̄(Z) = β̄0(Z;α0)

]
= 1

where β̄0(Z;α0) is a vector of parameterized functions under the null (and thus the semi-
parametric mean coefficient vector is the alternative hypothesis). For example if we assume
a parametric stationary RCM (the fixed mean coefficient model), β̄0(Z;α0) is reduced to α0,
which is a K× 1 vector of constants. If β̄0(Z;α0) = α0 is, correctly, rejected it means that the
parametric model is misspecified and will produce inconsistent estimates. On the other hand,
if β̄0(Z;α0) = α0 is (correctly) not rejected the semi-parametric mean coefficient vector is still
consistent but inefficient compared to fixed mean coefficient model.

Li et al. (2002) propose a test based on the integrated squared difference∫ [
β̄(z)− β̄0(z;α0)

]′ [β̄(z)− β̄0(z;α0)
]

dz

and Li & Racine (2010) extend this test to the case of mixed data; that is, where the model
includes both categorical and continuous data. Based on the integrated squared difference Li &
Racine derive a test statistic, which is given by

(4.2) T̂n ≡ n
√

ĥ
1
n2

n

∑
i=1

n

∑
j 6=i

Y ′i Yjûiû jK
(
Zi,Z j,H

)
/σ̂0

where σ̂0 = 2n−2 ∑n
i=1 ∑n

j 6=i(Y
′
i Yi)2û2

i û2
jK

(
Zi,Z j,H

)2 and ûi is the ith estimated residual under
H0, Xi−Y ′i β̄0(Z; α̂0), and the other terms are explained before in Section 2.

Li & Racine (2010) show that asymptotic null distribution of T̂n is the standard normal dis-
tribution. However, given that kernel-based specification tests are plagued with size distortion
in finite samples, they propose to generate an empirical null distribution using the wild boot-
strap. We follow their suggestion, although we are using the Rademacher distribution instead
of the two-point distribution they proposed. Davidson & Flachaire (2008) compare these two
distributions for the wild bootstrap and recommend the use of the former.7

4.2. Three Different Model Specifications. In the empirical analysis which follows below,
our aim is to perform the T-test to check the adequacy of two distinct parametric RCMs, hence-
forth called Model M2 and Model M3, respectively, against the alternative model, represented
by the semi-parametric non-stationary RCM, henceforth called Model M1 (defined in Section
2):

Model M1 Semi-parametric non-stationary RCM
Model M2 Parametric non-stationary RCM
Model M3 Parametric stationary RCM (or fixed mean coefficient model)

The two parametric RCMs, Model M2 and Model M3, are different from the semi-parametric
RCM, Model M1, as well as from one another through their mean coefficient vector β̄(Z;α).
7Since the GLS transformation of the data changes the X and Y variables differently for the model under the null
and the alternative model, we perform the test without any transformations. However, since the wild bootstrap is
robust to heteroskedasticity, the test is also appropriate in our setting.
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Specifically, Model M2 is a parametric non-stationary RCM, in which the mean coefficient
vector is defined as

(4.3) β̄(Z;αM2) =




α11d1 +α21d2 + · · ·+αG+1,1Ze
α12d1 +α22d2 + · · ·+αG+1,2Ze

...
α1Kd1 +α2Kd2 + · · ·+αG+1,KZe




where d1, . . . ,dG are regional dummies, and Ze is the economic size covariate. On the other
hand, Model M3 is a parametric stationary RCM, in which the mean coefficient vector is defined
as

(4.4) β̄(Z;αM3) =




α1
α2
...

αK


 .

In addition, we modify the heteroskedasticity assumption (2.3) for the two parametric models.
Specifically, for Model M2, we make the following assumption:

(4.5) E(ζ2
i |Yi,Zi) =

K

∑
k=1

[
γ1kd1 + γ2kd2 + · · ·+ γG+1,kZe

]
Y 2

ki,

whereas for Model M3, we assume

(4.6) E(ζ2
i |Yi) =

K

∑
k=1

γkY 2
ki.

All models are estimated using a GLS transformation, where E(ζ2
i |Yi,Zi) is estimated accord-

ing to the assumptions specific to each model.

5. DATA

5.1. Data and Variables. The empirical analysis presented in this section uses data extracted
from the French Farm Accountancy Data Network (FADN), for 2006 (for a detailed description
of the data, see European Commission (2009)).

The data is sampled according to a three-way stratification. Specifically, farms in the popula-
tion are stratified (probability weighted) on the basis of three different criteria: (i) type of farm
(TF); (ii) economic size (ES), measured in European Size Units (ESU); and (iii) geographical
unit (GU). The analysis is limited to the so-called "COP farms"; that is, farms in the TF14(13)
FADN grouping, which comprises farms specialized in cereals, oilseeds, and protein crops.
The regions (Départements) that have been selected are those with a total of at least 50 COP
farms. To make the estimation consistent with the stratified sample as well as to account for
heterogeneity, we condition on region and economic size. Table 1 provides definition of the
variables, including: total variable costs (X); total output values for wheat (Y1), barley (Y2),
oilseeds (Y3), other crops (Y4), and other agricultural products (Y5); economic size (Ze), and the
regional indicator (Zg). Summary statistics are provided in Table 2.

6. EMPIRICAL RESULTS

In this section, we first conduct model selection with help of the T-test presented in Section 4.
When an appropriate model is selected, according to the T-test, estimated cost-allocation mean
coefficienxts are presented. Finally, to further assess the validity of the empirical results, it is
instructive to use real, farm-level accounting data on cost allocations –which are typically rarely
available– for the purpose of comparison. Specifically, we use accounting data made available
by the Centre d’Économie agricole de la Meuse, for Wheat, Barley, and Oilseeds.
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Variable Description FADN Definition
X Total specific (variable) cost SE281

Total output values for
Y1 Wheat K120TP+K121TP
Y2 Barley K123TP
Y3 Oilseeds K132TP
Y4 Other crop output SE135-(K120TP+K121TP)-K123TP-K132TP
Y5 Other agricultural outputs SE131-SE135
Ze Economic size units (ESU) SE005
Zg FADN region A1

TABLE 1. Variable Definitions

Variable Mean Std. dev. Min. 1st Qu. Median 3rd Qu. Max.
Total specific cost (1000 e)

X 51.3 34.1 0.4 28.9 43.4 65.8 334.1
Total output value (1000 e)

Y1 47.7 37.2 0.0 23.0 39.2 64.4 349.9
Y2 14.1 16.7 0.0 0.0 9.9 21.6 129.6
Y3 20.4 18.6 0.0 7.1 16.0 28.9 151.7
Y4 28.8 42.4 0.0 2.5 14.9 38.2 465.6
Y5 20.7 36.1 0.0 2.7 8.9 24.8 391.4

Economic size units
Ze 107.0 62.8 10.0 64.7 94.7 136.1 510.6

TABLE 2. Summary statistics

6.1. Specification-Test Results. Table 3 presents the results of the hypothesis tests (recall that
M1 is the alternative model). Model M3, the fixed mean coefficient model, is the most restrictive
model, nevertheless, if it is a correct specification it will be efficient compared to both M1 and
M2. However model M3 is rejected on the five percent level (P-value = 0.042). This suggest
that Model M3 is a misspecified model, and that regional heterogeneity and/or economic size
matter. The parametric non-stationary RCM, model M2, is also rejected in favor of model M1
(P-value < 0.001). Unlike model M3, model M2 includes both regional and economic size
variables but still it is rejected. Normally, this is an indication of a misspecification of the
functional form of the mean coefficients. However the bandwidth vector of model M1 includes
an abnormally large value for economic size (h≈ 375). As shown by Hall, Li & Racine (2007)
the cross-validation bandwidth approaches infinity for irrelevant continuous variables. Thus, a
large bandwidth for economic size indicates that the variable is irrelevant for the estimation of
cost-allocation mean coefficients of the crop farmers in our data set.

If economic size is irrelevant, the rejection of model M2 does not steam from misspecifica-
tion of the coefficients but from inclusion of a superfluous variable. Inclusion of an irrelevant
variable causes estimation error that makes the estimator inefficient. Hall et al. (2007) do not
only show that a large bandwidth indicates the irrelevance of the attached variable but also that
the kernel estimator has the ability to automatically smooth out the extra variability an irrelevant
variable normally causes in parametric estimation.8 The point we want to make is that the re-
jection, of model M2 in favor of model M1, rather originates from the inclusion of an irrelevant
variable (economic size) than from misspecification of the functional form.

8The intuition behind this ability of the kernel estimator is quite simple. If the bandwidth, h, of the continuous
kernel in (2.9) is huge the kernel weights will be uniform, irrespectively of the difference in economic size, Zie−ze.
And consequently the estimator in (2.5) will be independent of economic size.
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H0 T-test (p-values)
Parametric nsRCM (M2) 0.000
Parametric sRCM (M3) 0.042
Semi-parametric nsRCM (M1’) 0.876

TABLE 3. Results of specification test

To formally test if economic size is irrelevant, we exclude the economic size variable (Ze)
from model M1, we denote this model M1’. Model M1’ is a semi-parametric non-stationary
RCM, only including the regional indicator variable Zg. We test this coefficient specification
against model M1.9 The P-value reported in Table 3 is 0.876 and model M1’ is not rejected.
Hence we find no significant support for economies of scale.

On basis of the T-test we have selected Model M1’ which is a semi-parametric non-stationary
RCM model, where the mean coefficients are varying by region but not by economic size. In
the next subsection the results, in form of the cost-allocation mean coefficients, of Model M1’
is presented.

6.2. Estimated Cost-Allocation Mean Coefficients. Table 4 presents the estimated cost-allocation
mean coefficients of model M1’.The estimates are all within the [0,1] interval.10

The estimates of Model M1, M2 and M3 are presented in Table 7 in the appendix. Although
these specifications are rejected, the estimates bear some interesting information. A first re-
mark is that the estimates of model M1 are very similar to those given by M1’. The explanation
of this is, as discussed in the previous subsection, that the large bandwidth on economic size
effectively smooths out the variation of this irrelevant variable. A related remark is the larger
variation shown in the estimates of the parametric non-stationary RCM (M2). This is an exam-
ple of the extra variability an irrelevant variable causes in parametric estimation versus kernel
estimation. The estimated coefficients of the parametric Model M3, on the other hand, show
large resemblance to the average mean coefficient estimates of the M1’ model. The M3 esti-
mates are not affected by any extra variability caused by economic size and seem to produce
quite good overall cost-allocation estimates, but at the same time completely misses out on the
heterogeneity across regions.

Wheat Barley Oilseeds Other Crops Other Ag. Prods R2

M1’–Semi-parametric nsRCM (regions only)
Mean 0.39 0.43 0.51 0.27 0.42
Std. dev. 0.03 0.05 0.06 0.01 0.05
Min. 0.33 0.36 0.42 0.25 0.35
1st Qu. 0.38 0.39 0.49 0.26 0.39
Median 0.39 0.42 0.49 0.26 0.43
3rd Qu. 0.42 0.49 0.55 0.28 0.45
Max. 0.42 0.53 0.62 0.29 0.50 0.84

TABLE 4. Estimation results

9Model M1’ is actually asymptotically equivalent to a parametric non-stationary RCM, only including regional
dummies, if the bandwidth, λ, equals zero. However if λ > 0 some bias is induced to reduce variance. It has been
shown theoretical that this type of kernel estimation is MSE (’Mean square error’) efficient to parametric dummy
variable estimation (Brown & Rundell 1985, Wikström 2011). This efficiency advantage has also been manifested
in Monte Carlo simulations of several shapes (two recent examples are Li, Racine & Wooldridge 2009, Wikström
2011).
10The values in Table 4 are the unconstrained estimates; since these estimates relax the constrain on the estimator
in (3.6) when p = pu the constrained and unconstrained estimators (and estimates) are identical.
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The regional estimates for M1’ are presented in Table 5, along with wild bootstrapped stan-
dard errors. Relatively large heterogeneity exists across regions (Other Crops is the only excep-
tion). For example, it can be seen that the Île de France region has the smallest cost-allocation
coefficient for Wheat among the nine regions, and the largest one for Oilseeds. Conversely, the
Lorraine region almost shows the opposite pattern, with the smallest coefficient for Oilseeds
and second largest for Wheat.

Region Wheat Barley Oilseeds Other Crops Other Ag. Prods
Île de France 0.325 0.492 0.620 0.288 0.350

(0.029)a (0.072) (0.058) (0.019) (0.019)
Champagne-Ardenne 0.416 0.433 0.517 0.262 0.349

(0.031) (0.048) (0.042) (0.036) (0.036)
Picardie 0.380 0.525 0.486 0.264 0.426

(0.024) (0.051) (0.048) (0.018) (0.024)
Centre 0.389 0.387 0.495 0.247 0.501

(0.030) (0.052) (0.06) (0.027) (0.020)
Bourgogne 0.388 0.417 0.560 0.263 0.410

(0.025) (0.067) (0.047) (0.017) (0.017)
Lorraine 0.421 0.355 0.419 0.281 0.385

(0.024) (0.045) (0.053) (0.016) (0.023)
Poitou-Charentes 0.381 0.395 0.553 0.260 0.437

(0.026) (0.058) (0.078) (0.023) (0.028)
Aquitaine 0.368 0.400 0.535 0.293 0.446

(0.023) (0.039) (0.042) (0.018) (0.022)
Midi-Pyrénées 0.421 0.437 0.429 0.271 0.436

(0.033) (0.043) (0.059) (0.014) (0.020)
a Standard errors in parenthesis

TABLE 5. Estimated regional cost-allocation coefficients (M1’)

6.3. Validity of Empirical Results. We have applied statistical tests to find the most appro-
priate model for our estimations. However, it remains difficult to say how good these estimates
really are. To assess the validity of the empirical results (from M1’), it is instructive to use
real, farm-level accounting data on cost allocations –which are typically rarely available– for
the purpose of comparison. Specifically, we use accounting data made available by the Centre
d’Économie agricole de la Meuse, for Wheat, Barley, and Oilseeds. The data set contains ac-
counting information for 565 multi-crop farms in the Département de Meuse, which is located
in the Lorraine region, along the border to Champagne-Ardenne.

The averages of the cost-accounting allocations for this set of farms are presented in Table
6. Comparison with the estimated cost-allocation coefficients returned by model M1’. There is
a noticeable match between the M1 estimates and the accounting averages for the neighboring
Champagne-Ardenne region. However, some moderate differences are found between the M1
estimates and the accounting averages for the Lorraine region itself.

Wheat Barley Oilseeds

0.405 0.431 0.517
(0.106)a (0.108) (0.120)

a Standard deviations in parenthesis
TABLE 6. Average cost-allocation coefficients in Department of Meuse
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7. CONCLUSION

We have proposed a new way to estimate cost-allocation mean coefficients. The linear func-
tional form with varying-/random-coefficients traditionally used in cost-allocation estimation
fits very well within the semi-parametric framework. Semi-parametric modeling is more general
than parametric varying-/random-coefficients models. The proposed methodology incorporates
both constrained estimation as well as model testing.

In the empirical study of multi-crop farmers in nine French regions, we reject the linear
model with fixed mean coefficients as well as the parametric non-stationary RCM in favor of the
semi-parametric non-stationary RCM. The regional estimates obtained from the selected semi-
parametric specification are also compared to actual cost-allocation coefficients, obtained from
multi-crop farms in the Département Meuse, with the help of very detailed farm-accounting
data. The estimates from the neighboring region Champagne-Ardenne show strong resemblance
to the computed cost-allocation coefficients of the Department of Meuse. Hence, the obtained
estimates do not only make sense on statistical ground.

Extension of the proposed methodology could be to incorporate panel data into the semi-
parametric framework as well as develop system estimation with appropriate constraints. The
latter should be relatively straightforward while the simplicity for the panel data modeling de-
pends on the assumptions put on the farm specific effects. In either way we leave this to future
research.

REFERENCES

Brown, P. & Rundell, P. (1985), ‘Kernel estimates for categorical data’, Technometrics 27, 293–
299.

Chambers, R. G. & Just, R. E. (1989), ‘Estimating multioutput technologies’, American Journal
of Agricultural Economics 71(4), 980–995.

Davidson, R. & Flachaire, E. (2008), ‘The Wild Bootstrap, Tamed at Last’, Journal of Econo-
metrics 146(1), 162 – 169.

Dixon, B., Batte, B. & Sonka, S. (1984), ‘Random Coefficients Estimation of Average Total
Product Costs for Multiproduct Firms’, Journal of Business & Economic Statistics .

European Commission (2009), ‘Farm Accountancy Data Network’.
URL: http://ec.europa.eu/agriculture/rica

Hall, P. & Huang, L. S. (2001), ‘Nonparametric kernel regression subject to monotonicity con-
straints’, Annals Of Statistics 29(3), 624–647.

Hall, P., Li, Q. & Racine, J. S. (2007), ‘Nonparametric estimation of regression functions in the
presence of irrelevant regressors’, Review Of Economics And Statistics 89(4), 784–789.

Hallam, D., Bailey, A., Jones, P. & Errington, A. (1999), ‘Estimating input use and production
costs from farm survey panel data’, Journal Of Agricultural Economics 50(3), 440–449.

Hornbaker, R., Dixon, B. & Sonka, S. (1989), ‘Estimating production activity costs for multi-
output firms with a random coefficient regression model’, American Journal of Agricultural
Economics 71, 167–177.

Howitt, R. E. (1995), ‘Positive Mathematical-Programming’, American Journal of Agricultural
Economics 77(2), 329–342.

Hsiao, C. (2002), Analysis of Panel Data, Cambridge University Press.
Just, R. E., Zilberman, D., Hochman, E. & Barshira, Z. (1990), ‘Input allocation in multicrop

systems’, American Journal Of Agricultural Economics 72(1), 200–209.
Lence, S. H. & Miller, D. J. (1998), ‘Recovering output-specific inputs from aggregate input

data: A generalized cross-entropy approach’, American Journal Of Agricultural Economics
80(4), 852–867.



SEMI-PARAMETRIC COST ALLOCATION ESTIMATION 11

Li, Q., Huang, C. J., Li, D. & Fu, T. T. (2002), ‘Semiparametric smooth coefficient models’,
Journal Of Business & Economic Statistics 20(3), 412–422.

Li, Q. & Racine, J. S. (2010), ‘Smooth Varying-Coefficient Estimation and Inference for Qual-
itative and Quantitative Data’, Econometric Theory 26, 1607–1637.

Li, Q., Racine, J. S. & Wooldridge, J. M. (2009), ‘Efficient estimation of average treatment ef-
fects with mixed categorical and continuous data’, Journal Of Business & Economic Statistics
27(2), 206–223.

Léon, Y., Peeters, L., Quinqu, M. & Surry, Y. (1999), ‘The use of the maximum entropy to es-
timate input-output coefficients from regional farm accounting data’, Journal of Agricultural
Economics 50 (3), 425–439.

Peeters, L. & Surry, Y. (2003), ‘Entropy Estimation of a restricted Hildreth-Houck Random-
Coefficients Model with an Application to Cost Allocation in Multi-Product Farming in
France’, ITEO Research Paper 03/01. Limburgs Universitair Centrum. Diepenbeek, Belgium
.

Racine, J. S. & Parmeter, C. F. (2010), ‘Constrained nonparametric kernel regression: Estima-
tion and inference’, Unpublished manuscript .

Wikström, D. (2011), ‘A Finite Sample Improvement of the Fixed Effects Estimator of Techni-
cal Efficiency’, Unpublished manuscript .

Zhang, X. B. & Fan, S. G. (2001), ‘Estimating crop-specific production technologies in chinese
agriculture: A generalized maximum entropy approach’, American Journal Of Agricultural
Economics 83(2), 378–388.

8. APPENDIX

Wheat Barley Oilseeds Other Crops Other Ag. Prods R2

M1–Semi-parametric nsRCM (alternative model)
Mean 0.39 0.43 0.51 0.27 0.42
Std. dev. 0.03 0.05 0.06 0.01 0.05
Min. 0.32 0.35 0.42 0.24 0.35
1st Qu. 0.38 0.39 0.49 0.26 0.38
Median 0.39 0.42 0.50 0.26 0.43
3rd Qu. 0.42 0.49 0.56 0.28 0.45
Max. 0.43 0.53 0.63 0.29 0.51 0.84
M2 Parametric nsRCM
Mean 0.43 0.57 0.55 0.27 0.40
Std. dev. 0.18 0.38 0.22 0.07 0.14
Min. 0.22 -0.17 -0.00 0.13 0.09
1st Qu. 0.37 0.37 0.40 0.21 0.34
Median 0.38 0.47 0.57 0.26 0.43
3rd Qu. 0.46 0.65 0.66 0.29 0.48
Max. 1.05 1.95 1.01 0.41 0.77 0.86
M3 Parametric sRCM
α̂M3 0.38 0.42 0.52 0.27 0.41 0.82

TABLE 7. Estimation results for model M1, M2 and M3




