
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their 
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/


AgFoodTradeAgFoodTrade

New Issues in Agricultural, New Issues in Agricultural, 
Food & Bioenergy TradeFood & Bioenergy Trade

AgFoodTradeAgFoodTrade

New Issues in Agricultural, New Issues in Agricultural, 
Food & Bioenergy TradeFood & Bioenergy Trade

AgFoodTradeAgFoodTrade

New Issues in Agricultural, New Issues in Agricultural, 
Food & Bioenergy TradeFood & Bioenergy Trade  

 

 

 

 
 
AGFOODTRADE (New Issues in Agricultural, Food and Bioenergy 
Trade) is a Collaborative Project financed by the European 
Commission within its VII Research Framework. Information 
about the Project, the partners involved and its outputs can be 
found at www.agfoodtrade.eu . 
 
Copyright 2009 by Q. Paris, S. Drogué and G. Anania. All rights reserved. Readers may 
make verbatim copies of this document for non-commercial purposes by any means, 
provided that this copyright notice appears on all such copies. 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
Calibrating Mathematical Programming Spatial 
Models 

 
Quirino Paris (University of California, Davis), Sophie Drogué 
(INRA-AgroParisTech) and Giovanni Anania (University of 
Calabria) 
 
 
 
 
 
 
 

Working Paper 2009-10   (revised March 2010) 
 
 
 



 1

Calibrating Mathematical Programming Spatial Models1 
 

Quirino Paris (University of California, Davis, USA), Sophie Drogué (INRA-
AgroParisTech, France) and Giovanni Anania (University of Calabria, Italy) 

 
Revised version, 23 March 2010 

 
 

1. Introduction  
 

In the area of trade, modelers have a wide variety of tools at their disposal: spatial and 
non spatial partial equilibrium models, computable general equilibrium models. There is 
no superiority between them but rather a better adequacy or efficiency to deal with the 
specific issue at hand. Pros and cons of the different classes of models are addressed, 
among the others, in Anania (2001), Bouët (2008), Francois and Reinert (1997), and van 
Tongeren, van Meijl and Surry (2001). Partial equilibrium models tend to better 
accommodate explicit representations of complex policy instruments, allow for a more 
detailed representation of markets and require less restrictive assumptions. Computable 
general equilibrium models can deal with interdependence among sectors and income and 
employment effects.  

In this paper we deal with spatial partial equilibrium models, that is with partial 
equilibrium models which are “naturally” able to reproduce bilateral trade flows without 
having to resort to the Armington assumption (Armington, 1969). These models are 
particularly useful when the market, or the markets, considered are relatively small with 
respect to the countries’ overall economy and relevant trade policies include 
discriminatory instruments, that is policies which discriminate by country of origin 
(destination) of imports (exports), such as preferential tariffs, country specific tariff rate 
quotas or embargos. In particular, the focus of this paper is on mathematical 
programming spatial partial equilibrium models.     

Empirical models of international trade are subject to a common pitfall that is represented 
by the discrepancy between actual and optimal trade flows, that is, between realized 
commodity flows in a given year and the import-export patterns generated by the model 
solution for the same year. In fact, mathematical programming models tend to suffer from 
an “overspecialization” of the optimal solution with respect to observed trade flows. The 
main reason for this discrepancy often originates with the transaction costs per unit of 
commodity bilaterally traded between two countries; generally this piece of crucial 
information is measured with a degree of imprecision which is well above that of other 

                                                 
1  We wish to thank Giuseppe Paletta and Francesca Vocaturo for helpful comments on an earlier draft of 
the paper. Financial support received by the “New Issues in Agricultural, Food and Bio-energy Trade 
(AGFOODTRADE)” (Small and Medium-scale Focused Research Project, Grant Agreement no. 212036) 
research project funded by the European Commission and by the “European Union policies, economic and 
trade integration processes and WTO negotiations” research project funded by the Italian Ministry of 
Education, University and Research (Scientific Research Programs of National Relevance 2007) is 
gratefully acknowledged. The views expressed in this paper are the sole responsibility of the authors and do 
not necessarily reflect those of the European Commission. 
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parameters in the model. When this event occurs, a calibration of the trade model for the 
given base year allows for more effective policy simulations. Different approaches have 
been used in the past to calibrate mathematical programming trade models, mostly based 
on including in the model additional constraints limiting the space of feasible solutions. 
The original calibration procedure proposed in this paper follows the approach used in 
Positive Mathematical Programming (PMP) (Howitt, 1995a and 1995b).  

The paper is structured in two parts. The first part discusses the proposed calibration 
procedure with reference to a variety of spatial transportation and trade models; the 
second part provides numerical examples that support the implementation of the 
calibration procedure of the proposed models. 
Regarding the types of trade models to be analyzed in the present paper, we distinguish 
between models that involve either one or two commodities and those that jointly involve 
three or more commodities. This distinction has to do with the integrability conditions of 
systems of demand functions.   

 When dealing with either one or two commodities, Samuelson, first, and 
Takayama and Judge, after him, have shown that the preferred specification of a spatial 
trade model among R regions corresponds to the maximization of a quasi welfare 
function (QWF) subject to two sets of constraints regarding the demand and the supply of 
the various regions.  The QWF objective is defined as the integral of the inverse demand 
function(s) minus the integral of the supply function(s) and the total transaction costs. 
 As theory does not require symmetry of the Jacobian matrix in Marshallian 
systems of three or more demand functions, these systems are not integrable into a total 
gross revenue function and no suitable objective function is available for analyzing them. 
In these cases, the specification of an Equilibrium Problem will replace the formulation 
of a dual pair of optimization problems. 
 
2. Calibrating Mathematical Programming Spatial Trade Models 
 
2.1 The Classical Transportation Model 
 
We begin with a simple transportation model involving J importing and I exporting 
countries. We assume a single homogeneous commodity whose quantities consumed by 
the j-th destination, x j

D , and supplied by the i-th origin, xi
S , are known together with the 

realized trade flow, xij , and the fixed accounting transaction cost per unit of commodity, 

tcij , transported between country pairs. In all statements, indexes range as 

i  1,..., I  and j  1,..., J .   

This simple model can be stated as follows: 

                                      minTTC  tcij
j1

J


i1

I

 xij              (1) 

                Dual 
              variables 
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subject to   
1

I
D
j ij

i

x x


     pj
D           (2) 

 

    xij
j1

J

  xi
S    pi

S          (3) 

 
and xij  0 . The interpretation of the dual variables pj

D  and  pi
S  corresponds, 

respectively, to commodity prices at destination and at origin. 

In general, transaction costs are estimated imprecisely, often extending the same unit cost 
to routes for which a direct figure is not available. An initial goal of the proposed 
calibration procedure, therefore, is to obtain a correct marginal transaction cost by means 
of a dual parameter, say ij , that is consistent with the structure of the transportation 

model and the knowledge of realized trade flows. Thus, the corresponding linear 
programming model minimizes the total transaction cost, TTC, subject to conventional 
demand and supply constraints together with calibration constraints as in the following 
primal specification: 

   minTTC  tcij
j1

J


i1

I

 xij             (4) 

                Dual 
              variables 

subject to   
1

I
D
j ij

i

x x


     pj
D           (5) 

 

    xij
j1

J

  xi
S    pi

S          (6) 

 
       xij  xij    ij           (7) 

 
and xij  0 . ij expresses the difference between the accounting and the effective 

transaction cost per unit of bilaterally traded commodity. While dual variables pj
D  and 

pi
S  are nonnegative by virtue of the specified direction of the associated constraints, 

nothing can be said a priori about the sign of dual variables ij  associated with 

calibration constraints (7). In fact, differently from the traditional PMP approach (Howitt, 
1995a and 1995b), in this paper the calibrating constraints are stated as a set of equations, 
rather than inequalities. This means that either a reduction or an increase of the 
accounting – and, often, poorly measured – transaction cost is admissible. The 
specification of the calibration constraints admits the common event of “self-selection” 
that occurs when the realized trade between a given pair of countries is null. The 
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economic justification for this occurrence is attributed to the “fact” that the marginal cost 
of trade is strictly greater than the associated marginal revenue.  

The dual specification of the transportation model (4)-(7) is stated as the maximization of 
the net value added, NVA, of the transportation industry subject to the economic 
equilibrium constraints according to which its marginal cost per unit of commodity 
exchanged between a given pair of countries must be greater than or equal to its marginal 
revenue, that is 

   max NVA  pj
D

j1

J

 x j
D  pi

Sxi
S

i1

I

  ij xij
j1

J


i1

I

         (8) 

         Dual 
         variables 
subject to     pj

D  pi
S  (tcij  ij )         xij        (9) 

 
and pj

D  0,  pi
S  0,  ij  free variable.  The term (tcij  ij )  constitutes the effective 

transaction cost per unit of commodity transported from the i-th to the j-th countries.  The 
supporting idea is that information about transaction costs is more difficult to obtain than 
information on trade flows. Hence, the utilization of all the available information –
whether the accounting and, admittedly, imprecise transaction costs and the more 
accurate trade data – should provide a better specification of the international trade 
model. The level and the sign of the dual variable ij  resulted from the solution of model 

(4)-(7) will determine whether the accounting transaction cost tcij  was originally either 

over- or under-estimated. The crucial realization, therefore, is that a solution of either the 
primal or the dual models defined above should not be regarded as a tautological 
statement but as a way to elicit the complete and more accurate marginal transaction costs 
to be used in subsequent analyses. 

With knowledge of the dual variables ij  obtained from the solution of LP model (4)-(7), 

say ij
* , a second phase LP model can be stated as follows: 

   minTTC  (tcij  ij
* )

j1

J


i1

I

 xij                         (10) 

        Dual 
        variables 

subject to   
1

I
D
j ij

i

x x


        pj
D                    (11) 

 

    
1

J
S

ij i
j

x x


       pi
S                    (12) 

 
with xij  0 , i  1,..., I  and j  1,..., J .  
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Classical PMP modifies a linear objective function by adding a quadratic function which 
accounts for additional costs inferred based on the difference between the observed 
realization and the solution from the uncalibrated model. The calibration procedure 
proposed in this paper does not alter the objective function, but only “corrects” one set of 
its parameters (bilateral transaction costs). The classical PMP approach assumes that 
costs in the uncalibrated model can be only underestimated, while the approach proposed 
assumes that transaction costs can be either underestimated or overestimated (ij

*  are 

unrestricted). Classical PMP and the calibration procedure proposed here both assume the 
model is well specified in all its parts but in the parameters being subject to the 
calibration; this means, for example, that if the model is ill-designed with respect to the 
representation of existing policies, these errors will be captured by the ij

*  and subsequent 

policy simulations will yield distorted results.  

The empirical solution of model (10)-(12) should be carried out using all the available 
information that includes the realized levels of activities. When the initial values of 
the trade flow variables are set equal to the realized level of trade flows, model (10)-(12) 
calibrates perfectly all its components. If initial values are set at levels different from the 
realized ones there is the possibility that the empirical model will detect alternative 
optimal trade flow matrices (Dantzig, 1951; Koopmans, 1947; Paris, 1981). However, the 
optimal solution always reproduces quantities consumed and produced in each country as 
well as demand and supply prices; this occurs because the structure of the objective 
functions at the optimum and that of the constraints is identical. To illustrate this 
assertion, let us specify the dual of model (10)-(12):    

   max NVA  pj
D

j1

J

 x j
D  pi

S

i1

I

 xi
S          (13) 

        Dual 
        variables 
subject to    pj

D  pi
S  (tcij  ij

* )      xij          (14) 

 
with pj

D  0,  pi
S  0 .  Constraints (5), (6) and (9) in the model with calibrating 

constraints are identical to constraints (11), (12) and (14) in the model without calibrating 
constraints. Furthermore, at the optimal solution the primal and dual objective functions 
in the two models are equal. This establishes the equivalence of the two specifications. 

A more informative discussion about the correct adjustment appearing in the objective 
function of the calibrating model (10)-(12) involves the Lagrangean function of model 
(4)-(7): 

        L  tcij xij
j1

J


i1

I

  pj
D (x j

D  xij
i1

I


j1

J

 )  pi
S ( xij

j1

J


i1

I

  xi
S )  ij

j1

J

 (xij  xij
i1

I

 )      (15) 

 
with derivatives 
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L
xij

 tcij  pj
D  pi

S  ij  0 , 1,..., ; 1,...,i I j J  ,             (16) 

 
which indicate the correct adjustment of the per-unit transaction costs in the form 
of pj

D  (tcij  ij )  pi
S , as given in constraints (9) and (14). Hence – because x j

D  and 

xi
S are exogenously determined and the trade flows xij are the only variables – the 

objective function (10) expresses the desired and required parameterization for obtaining 
a set of multiple optimal solutions which contains the one that mimics the realized trade 
pattern. 

The stylized nature of the above LP structures may be enriched with a more appropriate 
specification of an international trade model involving the paraphernalia of tariffs, 
subsidies, quotas, penalties, preferential trade treatments, exchange rates, etc. Hence, 
within reasonable parameter intervals, models (10)-(12) and (13)-(14) – augmented of the 
appropriate constraints – can be used to evaluate the likely effects of changes in policy 
interventions regarding tariffs, subsidies and other control parameters of interest. 
 
2.2 A Model of International Trade with One Commodity 
 
We assume R importing and exporting countries. When supply demand functions for 
each country are available, the classification between importing and exporting countries 
cannot be done in advance of solving the problem. Let us, therefore, define indices that 
cover all the regions (countries) without distinction between importers and exporters, 
, 1,...,i j R . The known inverse demand function of the single commodity for the j-th 

country is assumed as D D
j j j jp a D x  , while the known inverse supply function for the 

same homogeneous commodity is assumed as S S
i i i ip b S x  . The coefficients , ,j j ia D S  

are known positive scalars. Parameter ib  is also known but may be either positive or 

negative.  In this specification, quantities D
jx  and S

ix are unknown and must be 

determined as part of the solution together with the trade flows ijx . We assume, however, 

the availability of information concerning realized trade flows, ijx , and – as a 

consequence – knowledge of total quantities demanded, D
jx , and supplied, S

ix , for each 

country. We also assume knowledge (albeit imperfect) of the unit transaction costs, ijt , 

, 1,...,i j R .   

The Samuelson-Takayama-Judge (STJ) model (Samuelson, 1952; Takayama and Judge, 
1971) exhibits an objective function that maximizes a QWF function given by the 
difference between the areas below the inverse demand and above the inverse supply 
functions, diminished by total transaction costs. This specification corresponds to the 
maximization of the sum of consumer and producer surpluses netted out of total 
transaction costs.  
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The two elements of the QWF function – demand and supply functions, on one side, and 
total transaction costs, on the other side – may be subject to imprecise measurements. We 
assume here that only transaction costs are measured with imprecision. In fact, this is the 
crucial source for the discrepancy between realized and optimal traded quantities and 
total quantities demanded and supplied in each country, obtained from the solution of the 
STJ model.2  

When information about the realized trade pattern, ijx  , is available, a phase I PMP 

specification of the primal model takes on the following structure: 

   
1 1 1 1

max ( / 2) ( / 2)
R R R R

D D S S
j j j j i i i i ij ij

j i i j

QWF a D x x b S x x tc x
   

             (17) 

         
               Dual 
            variables 

subject to        
1

R
D
j ij

i

x x


     D
jp                               (18) 

1

 
R

S
ij i

j

x x


     S
ip           (19) 

   ij ijx x     ij           (20) 

 
and nonnegative variables, 0, 0, 0D S

j i ijx x x   , ( , 1, 2, , )i j R  . 

 
The dual of model (17)-(20) may be stated as follows 
 

            
1 1 1 1

min / 2 / 2
R R R R

D D S S
j j j i j i ij ij

j i i j

TCMO x D x x S x x
   

                   (21) 

        
 
                 Dual  
             Variables 
subject to  D D

j j j jp a D x    D
jx              (22) 

 
   S S

i i i ib S x p     S
ix              (23) 

 
   ( )S D

i ij ij jp tc p      ijx              (24) 

 

                                                 
2 Jansson and Heckelei (2009) propose a calibration procedure for mathematical programming spatial 
equilibrium models based on the estimation of transportation costs and prices, assumed to be stochastic, 
with measurement errors independent and identically distributed with known variances. 
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and 0, 0, 0D S
j i ijx x x   ; ij  a free variable, ( , 1, 2, , )i j R  . The economic 

interpretation of the objective function is given by the minimization of the total cost of 
market options and of the differential total transaction costs. When interpreting a dual 
model it is convenient to suppose that a second economic agent – external to the primal 
problem – desires to “take over the enterprise” of the primal economic agent. In this case, 
the dual agent will have to quote prices and quantities that will reimburse the primal 
agent of its “potential profit” (consumer and producer surpluses) plus the differential total 
transaction costs.  The dual constraints express the demand and supply functions as well 
as the condition that the supply price in the i-th country plus the marginal effective 
transaction cost of the traded commodity between each pair of countries must be greater-
than-or-equal to the demand price in the j-th country.  

The solution of model (17)-(20) provides an estimate of the dual variables *
ij  associated 

with the calibration constraints that can be utilized in phase II of the PMP procedure for 
adjusting the unit transaction costs, as in the following calibrating model:3  

1 1 1 1

max ( / 2) ( / 2) ( )
R R R R

D D S S
j j j j i i i i ij ij ij

j i i j

QWF a D x x b S x x tc x

   

       
         (25) 

 
 
        Dual 
        variables 

subject to       
1

R
D
j ij

i

x x


                   D
jp                    (26) 

       
1

R
S

ij i
j

x x


                  S
ip         (27) 

 
and, 0, 0, 0D S

j i ijx x x   ; ( , 1, 2, , )i j R  . The adjustment of the unit transaction costs 

in (25) follows the same justification as presented in the previous section. 

 
The Lagrangean function of problem (17)-(20) is: 
 

                                                 
3 Bauer and Kasnakoglu (1990) used the PMP approach to calibrate a quadratic programming model of 
Turkish agriculture with endogeneous supply functions. Bouamra-Mechemache et al. (2002) calibrated a 
model similar to the one considered here by applying the classical PMP procedure (i.e. using inequality 

constraints to obtain the ij and adding a quadratic cost function to the objective function); however, they 

found the calibrated solution not satisfactory and introduced further adjustments in the model. 
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1 1 1 1

1 1 1 1 1 1

( / 2) ( / 2)

( ) ( ) ( )

R R R R
D D S S

j j j j i i i i ij ij
j i i j

R R R R R R
D D S S
j ij j i i ij ij ij ij

j i i j i j

L a D x x b S x x tc x

p x x p x x x x

   

     

    

     

  

            (28) 

with relevant conditions: 
 

0D S
j i ij ij

ij

L
p p tc

x


    


, and  0ij

ij

L
x

x





 .                         (29) 

 
Model (25)-(27) calibrates total the observed total quantities demanded, D

jx , and supplied 
S

ix , in each country. When all the available information is fully exploited and the 

observed trade flows ijx  are used as initial values of the trade flow variables, the model 

calibrates perfectly. However, in general, a trade model may show multiple optimal 
solutions of trade flows, that is, solutions where different sets of trade flows are 
associated to the same quantities supplied and demanded in each country, the same total 
incurred adjusted transaction costs (calculated over all trade flows), and, as a result, the 
same value of the objective function. The possibility of multiple optimal solutions in 
terms of trade flows being associated to the unique optimal solution in terms of countries’ 
net imports and exports does not come as a surprise because this is a common feature of 
this class of models (Dantzig, 1951; Koopsmans, 1947; Paris, 1983). In order to calibrate 
the observed trade flows, one needs just to use all the available information as initial 
starting values to guide the solver in search of the solution. 

Let us assume now that only information about total demand, xr '
D , and total supply, xr

S , 
is available. The STJ model assumes the following specification: 
 

 
1 1 1 1

max ( / 2) ( / 2)
R R R R

D D S S
j j j j i i i i ij ij

j i i j

QSW a D x x b S x x tc x
   

              (30) 

     
                Dual 
             Variables 

subject to        
1

R
D
j ij

i

x x


    D
jp              (31) 

       
1

R
S

ij i
j

x x


    S
ip               (32)  

         D D
j jx x    D

j               (33) 

 
          S S

i ix x    S
i               (34) 

 
and, 0, 0, 0D S

j i ijx x x   , ( , 1, 2, , )i j R  .  
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The solution of model (30)-(34) provides an estimate of the dual variables associated 
with the calibration constraints, * *and D S

j i  , that can be utilized for adjusting the unit 

transaction costs as in the following calibrated model: 
 

  * *

1 1 1 1

max ( / 2) ( / 2) ( )
R R R R

D D S S S D
j j j j i i i i ij i j ij

j i i j

QWF a D x x b S x x tc x 
   

               (35) 

 
                 Dual 
             Variables 

subject to        
R

D
j ij

i

x x    D
jp               (36) 

       
1

R
S

ij i
j

x x


    S
ip               (37)  

 
and, 0, 0, 0D S

j i ijx x x   , ( , 1, 2, , )i j R  .  

The solution of model (35)-(37) calibrates exactly total demanded and supplied quantities 
in each country. 

In order to justify the adjustments of the transaction costs in equations (35), the 
Lagrangean function of model (30)-(34) comes to the rescue: 
 

                           

1 1 1 1

1 1 1 1

1 1

( / 2) ( / 2)

( ) ( )

( ) ( )

R R R R
D D S S

j j j j i i i i ij ij
j i i j

R R R R
D D S S
j ij j i i ij

j i i j

R R
S S S D D D
i i i j j j

i j

L a D x x b S x x tc x

p x x p x x

x x x x 

   

   

 

    

   

   

  

   

 

                (38) 

with relevant conditions 
 

0D S S D
ij j i i j

ij

L
tc p p

x
 

      


,  or    D S S D
j i ij i jp p tc       ,     (39)  

and      0ij

ij

L
x

x





                             (40) 
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These conditions define the adjusted per-unit transaction cost ( S D
ij i jtc     ) needed for 

the model to calibrate observed demanded and supplied quantities.4 
 
 
2.3  A Multi-Commodity Samuelson-Takayama-Judge Model of International Trade  

The extension of international trade models to multi-commodity exchanges requires a 
substantial adjustment to the structure of the mathematical programming models 
discussed above. First of all, it requires a considerably larger quantity of information that, 
if and when available, imposes the need of a careful management. The major shift from 
previous models is constituted by the specification of systems of demand and supply 
functions for each country. It follows that a properly defined system of demand and 
supply functions – for each country involved in the commodity exchange – ought to 
exhibit full matrices of demand and supply cross-price parameters. This is a formidable 
information requirement that, when overcome, may produce adequate empirical results as 
well as sensible policy analyses. Secondly, a special comment regards matrices jD  and 

jS  , the matrices of cross-derivatives of the j-th country systems of demand and supply 

functions. In principle, demand and production theory requires neither the symmetry nor 
the positive semidefinitess of such matrices. However, the specification of a STJ problem 
in the form of maximizing a QWF objective function that assumes a quadratic structure 
would impose the requirement that the matrices jD  and jS  be symmetric and positive 

semidefinite. This is quite a strong assumption, since there is no reason why jD  and jS  

should satisfy these conditions.  Hence in section 2.4 we will present and discuss a 
structure, called the Equilibrium Problem, that will admit asymmetric jD  and 

jS matrices. 

We assume K homogeneous commodities, 3K  . Each country owns a system of K 
inverse demand functions, D D

j j j j p a D x , j = 1,…, R , and an inverse system of K 

inverse supply functions, S S
j j j j p b S x , 1,...,j R . The matrix of nominal unit 

transaction costs is defined in three dimensions as ijktc   T , , 1,...,i j R , 1,...,k K  

where tcij is the vector of unit transaction costs from country i to country j for the K 
commodities and tcjj is the vector of domestic transaction costs in country j. We assume 
that information about the trade pattern for all commodities, ijx , and, hence, total 

demands, D
jx , and total supplies, D

ix , is available for a given base year.  

 

2.3.1 Case 1: demand and supply functions are well measured at different market levels 

                                                 
4 Based on (39), an alternative interpretation of the role played by the and S D

i j  parameters could be in 

terms of adjustments of the intercepts of supply and demand functions.  
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We will consider two different cases. First inverse demand and supply functions are 
measured at different levels, e.g. the supply function at the farm gate and the demand 
function at retail, and the only information in the model which is measured with 
imprecision are transaction costs.  

Except for the dimensionality of the price, quantity and transaction cost vectors, the 
corresponding STJ model exhibits a structure that is similar to that of model (17)-(20): 
 

1 1 1 1

max ( / 2) ( / 2)
R R R R

D D S S
j j j j i i i i ij ij

j i i j

QWF
   

        a D x x b S x x tc x                    (41) 

       Dual 
       variables 

subject to   
1

R
D
j ij

i

 x x       D
jp          (42) 

 

   
1

R
S

ij i
j

x x       S
ip          (43) 

 
     ij ijx x        ij          (44) 

 
All variables are nonnegative. The dual of model (41)-(44) is obtained in the usual 
fashion, by formulating the associated Lagrangean function, deriving the Karush-Kuhn-
Tucker (KKT) conditions and, furthermore, by simplifying the Lagrangean function, 
which assumes the role of objective function in the dual problem.  
 

 
1 1 1 1

min / 2 / 2
R R R R

D D S S
j j j i i i ij ij

j i i j

TCMO
   

      x D x x S x x             (45) 

        
                Dual 
            Variables 
subject to  D D

j j j j p a D x   D
jx          (46) 

 
   S S

i i i i b S x p               S
ix          (47) 

 
   ( )S D

i ij ij j  p tc p   ijx          (48) 

 
All variables are nonnegative except ij  which is regarded as a vector of K free variables. 

The economic interpretation of model (45)-(48) is similar to that one given for dual 
model (21)-(24). 

The solution of model (41)-(44) provides estimates of dual variables ij , say *
ij , that 

can be used to define effective transaction costs along the line of the PMP methodology 
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proposed above. Hence, the calibrating STJ model for this more general international 
trade specification can be assembled as in the following structure 
 

 
1 1

*

1 1

max ( / 2) ( / 2)

                    ( )

R R
D D S S

j j j j i i i i
j i

R R

ij ij ij
i j

QSW
 

 

    

 

 



a D x x b S x x

tc x
            (49)  

        Dual 
                 variables 

subject to                 
1

R
D

ij j
i

x x       D
jp          (50) 

 

   
1

R
S

ij i
j

x x       S
ip          (51) 

 
with all variables nonnegative. The solution of model (49)-(51) will calibrate precisely 
the realized demanded and supplied quantities.    

Extension 1:  Estimation of Systems of Demand and Supply Functions 
 
When information about the vectors of total demand quantities, D

jtx , and supply 

quantities, S
itx , is available for a number of T years – together with the corresponding 

demand prices, D
jtp , and supply prices, S

itp , t  1,...,T , it is possible to estimate systems 

of demand and supply functions for each country. This estimation is performed in the 
same spirit of PMP; it attempts to utilize – and exploit in a logical and consistent way – 
all the available information. 
 
Demand Functions 
A least-squares approach is proposed for estimating the system of demand functions. In 
order to satisfy the integrability condition – which admits the definition of the proper 
objective function for the STJ model – the estimation is subject to the symmetry of the 
matrix of cross-derivatives, jD , as well as to its positive semidefiniteness. Hence, 

    
1

min ( )
T

D D
jt jt

t

 u u          (52) 

    
subject to    D D D

jt j j jt jt  p a D x u          (53) 

 
    j j j jD L L           (54) 

 

    
1

T
D
jt

t

u 0           (55) 
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with , , 0j k k  . Constraint (53) specifies the system of demand functions. Constraint (54) 

defines the Cholesky factorization that generates the symmetry and the positive 
semidefiniteness of the jD  matrix. The matrix jL  is a unit lower triangular matrix while 

the matrix j  is a diagonal matrix with all nonnegative elements that guarantee the 

positive semidefiniteness of the jD  matrix. Constraint (55) guarantees that all the year 

deviations add up to zero.  

The interpretation of the term D
jtu  deserves a special comment. Within the context of a 

calibrating PMP approach, and under the assumption that only information for a very 
limited number of years is available, it is convenient to interpret this term as a yearly 
deviation from the average system of demand functions rather than as either an “error” or 
a “disturbance term.” In other words, the yearly realization of the demand prices in the r-
th region would deviate from the average prices by the amount D

rtu . Knowledge of this 

deviation, therefore, is crucial for assuring the calibration of the model over every region 
and every year.  

An analogous approach may be used to estimate the system of supply functions. 

Extension 2: A Multi-Year STJ Model of International Trade 
 
With the estimation of the demand and supply systems, a PMP model may be specified 
over T years along the lines presented in equations (52)-(55). Thus, assuming that 
information about the trade flows in each year, ijtx , is available: 

 
1 1

1 1 1 1 1

ˆˆ ˆmax ( / 2 )

ˆˆ ˆ                ( / 2 )

T R
D D D

j j jt jt jt
t j

T R T R R
S S S

i i it it it ijt ijt
t i t i j

QWF
 

    

  

    



 

a D x u x

b S x u x tc x

                     (56) 

 
        
        Dual 
               variables 

subject to   
1

R
D

ijt jt
i

x x       D
jtp          (57) 

 

   
1

R
S

ijt it
j

x x       S
itp          (58) 

 
   ijt ijtx x        ijt                     (59) 
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with all nonnegative variables, but ijt which is unrestricted.  This first phase model 

provides the essential estimates of the dual variables ijt , say *
ijt . Therefore, the 

calibrating PMP model can be specified as follows 
 
   

1 1

*

1 1 1 1 1

ˆˆ ˆmax ( / 2 )

ˆˆ ˆ                ( / 2 ) ( )

T R
D D D

j j jt jt jt
t j

T R T R R
S S S

i i it it it ijt ijt ijt
t i t i j

QWF
 

    

  

     



 

a D x u x

b S x u x tc x
                 (60) 

 
        Dual 
                variables 

subject to   
1

R
D

ijt jt
i

x x       D
jtp          (61) 

 

   
1

R
S

ijt it
j

x x       S
itp          (62) 

 
with all nonnegative variables. The above model calibrates the quantities demanded and 
supplied in each country. 
 
2.3.2  Case 2: demand and supply functions are measured with imprecision at the same 

market level 

We consider a second case where demand and supply functions are measured at the same 
market level - the retail one - and transaction costs as well as demand and supply 
functions are measured with imprecision. This means that tcjj , the vector of domestic 
transaction costs in country j, is the null vector and D

jp = S
jp  , for all j =1, 2, …, R . 

This is the case where the calibration procedure, makes the model reproduce observed 
trade patterns, and, at the same time, adjusts parameters of the demand and supply 
functions to make these and observed trade flows, ijx , consistent with the condition D

jp = 
S
jp . 

In this case in phase I, a least-squares approach is proposed to estimate simultaneously 
the adjustments of transaction costs and of demand and supply function parameters 
needed for the model to reproduce observed trade patterns and comply with the condition 
that supply prices equal demand prices. In order to satisfy the conditions needed for the 
definition of the proper objective function for the STJ model, the estimation takes into 
account the need to assure the symmetry and positive semidefiniteness of the adjusted 
matrices of cross-derivatives. 

The objective function is composed of the Sum of Squared Residuals of the intercepts 
and slopes of the demand and supply functions, plus a primal-dual component that 
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represents the combination of the dual objective function of the problem minus the primal 
objective function. At the optimum this primal-dual portion of the objective function 
should achieve the value of zero. The constraints combine primal and dual constraints.  

Using the familiar notation the model can be specified as follows  
 

1 1 1 1

1 1 1 1

1 1

min / 2 / 2 ( ) / 2 ( ) / 2

    { [ (( ) ( ) ) (( ) ( ) )

    ]}

R R R R

j j i i j j i i
j i j i

R R R R
D D S S

ij ij j j j j j j i i i i i i
j i j i

R R

ij ij
i j

LS trace trace
   

   

 

       

        



   

  



u u v v W W Y Y

x a u D W x x b v S Y x x

tc x

        (63) 

 
subject to 

        
1

R
D

ij j
i

x x             (64) 

   
1

R
S

ij i
j

x x             (65) 

   ij ijx x             (66) 

 j j j jW L L             (67) 

 'i i i iY M Φ M            (68) 

   ( ) ( )D D
j j j j j j   p a u D W x           (69) 

   ( ) ( ) S S
i i i i i i   b v S Y x p           (70) 

   ( )S D
i ij ij j  p tc p            (71) 

   p
j
S  p

j
D             (72) 

 
with , , 0j k k  , , , 0i k k  . The matrices jL  and  Mi are unit lower triangular matrices, 

while matrices jΘ  and iΦ are diagonal matrices with all nonnegative elements 

Constraints (67) and (68) define the Cholesky factorization that generates the symmetry 
and positive semidefiniteness of the Wj and Yi matrices, a sufficient, although not 
necessary, condition for the symmetry and semidefiniteness of the matrices of the 
adjusted slopes, (Dj + Wj) and (Si + Yi), in the systems of demand and supply functions.  

The phase II calibrating model takes on the familiar maximization structure: 
 

1 1

1 1

ˆ ˆˆ ˆmax (( ) ( ) / 2) (( ) ( ) / 2)

ˆ                   ( )

R R
D D S S

j j j j j j i i i i i i
j i

R R

ij ij ij
i j

QWF
 

 

        

 

 



a u D W x x b v S Y x x

tc x
      (73) 
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subject to 

   
1

R
D

ij j
i

x x             (74) 

   
1

R
S

ij i
j

x x             (75) 

where ˆˆ ˆˆ ˆ, , ,  and j i j i iju v W Y   are the least-squares estimates obtained in phase I of the 

corresponding parameters. 
 
This model calibrates demanded and supplied quantities and assures that the prices of 
demand are equal to the prices of supply in each region.  
 
2.4 The Equilibrium Problem 
 
When matrices jD  and the Sj are not symmetric, the system of demand and supply 

functions cannot be integrated and no suitable objective function exists for the STJ-type 
model. The Equilibrium Problem constitutes the appropriate mathematical programming 
structure for analyzing this trade scenario.  
 
Definition 
Let us consider the demand (Dem) and supply (Sup) of a commodity with quantity (Q), 
price (P) and marginal cost (MC). Then, the Equilibrium Problem is jointly defined by 
the following two sets of relations: 
 

Primal: 0,          , ( ) 0 (76)

Dual: 0               ,     ( ) 0                (77)

P Dem Sup Sup Dem P

Q MC P MC P Q

   
   

 

 
Hence, the phase I Equilibrium Problem with systems of demand and supply functions 
whose matrices jD  and Si  are not assumed to be symmetric is specified as follows: 

Primal relations: D
j p 0 ,       

1

R
D
j ij

i

 x x ,   
1

( )
R

D D
ij j j

i

 x x p 0          (78)  

   S
i p 0 ,      

1

R
S

ij i
j

x x ,   
1

( )
R

S S
i ij i

j

 x x p 0           (79) 

    free,ij        ij ijx x ,               ( )ij ij ij x x 0        (80) 

 
 
Dual relations:  D

j x 0  ,     D D
j j j j a D x p ,     ( )D D D

j j j j j  p a D x x 0       (81) 

 
   S

i x 0 ,     S S
i i i i p b S x ,      ( )S S S

i i i i i  b S x p x 0       (82) 

 

ij x 0 ,   ( )D S
j i ij ij  p p tc  ,      [ ( ) ]S D

i ij ij j ij   p tc p x 0 .           (83) 
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The asymmetry of the jD  and Si matrices causes neither theoretical nor computational 

difficulties since the systems of demand and supply functions appear directly into the 
dual constraints (81) and (82) without the need of passing through an integral of the 
system – that does not exist in this case – and the corresponding (not existent) primal 
objective function.  

2.4.1 Case 1: imprecision with transaction costs, demand and supply functions are 
measured at different market levels 

As we did for the STJ model in section 2.3, we also consider two different cases for the 
Equilibrium Problem.  

When parameter imprecision is assumed to regard only transaction costs, the solution of 
Equilibrium Problem (78)-(83) can be obtained by introducing primal and dual slack 
variables into the structural constraints and exploiting the complementary slackness 
conditions – that add up to zero – in the form of an auxiliary objective function to be 
minimized, since each term is nonnegative.  Thus, using nonnegative slack variables 

1 2 1 2 3, , , ,jP iP jD iD ijDz z z z z , (where the subscript of 1 2,jP iPz z  stands for primal constraints 1 

and 2 and the subscript of 1 2 3, ,jD iD ijDz z z  stands for dual constraints 1, 2 and 3) the 

solution of the phase I Equilibrium Problem can be obtained by solving the following 
specification: 
 
               1 2 1 2 3min{ [ ]}D S D S

jP j iP i jD j iD i ijD ijij
        z p z p z x z x z x                      (84) 

 
        Dual 
        variables 

subject to        1
1

R
D
j jP ij

i

 x z x ,   D
j p 0                    (85) 

   2
1

R
S

ij iP i
i

 x z x ,   S
i p 0              (86) 

   ij ijx x ,                freeij                             (87) 

  
       1

D D
j j j jD j  a D x z p ,  D

j x 0         (88) 

 
   2

S S
i iD i i i  p z b S x ,   S

i x 0         (89) 

 
      3 ( )D S

j ijD i ij ij   p z p tc  ,  ij x 0 .            (90) 

 
One advantage of this mathematical programming specification is that the optimal value 
of the objective function is known and it is equal to zero. Once again, the crucial task of a 
phase I Equilibrium Problem is to obtain consistent estimates of the dual variables ij  
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associated to the calibrating constraint (87), say *
ij .  With such estimates, a calibrating 

Equilibrium Problem can be stated as the following Phase II specification: 
 

  1 2 1 2 3min{ }D S D S
jP j iP i jD j iD i ijD ijij
        z p z p z x z x z x                  (91) 

 
        Dual 
        variables 

subject to,        1
1

R
D
j jP ij

i

 x z x ,   D
j p 0             (92) 

   2
1

R
S

ij iP i
j

 x z x ,   S
i p 0                    (93) 

      1
D D

j j j jD j  a D x z p ,  D
j x 0          (94) 

 
   2

S S
i iD i i i  p z b S x ,   S

i x 0         (95) 

 
                  *

3 ( )D S
j ijD i ij ij   p z p tc  ,  ij x 0 .       (96) 

 
This calibrating model can now be used to estimate the response to changes in specific 
policy measures. 

2.4.2  Case 2: imprecision of unit transaction costs and demand and supply functions 
(demand and supply are measured at the same market level) 

When demand and supply functions are measured at the same market level and are 
inconsistent with the condition that, ij ij

x x , and with that ( D
jp = S

jp ) for j =1, 2, …, R as 

required by theory, we assume that such demand and supply functions as well as unit 
transaction costs, are measured with imprecision. As a remedy, we associate vectors and 
matrices of deviations to both the intercepts and the slopes of the supply and demand 
functions, as well as to the unit transaction costs. All these deviations are jointly 
estimated in a least-squares model subject to appropriate constraints.  
 
The relevant phase I model can be specified as follows: vectors u j  and v i  are 

unrestricted adjustments to the intercept vectors defining the demand and the supply 
functions, respectively. Similarly, matrices Wj  and Yi  are unrestricted adjustments to the 

slope matrices defining demand and supply functions, respectively. All these parameters 
will be estimated by a least-squares approach subject to the economic relationships of the 
equilibrium problem. The complementary slackness conditions of the equilibrium 
problem (which are equal to zero) will appear in the objective function together with the 
sums of squared adjustments: 
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1 1 1 1

1 1 1

1 1 1

min / 2 / 2 ( ) / 2 ( ) / 2

               { [ (( ) ( ) )

                (( ) ( ) ) ]}

R R R R

j j i i j j i i
j i j i

R R R
D D

ij ij j j j j j j
j i j

R R
S S

i i i i i i ij ij
i i j

LS trace trace
   

  

  

       

    

    

   

 

 

u u v v W W Y Y

x a u D W x x

b v S Y x x tc x



R



         (97) 

 
subject to 

        
1

R
D

ij j
i

x x             (98) 

   
1

R
S

ij i
j

x x             (99) 

   ij ijx x           (100) 

  ( ) ( )D D
j j j j j j   p a u D W x        (101) 

   ( ) ( ) S S
i i i i i i   b v S Y x p         (102) 

   ( )S D
i ij ij j  p tc p          (103) 

   
  
p

j
S  p

j
D           (104) 

 
The complementary slackness conditions of the equilibrium problem appear in the 
portion of equation (97) within the curly brackets which should achieve a zero value 
when an optimal solution is reached. The remaining components of the objective function 
are the sums of squared deviations. 
 
The phase II calibrated model includes the estimates of the adjustment coefficients 

obtained in phase I ˆˆ ˆˆ ˆ(  ,  ,  ,  , and  )j i j i iju v W Y λ , in the minimization structure of the 

Equilibrium Problem: 
 

  1 2 1 2 3min{ }D S D S
jP j iP i jD j iD i ijD ijij
        z p z p z x z x z x              (105) 

 
        Dual 
        variables 

subject to,        1
1

R
D
j jP ij

i

 x z x ,   D
j p 0           (106) 

   2
1

R
S

ij iP i
j

 x z x ,   S
i p 0                  (107) 

      1
ˆˆ( ) ( ) D D

j j j j j jD j    a u D W x z p , D
j x 0        (108) 

 

   2
ˆˆ( ) ( )S S

i iD i i i i i    p z b v S Y x , S
i x 0       (109) 
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                  3
ˆ( )D S

j ijD i ij ij   p z p tc  ,  ij x 0 .     (110) 

 

Problem (105)-(110) calibrates the observed total demand and supply quantities, x j
D , x j

S  

and – when realized trade flows, total demands and total supplies, supply and demand 
prices are used as initial values in the search by the solver of the equilibrium solution – 
the realized trade flows, xij . 

Adjustment vectors ˆ ju  and ˆ i v  and matrices ˆ
jW  and  ˆ

iY  constitute an over-

parameterization of the model. In general, therefore, it is sufficient to adjust the demand 
and supply functions either by modifying the corresponding intercepts or slopes. 
 
3. Numerical Examples and Empirical Implementation 
 
Seven numerical examples of increasing complexity will illustrate the application of the 
PMP methodology developed in previous sections to mathematical programming spatial 
trade models. The list of models is given as follows: 

1.  Four exporting countries and four distinct importing countries of a single 
commodity; unit transaction costs are measured with imprecision. 

2.  Four countries that are potentially export or import traders of a single commodity; 
unit transaction costs are measured with imprecision. 

3.  Four countries that are potentially export or import traders of three commodities; 
matrices of demand and supply slopes are diagonal, unit transaction costs are 
measured with imprecision. 

4. Four countries that are potentially export or import traders of three commodities; 
full, symmetric positive semidefinite demand and supply slope matrices, unit 
transaction costs are measured with imprecision. 

5. Four countries that are potentially export or import traders of three commodities; 
full, symmetric positive semidefinite demand and supply slope matrices, demand 
and supply functions are measured with imprecision at the same market level, unit 
transaction costs are measured with imprecision.  

6. Four countries that are potentially export or import traders of three commodities; 
full, asymmetric positive semidefinite demand and supply slope matrices; unit 
transaction costs are measured with imprecision.  

7. Four countries that are potentially export or import traders of three commodities; 
full, asymmetric positive semidefinite demand and supply slope matrices; demand 
and supply functions are measured with imprecision at the same market level; unit 
transaction costs are measured with imprecision. 

The matrix of transaction costs may be regarded as the array of effective marginal 
transaction costs between trading countries with the following structure 
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    *
ij ijtc    TC         (111) 

 
where ijtc  is the accounting transaction cost generally measured with imprecision, and *

ij  

is the differential between the effective and the accounting marginal transaction cost 
implied by the observed trade flows. As discussed above, in this paper, and contrary to 
the traditional PMP literature, the calibrating constraints are stated as a set of equations, 
rather than inequalities, thus the sign of *

ij is a priori undetermined. This choice is based 

on the consideration that, if the accounting transaction costs are measured incorrectly, 
they may be either over or under estimated.  Thus, the value and sign of the estimated *

ij  

will determine the effective marginal transaction costs that will produce a calibrated 
solution of the quantities produced and consumed in each country. 

In general, a meaningful effective transaction cost will be nonnegative. However, when 
trade policies are not explicitly modeled, effective transaction costs will include their 
effects; when export subsidies are larger than the sum of the other transaction costs, the 
overall effective transaction cost will be negative. 

Example 1:  Four exporting countries and four distinct importing countries of a 
single commodity; unit transaction costs are measured with 
imprecision. 

Four countries, I  A, B,U,E produce and export a single homogeneous commodity 
which is imported and consumed by four countries, J  DA, DB, DU,DE . The required 
information is as follows: 
 
Parameters of the inverse demand functions: 

 
DA    30.0  

DB    22.0  
             

DU    25.0  

DE    29.0  

 
 
 
 
 
 

a ,       D 

0.55
0.37

0.42
0.49



















 ; 

 
Parameters of the inverse supply functions: 

 
A    0.4  

B    0.2  
             

U    0.6  

E    0.5  

 
 
 
 
 
 

b ,               S 

1.4
2.4

1.9
0.6



















  

 
  
Matrix of accounting (observed) transaction costs: 
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                DA DB DU DE

TC 

A
B
U
E

1.2 1.5 1.0 0.1
1.0 1.0 0.4 0.5
2.0 0.5 1.5 2.1
3.0 1.2 2.0 1.0



















  

  
The optimal solution obtained without calibrating the model is as shown below:  
 
Optimal trade flow matrix:  

*

                  
               

13.394

  3.318                    4.662

  0.832       8.511

                               7.836     20.916

DA DB DU DE

A

B

U

E

 
 
 
 
 
 

X
 

 
Total supply quantities:  

 *

                
13.394, 7.980,  9.343,  28.752

                               

S

A B U E
x  

 
Total demand quantities:  

 *

                
17.543, 8.511,  12.497,  20.916

                               

D

A B U E
x  

 
Corresponding supply prices:  

 * 19.151,  19.351,  18.351,  17.751
                                                     

S

A B U E
p  

 
and corresponding demand prices:  

 *

                
20.351,  18.851,  19.751,  18.751

                           

D

DA DB DU DE
p  . 

 
Let us now consider a matrix of realized trade flows (that differs from the above optimal 
matrix of trade flows): 
 
        

11.500                  2.000

  2.500                  3.500

  2.000    7.000

                             6.000    22.500

   DA DB DU DE

A

B

U

E

 
 
 
 
 
 

X
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and the corresponding value of realized produced and consumed quantities in the eight 
countries considered: 
 

 
              

13.500,  6.000,  9.000,  28.500
                               

S

A B U E
x  

 

 
              

16.000,  7.000,  11.500,  22.500
                        

D

DA DB DU DE
x  

 
The matrix of dual variables,  , associated with the calibrating constraints is:   

*

              
                     

0.700                      -0.130

5.600       3.810       5.170       2.875

1.500       1.210       0.970

0.600       0.610       0.570      -0.625

DA DB DU DE

A

B

U

E

















 

 
And the matrix of effective unit transaction costs,TC  * ,: 
 

*

                   
                            

1.900       1.500       0.870       0.100

6.600       4.810       5.570       3.375

3.500       1.710       2.470       2.100

3.600       

DA DB DU DE

A

B

U

E

 TC 

1.810       2.570       0.375

 
 
 
 
 
 

. 

 
The optimal solution obtained using the PMP approach, i.e. after replacing the original 
transaction costs with TC + * is as shown below:  
 
Total supply quantities:  

 *

                
13.500,  6.000,  9.000,  28.500

                               

S

A B U E
x  

 
Total demand quantities:  

 *

                
16.000,  7.000,  11.500,  22.500

                     

D

DA DB DU DE
x  

 
Supply prices:  

 *

                
19.300,  14.600,  17.700,   17.600

                                 

S

A B U E
p  

 
Demand prices: 
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 *

                
21.200,  19.410,  20.170,  17.975

                         

D

DA DB DU DE
p . 

 
The model calibrates exactly each country’s total observed production and consumption. 
Multiple sets of optimal trade flows are associated to this calibration. When realized trade 
flows, ijx , are used as initial values in the optimization procedure, the optimal solution 

calibrates them as well. 
 
Matrix of trade flows N.1- obtained by using realized trade flows as initial values: 
 

1

11.500                 2.000 13.500

  2.500                 3.500 6.000

  2.000    7.000 9.000

                             6.000   22.500 28.500

16.000 7.000 11.500 22

   DA DB DU DE

A

B

U

E



   
   
   
   
   
   

X

 .500

 

 
 
Matrix of trade flows N.2 – obtained by using alternative initial values, 10ijx  : 

 

2

10.327 3.173 13.500

6.000 6.000

0.673 8.327 9.000

5.000 7.000 16.500 28.500

16.000 7.000 11.500 22.500

  DA DB DU DE

A

B

U

E



   
   
   
   
   
   

X  

 
 

 
 

The value of total transaction costs, *

1 1

( )
R R

ij ij ij
i j 

 tc x , is the same in both cases and is 

equal to 102.412. 
 
Example 2:  Four countries that are potentially export or import traders of a single 

commodity; unit transaction costs are measured with imprecision.  

 
Four countries, R  A, B,U,E , can potentially be either export or import traders of a 
single homogeneous commodity. Each country produces and consumes that commodity. 
The required information is as follows: 
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Parameters of the inverse demand functions: 
   35.0  

   59.0  
             

   36.0  

   38.0  

A

B

U

E

 
 
 
 
 
 

a ,       D 

1.2
1.4

1.1
0.9



















 

 
Parameters of the inverse supply functions: 

   0.4  

   0.2  
             

   0.6  

   0.5  

A

B

U

E

 
 
 
 
 
 

b ,         S 

1.4
2.4

1.9
0.6



















  

 
Matrix of accounting (observed) transaction costs: 
                

                  

 0.10      4.50     7.50     9.00

 4.50      0.10     7.50   12.00

 7.50      7.50     0.10     7.50

 9.00     12.00     7.50     0.10

A B U E

A

B

U

E

 
 
 
 
 
 

TC
  

 
Without calibrating constraints – that is, computing the equilibrium solution without 
using the PMP approach – the optimal solution corresponds to:  
 
Optimal trade flow matrix: 

*

           

9.179       7.596

              11.702

                              11.767

                2.570                  23.905

A B U E

A

B

U

E

 
 
 
 
 
 

X
 

 
Total supply quantities:  

 *

                
16.775,  11.702,  11.767,  26.475

                                   

S

A B U E
x  

 
Total demand quantities:  

 *

                  
9.179,  21.868,  11.767,  23.905

                              

D

A B U E
x  

 
Corresponding supply prices:    
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 *      
                 

23.885,  28.285,  22.957,  16.385
                                 

S

A B U E
p  

 
Corresponding demand prices:  

   *

                  
23.985,  28.385,  23.057,  16.485

                                   

D

A B U E
p    

 
Notice that supply prices differ from demand prices in each country by the amount of 
domestic (internal to each country) transaction cost that was specified in the amount of 
0.10 for every country in the TC  matrix. This implies that demands functions may be 
measured at retail level while supply functions may be measured at farm or some other 
intermediate level.  
 
 
Let us now consider the following matrix of realized trade flows: 
             

                             

9.000        6.000

                 9.000       1.000

                 1.000       8.500      0.500

1.000        3.000                     21.000

A B U E

A

B

U

E








X






 


 

 
and the corresponding values of realized produced and consumed quantities in the four 
countries considered (supplies are sums over columns, demands are sums over rows of 
the X  matrix: 
 

 
              

15.000,  10.000,  10.000,  25.000
                                  

S

A B U E
x  

 

 
              

10.000,  19.000,  9.500,  21.500
                                

D

A B U E
x  

 
 
The matrix of dual variables,  , associated with the calibrating constraints is: 
 

*

                   
                     

 1.500      6.500

                8.100      -6.150

                5.300       5.850      -8.450

-1.500      4.900       2.550       3.050

A B U E

A

B

U

E

 
 
 
 
 
 


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And the matrix of effective unit transaction costs,TC  * : 

*

                   
                                     

1.600      11.000       7.500       9.000

4.500        8.200       1.350     12.000

7.500      12.800       5.950      -0.950

7.500  

A B U E

A

B

U

E

 TC 

    16.900     10.050       3.150

 
 
 
 
 
 

 

 
In general, a meaningful effective transaction cost will be nonnegative. However, when 
trade policies are not explicitly modeled, effective transaction costs will include the 
effects of missing policy instruments; for example, when export subsidies are larger than 
the sum of other transaction costs, the overall effective transaction cost between two 
countries may be negative, as is the case for one of the elements of the *TC  matrix 
above. 
Using the calibrating constraints – that is, using the PMP approach – the optimal solution 
is given as:  
 
Total supply quantities:  

 *

               
15.000,  10.000,  10.000,  25.000

                                  

S

A B U E
x   

 
Total demand quantities:  

 * 10.000,  19.000,  9.500,  21.500
                                            

D

A B U E
x  

 
Supply prices:  

 *

               
21.400,  24.200,  19.600,  15.500

                                  

S

A B U E
p  

 
Demand prices: 

 *

               
23.000,  32.400,  25.550,  18.650

                                   

D

A B U E
p  . 

 
In each country, supply prices are not equal to demand prices and, in particular, they 
differ by an amount that is much larger than the domestic transaction cost of 0.10 
characterizing the price difference in the model without calibrating constraints. The 
amount by which supply and demand prices differ in each country is equal to the 
domestic effective transaction costs reported on the main diagonal of matrix ( *TC ). 
The PMP model calibrates exactly each country’s total observed production and 
consumption, as given by the marginal sums of columns and rows of the realized matrix 
of trade flows. Multiple sets of optimal trade flows are associated to this calibration. 
When realized trade flows, xij , are used as initial values in the optimization procedure, 

the optimal solution calibrates them as well. 
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Matrix of trade flows N. 1 – obtained by using realized trade flows as initial values: 
 

1

 9.000       6.000 15.000

                 9.000      1.000 10.000

                 1.000      8.500     0.500 10.000

 1.000       3.000                  21.000 25.000

10.0

A B U E

A

B

U

E



   
   
   
   
   
   

X

 00 19.000 9.500 21.500

 

 
Matrix of trade flows N. 2 – obtained by using alternative initial values, xij  10 : 

 

2

     

10.000 5.000 15.000

0.500 9.500 10.000

10.000 10.000

13.500 11.500 25.000

10.000   19.000    9.500    21.500

X

A B U E

A

B

U

E



   
   
   
   
   
   

 

The value of total transaction costs, (t
ij

j1

R


i1

R

  
ij
* )x

ij
 , is the same in both cases and 

equal to 342.800. 

 
Example 3:  Four countries that are potentially export or import traders of three 

commodities; matrices of demand and supply slopes are diagonal, unit 
transaction costs are measured with imprecision. 

 
Four countries R  A, B,U,E are either import or export traders of three commodities 
M  1,2,3 . We assume that no linkages exist across commodities either in production or 
consumption, that is, the matrices of the demand and supply slopes are diagonal. This 
means that solving this problem is analogous to solving the three individual commodity 
models individually. The relevant data are as follows: 
 
Matrix of inverse demand and supply intercepts:  
                 

1    2    3

   30.0   25.0    20.0

   22.0   18.0    15.0

   25.0   10.0    18.0

   28.0   20.0    19.0

A

B

U

E

 
 
 
 
 
 

A
 

                 1     2   3

B 

A
B
U
E

 0.4     0.1   0.7

 0.2    -0.4   0.3

-0.6     0.2  -0.4

-0.5    -1.6  -1.2



















 

 
Matrix of inverse demand and supply slopes: 
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                                 1   2    3

D 

A.1
A.2
A.3

B.1
B.2
B.3

U.1
U.2
U.3

E.1
E.2
E.3

  1.2

           2.1

                    0.7

   0.8

           1.6

                    2.6

   0.8

            0.9

                    1.7

   1.1

             0.8

                    0.9













































 

                               1    2    3

S 

A.1
A.2
A.3

B.1
B.2
B.3

U.1
U.2
U.3

E.1
E.2
E.3

 1.4

          2.1

                   1.7

 2.4

         1.6

                   1.8

 1.9

         2.8

                   2.1

 0.6

         1.1

                   0.5













































 

  
 
 
Matrix of accounting transaction costs: 
                  1    2    3

. 0.5 0.5 0.5

. 1.5 1.5 1.5

. 1.0 1.0 1.0

. 3.0 3.0 3.0

. 1.5 1.5 1.5

. 0.5 0.5 0.5

. 2.2 2.2 2.2

. 4.0 4.0 4.0
. 1.0 1.0 1.0
. 2.2 2.2 2.2
. 0.5 0.5 0.5
. 3.7 3.7 3.7
. 3.0 3.0 3.0
. 4.0 4.
.
.

A A
A B
AU
A E
B A
B B
BU
B E
U A
U B
U U
U E
E A
E B
E U
E E

TC

0 4.0
3.7 3.7 3.7
0.5 0.5 0.5

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

 
The optimal solution obtained without calibrating the model, is as shown below:  
 
Equilibrium trade flow matrix: 
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                       1             2            3

 5.543       4.492         5.487.
 1.020.
 3.553.
                                   2.744.
 6.401       5.594         2.105.

.    

.

.

.

A A

A B

AU

B A

B B

U A

U U

E A

E E

*X

              2.635         0.038

 8.244       0.519         4.690

 6.904                         5.264

14.034     11.105      12.192

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 
Equilibrium total supply and demand quantities: 

*

                    
1             2           3

10.116       4.492         5.487

 6.401        5.594         4.849

 8.244        3.155         4.727

20.938      11.105      17.455

S

A

B

U

E

 
 
 
 
 
 

x
 

*

                    
1            2            3

12.448        7.127      13.532

 7.421        5.594        2.105

11.796        0.519        4.690

14.034      11.105      12.192

D

A

B

U

E

 
 
 
 
 
 

x
 

 
Corresponding supply and demand prices: 

*

                  
1           2           3

14.563       9.533      10.028

15.563       8.550        9.028

15.063       9.033        9.528

12.063     10.616        7.528

S

A

B

U

E

 
 
 
 
 
 

p
  

*

                 
1           2           3

15.063      10.033      10.528

16.063        9.050        9.528

15.563        9.533      10.028

12.563      11.116        8.028

D

A

B

U

E

 
 
 
 
 
 

p
 

 
Supply prices differ from demand prices, in each country, by the amount of 0.5 which is 
the domestic transaction cost as exhibited by the matrix TC . Let us now consider the 
following matrix of realized trade flows: 
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1 2 3

 5.000      4.000          6.000
.

 1.000.
 3.000.
 1.000                         2.000.
 5.000       5.000         2.000.
                 1.000.

.                  2.000

.  7.

.

.

.

.

A A

A B

AU

B A

B B

B E

U A

U U

U E

E A

E B

E E

X

000                         2.500

                 1.500

 6.000                         4.500

 1.000                         0.500

12.000       8.000      10.500

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 
and the corresponding value of realized produced and consumed quantities of the three 
products in the four countries (sums over columns and over rows of the X matrix: 

 
1 2 3

12.000       6.000      12.500

 7.000       5.000       2.500

10.000                        2.500

12.000      10.500     10.500

D

A

B

U

E

 
 
 
 
 
 

x
 

 
 

When the calibrating constraints (phase I) are included in the model, the matrix of dual 
variables *Λ (adjustment to accounting costs) is given below. Many elements of *Λ  are 
negative. However, the elements of the matrix of effective transaction costs, TC  *  , 
are all not negative: 
  

 
 

1 2 3

 9.000       4.000       6.000

 6.000       6.000       4.000

 7.000       3.500       2.500

19.000      8.000      15.500

xS

A

B

U

E

 
 
 
 
 
 
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1 2 3

 2.100       3.400      -0.150
.

 1.900
.

 3.000       0.500       1.850
.

                 0.100.
-0.500       1.700       2.250.
 1.300       0.300       0.5.

.

.

.

.

.

.

.

.

.

.

A A

A B

AU

A E

B A

B B

BU

B E

U A

U B

U U

U E

E A

E B

E U

E E

 

00

 0.200                       4.050

                -1.600

 1.900       1.400       5.400

 1.500                       1.450

 3.800      -0.500       8.400

                -2.100       1.000

 1.700       2.200       1.700

 1.500                      -2.050

 2.400                       3.500

 3.400       3.900       2.500

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    

*

                             
1         2         3

. 2.600       3.900       0.350

. 3.400       1.500       1.500

. 4.000       1.500       2.850

. 3.000     

.

.

.

.

.

.

.

.

.

.

.

.

A A

A B

AU

A E

B A

B B

BU

B E

U A

U B

U U

U E

E A

E B

E U

E E

 TC 

 3.100       3.000

1.000       3.200       3.750

1.800       0.800       1.000

2.400       2.200       6.250

4.000       2.400       4.000

2.900       2.400       6.400

3.700       2.200       3.650

4.300      0.000       8.900

3.700       1.600       4.700

4.700       5.200       4.700

5.500       4.000       1.950

6.100       3.700       7.200

3.900       4.400       3.000

 
 
 
 
 
 
 

















 



















 

 
. 

 
Phase II equilibrium matrices of supply and demand quantities: 
 

*

              
1          2         3

 9.000       4.000        6.000

 6.000       6.000        4.000

 7.000       3.500        2.500

19.000       8.000      15.500

S

A

B

U

E

 
 
 
 
 
 

x
 

*

               
1         2         3

12.000       6.000      12.500

 7.000       5.000       2.500

10.000                        2.500

12.000      10.500     10.500

D

A

B

U

E

 
 
 
 
 
 

x
 

 
These matrices match the realized matrices of total demand and supply quantities. 
 
Phase II equilibrium matrices of supply and demand prices: 

*

                   
1           2         3

13.000       8.500      10.900

14.600       9.200        7.500

12.700     10.000        4.850

10.900       7.200        6.550

S

A

B

U

E

 
 
 
 
 
 

p
  

*

                    
1       2         3

15.600     12.400     11.250

16.400     10.000       8.500

17.000     10.000     13.750

14.800     11.600       9.550

D

A

B

U

E

 
 
 
 
 
 

p
 

 
. 
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As previously supply and demand prices differ, in each country, by the domestic effective 
transaction costs exhibited in the (TC  * ) matrix. The phase II equilibrium model 
calibrates exactly the realized trade flows as long as all the realized trade flows, and the 
corresponding marginal quantities of supply and demand, and demand and supply prices 
are used as initial values to guide the solver in search of an equilibrium solution: 
 
Matrix of trade flows N.1 – realized trade flows are used as initial values: 
 

1

1 2 3

5.000     4.000        6.000
.

 1.000.
 3.000.
1.000                      2.000.
5.000     5.000        2.000.
               1.000.

.                2.000

.  7.000        

.

.

.

.

A A

A B

AU

B A

B B

B E

U A

U U

U E

E A

E B

E E

 X

             2.500

               1.500

6.000                      4.500

1.000                      0.500

12.000     8.000      10.500

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 
 
Matrix of trade flows N. 2 – alternative initial values, ijx = 10: 

 

2

1 2 3

. 3.985 3.500

. 9.000 2.500

. 0.015

. 6.000 1.000 4.000

. 5.000

. 6.000 1.015 2.000

. 1.000

. 2.485 0.500

. 0.000 3.000

. 7.000 2.500

. 12.000 8.000 10.000

X

A A

AU

A E

B A

B B

U A

U U

U E

E A

E B

E E



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
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In both equilibrium trade flows matrices, the total supplies and demands of every 
commodity in each country, are equal to the corresponding observed quantities. The 
value of total transaction costs is the same in both cases and is equal to 300.875. 
 
Example 4:  Four countries that are potentially export or import traders of three 

commodities; full, symmetric positive semidefinite demand and supply 
slope matrices, unit transaction costs are measured with imprecision. 

 
When the Jacobian matrices of first derivatives (slope) are symmetric, systems can be 
integrated into a meaningful STJ objective function. The relevant data are as follows: 
 
Matrices of inverse demand and supply intercepts:  

1 2 3

30.0    25.0     20.0

22.0    18.0     15.0

25.0    10.0     18.0

28.0    20.0     19.0

A

B

U

E

 
 
 
 
 
 

A
   

               
1     2   3

0.4     0.1   0.7

0.2    -0.4   0.3

-0.6     0.2  -0.4

-0.5    -1.6  -1.2

B

A

B

U

E

 
 
 
 
 
 

 

 
Matrices of inverse demand and supply slopes: 
                   1      2       3

.1  1.2   0.3  -0.2

.2  0.3   2.1   0.1

.3 -0.2   0.1   0.7

.1  0.8  -0.2   0.2

.2 -0.2   1.6   0.4

.3  0.2   0.4   2.6

.1  0.8   0.3   0.4

.2  0.3   0.9   -0

.3

.1

.2

.3

A

A

A

B

B

B

U

U

U

E

E

E

D

.1

 0.4  -0.1   1.7

 1.1   0.1    0.3

 0.1   0.8    0.2

 0.3   0.2    0.9

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

   

1 2 3

.1  1.4   -0.4   0.3

.2 -0.4    2.1   0.2

.3  0.3    0.2   1.7

.1  2.4    0.5   0.2

.2  0.5    1.6   0.3

.3  0.2    0.3   1.8

.1  1.9   -0.1   0.5

.2 -0.1    2.8   0.4

.3  0.5    0.4   2.1

.1  0.6  

.2

.3

S

A

A

A

B

B

B

U

U

U

E

E

E



-0.1   0.2

-0.1    1.1   0.5

0.2    0.5   0.5

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 
  
Matrix of accounting transaction costs: 
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                  1    2    3

. 0.5 0.5 0.5

. 1.5 1.5 1.5

. 1.0 1.0 1.0

. 3.0 3.0 3.0

. 1.5 1.5 1.5

. 0.5 0.5 0.5

. 2.2 2.2 2.2

. 4.0 4.0 4.0
. 1.0 1.0 1.0
. 2.2 2.2 2.2
. 0.5 0.5 0.5
. 3.7 3.7 3.7
. 3.0 3.0 3.0
. 4.0 4.
.
.

A A
A B
AU
A E
B A
B B
BU
B E
U A
U B
U U
U E
E A
E B
E U
E E

TC

0 4.0
3.7 3.7 3.7
0.5 0.5 0.5

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  . 

 
The optimal solution obtained without calibrating the model is as shown below: 
 
Equilibrium trade flow matrix: 
 
 

1 2 3

  3.520       2.764       4.398.
  3.478       2.787.
  3.866.
                                  5.083.
  5.321       3.442.

.                   2.453       3.140

.   7.481          

.

.

A A

A B

AU

B A

B B

U A

U U

E A

E E

 X

             0.538

  9.662                       0.332

12.128      10.407       3.037

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Equilibrium total supply and demand quantities: 
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1 2 3

10.843        5.552        4.398

  5.321        3.442        5.083

  7.481        2.453        3.678

21.790      10.407        3.370

S

A

B

U

E



 
 
 
 
 
 

X
   

1 2 3

13.182       5.218     12.954

  8.798       6.229

11.347                       0.538

12.128     10.407       3.037

D

A

B

U

E



 
 
 
 
 
 

X
 

 
Corresponding supply and demand prices: 

 
1 2 3

14.707       8.293      12.547

15.707       9.293      11.547

15.207       7.793      12.047

12.207       9.354      10.047

S

A

B

U

E



 
 
 
 
 
 

p
   

1 2 3

15.207       8.793      13.047

16.207       9.793      10.749

15.707       6.650      12.547

12.707       9.854      10.547

D

A

B

U

E



 
 
 
 
 
 

p
 

 
 
Supply prices differ from demand prices, in each country, by the amount of 0.5 which is 
the domestic transaction cost as exhibited by the matrix TC . Let us now consider the 
following matrix of realized trade flows:       
         

1 2 3

3.000       2.500       4.500.
2.500       2.000.
4.000.
                0.500       4.000.
2.500       3.500.
0.500.

. 1.000       1.500       2.000

. 6.000       0.500

.           

.

.

A A

A B

AU

B A

B B

B E

U A

U U

U E

E A

E E

X

                     1.000

7.000                      0.500

8.500     10.000      3.500

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
and the corresponding value of realized produced and consumed quantities of the three 
products in the four countries considered (sums over columns and over rows of the X  
matrix): 
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1 2 3

 9.500       4.500       4.500

 3.000       4.000       4.000

 7.000       2.000       3.000

15.500    10.000       4.000

S

A

B

U

E

 
 
 
 
 
 

x
   

1 2 3

11.000       4.500     11.000

  5.000       5.500

10.000       0.500

 9.000     10.000       4.500

xD

A

B

U

E

 
 
 
 
 
 

 

 
 

 
When the calibrating constraints are included in the model, the matrix of dual variables, 
*  (adjustment to accounting costs) is given below. Its elements are positive and 
negative while the elements of the matrix of effective transaction costs are all positive: 
 

 

1 2 3

3.900       4.000       1.450
.

4.350       2.050
.

2.600                       0.950
.

                0.550.
5.950       0.950       3.250.
8.400       1.000.

.

.

.

.

.

.

.

.

.

.

A A

A B

AU

A E

B A

B B

BU

B E

U A

U B

U U

U E

E A

E B

E U

E E

 

       2.000

4.450                       2.550

1.550

2.650       3.850       2.850

2.900       1.700

2.350      -0.250       3.350

                0.200      -3.650

6.050                       2.150

6.500

4.550                       1.450

6.650      -0.150       0.850

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

*

                           
1            2       3

.  4.400       4.500       1.950

.  5.850       3.550       1.500

.  3.600       1.000       1.950

.  3.000  

.

.

.

.

.

.

.

.

.

.

.

.

A A

A B

AU

A E

B A

B B

BU

B E

U A

U B

U U

U E

E A

E B

E U

E E

 TC 

    3.550       3.000

7.450       2.450       4.750

8.900       1.500       2.500

6.650       2.200       4.750

5.550       4.000       4.000

3.650       4.850       3.850

 5.100       3.900       2.200

2.850       0.250       3.850

3.700       3.900       0.050

9.050       3.000       5.150

10.500       4.000       4.000

8.250       3.700       5.150

7.150       0.350       1.350







































 
 
 
 
 
 
 

 

 
 
    
With the calibrating constraints – that is using the PMP approach – the optimal solution is 
as shown below: 
 
Total supply and demand quantities: 
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1 2 3

 9.500       4.500       4.500

 3.000       4.000       4.000

 7.000       2.000       3.000

15.500    10.000       4.000

S

A

B

U

E



 
 
 
 
 
 

X
  

1 2 3

11.000       4.500     11.000

  5.000       5.500

10.000       0.500

 9.000     10.000       4.500

XD

A

B

U

E



 
 
 
 
 
 

 

; 
 

Supply and demand prices:         
            

                
1         2       3

13.250       6.650      12.100

10.200       8.700        9.300

14.000       6.300      10.200

  8.600       9.850       8.900

S

A

B

U

E



 
 
 
 
 
 

p
 

               
1         2       3

17.650      11.150      14.050

19.100      10.200      11.800

16.850       6.550      14.050

15.750      10.200      10.250

D

A

B

U

E



 
 
 
 
 
 

p
  

 
 

The supply prices are different from the demand prices, the differences are equal to the 
domestic effective transaction costs reported on the main diagonal of matrix ( *TC ). 
The PMP model calibrates exactly each country’s total observed production and 
consumption, as given by the marginal sums of columns and rows of the realized matrix 
of trade flows. Multiple sets of optimal trade flows are associated to this calibration. 
When realized trade flows, xij , are used as initial values in the optimization procedure, 

the optimal solution calibrates them as well. 
 
Matrix of trade flows N. 1 – obtained by using realized trade flows as initial values: 
 

1

1 2 3

3.000       2.500       4.500.
2.500       2.000.
4.000.
                0.500       4.000.
2.500       3.500.
0.500.

. 1.000       1.500       2.000

. 6.000       0.500

.         
.

.

A A

A B

AU

B A

B B

B E

U A

U U

U E

E A

E E

 X

                        1.000

7.000                       0.500

8.500      10.000      3.500

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
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Matrix of trade flows N. 2 – obtained by using alternative initial values, xij  10 : 

2

1 2 3

. 9.034 4.500

. 0.466

. 0.003 4.000

. 4.000

. 2.997

. 1.962

. 5.000 1.500

. 0.038 0.500

. 3.000

. 2.500

. 9.497

. 6.003 10.000 1.500

X

A A

AU

B A

B B

B E

U A

U B

U U

U E

E A

E U

E E



 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
  

 

 

The value of total transaction costs, *

1 1

( )tc x
R R

ij ij ij
i j 

   , is the same in both cases  and 

equal to 290.675. 
 
Example 5:  Four countries that are potentially export or import traders of three 

commodities; full, symmetric positive semidefinite demand and supply 
slope matrices, demand and supply functions are measured with 
imprecision at the same market level; unit transaction costs are 
measured with imprecision. 

 
Here the model is calibrated in order to reproduce trade patterns as well as to adjust 
intercepts and the slopes of demand and supply functions so that demand prices are equal 
to supply prices in each region. Except for the transaction costs, which have been 
modified to make all the domestic ones equal to zero, input data are the same as in 
example 4: 
 
Matrices of inverse demand and supply intercepts:  

1 2 3

30.0    25.0     20.0

22.0    18.0     15.0

25.0    10.0     18.0

28.0    20.0     19.0

A

B

U

E

 
 
 
 
 
 

A
   

               
1     2   3

0.4     0.1   0.7

0.2    -0.4   0.3

-0.6     0.2  -0.4

-0.5    -1.6  -1.2

A

B

U

E

 
 
 
 
 
 

B
 

 
Matrices of inverse demand and supply slopes: 
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                   1      2       3

.1  1.2   0.3  -0.2

.2  0.3   2.1   0.1

.3 -0.2   0.1   0.7

.1  0.8  -0.2   0.2

.2 -0.2   1.6   0.4

.3  0.2   0.4   2.6

.1  0.8   0.3   0.4

.2  0.3   0.9   -0

.3

.1

.2

.3

A

A

A

B

B

B

U

U

U

E

E

E

D

.1

 0.4  -0.1   1.7

 1.1   0.1    0.3

 0.1   0.8    0.2

 0.3   0.2    0.9

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

    

                
1    2    3

.1  1.4   -0.4   0.3

.2 -0.4    2.1   0.2

.3  0.3    0.2   1.7

.1  2.4    0.5   0.2

.2  0.5    1.6   0.3

.3  0.2    0.3   1.8

.1  1.9   -0.1   0.5

.2 -0.1    2.8   0.4

.3  

.1

.2

.3

A

A

A

B

B

B

U

U

U

E

E

E

S

0.5    0.4   2.1

0.6   -0.1   0.2

-0.1    1.1   0.5

0.2    0.5   0.5

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 
Matrix of accounting transaction costs: 
                  1    2    3

. 0 0 0

. 1.5 1.5 1.5

. 1.0 1.0 1.0

. 3.0 3.0 3.0

. 1.5 1.5 1.5

. 0 0 0

. 2.2 2.2 2.2

. 4.0 4.0 4.0
. 1.0 1.0 1.0
. 2.2 2.2 2.2
. 0 0 0
. 3.7 3.7 3.7
. 3.0 3.0 3.0
. 4.0 4.0 4.0
. 3.7 3.7 3.7
. 0 0 0

A A
A B
AU
A E
B A
B B
BU
B E
U A
U B
U U
U E
E A
E B
E U
E E







TC


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


  

 
 
The optimal solution obtained without calibrating the model is as shown below: 
 
Optimal trade flow matrix: 
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1 2 3

11.071       5.456       4.710.
                  0.110.
                                  5.076.
  5.418       3.732.
                                  2.826.
           .

.

.

.

.

.

A A

A B

B A

B B

U A

U B

U U

E A

E B

E U

E E

 X        2.399

  7.787                       0.834

  2.126                       0.177

  3.535

  3.314

12.609      10.583       3.289

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ; 

 
 

Total supply and demand quantities: 
 

1 2 3

11.071       5.567       4.710

  5.418       3.732       5.076

  7.787       2.399       3.661

21.584     10.583       3.466

S

A

B

U

E



 
 
 
 
 
 

X
     

1 2 3

13.196       5.456      12.790

  8.954       6.242

11.101                        0.834

12.609     10.583        3.289

D

A

B

U

E



 
 
 
 
 
 

X
 

 
 

Corresponding supply and demand prices: 
 

    

1 2 3

15.085       8.304      13.141

16.085       9.804      11.641

15.785       7.604      12.141

12.085       9.615      10.141

S

A

B

U

E



 
 
 
 
 
 

p
    

1 2 3

15.085       8.304      13.141

16.085       9.804      10.712

15.785       6.753      12.141

12.085       9.615      10.141

D

A

B

U

E



 
 
 
 
 
 

p
 

 
Supply prices are now equal to demand prices, in each country, because the domestic unit 
transaction cost is set for all commodities at a zero level. Let us now consider the 
following matrix of realized trade flows:       
          



 43

              

1 2 3

11.000       3.500     3.000.
 1.000                     3.000.
  3.000       2.000.
 0.500                     2.000.
                  2.000.

.  6.000       0.500     0.500

.

.

.

.

A A

B A

B B

U A

U B

U U

E A

E B

E U

E E

X

  2.000

  3.000

  2.000       0.500

11.000       9.000     2.000

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 
The optimal solution obtained when imposing that demand prices must be equal to supply 
prices and other calibrating constraints is as shown below: 
Matrices of adjustments to transaction costs *  and effective transaction costs *ΤC  

 

1 2 3
-2.341       0.107      -2.854

.
-0.465      -0.195      -0.410.
-4.733       0.467      -3.469.
-0.659      -3.107      -0.146.
-0.824      -3.002      -0.256.
-4.892  .

.

.

.

.

.

.

A B

AU

A E

B A

BU

B E

U A

U B

U E

E A

E B

E U

 
    -2.140      -3.115

-1.535      -1.805      -1.590

-3.576      -1.398      -4.144

-5.969      -1.038      -4.759

-1.267      -6.467      -2.531

-3.108      -5.860      -4.885

-1.431      -6.362      -2.641

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

  

                           
1            2          3

. -0.841       1.607      -1.354

.  0.535       0.805       0.590

. -1.733       3.467      -0.469

.  0.841      -1.60

.

.

.

.

.

.

.

.

TC

A B

AU

A E

B A

BU

B E

U A

U B

U E

E A

E B

E U

 

7       1.354

1.376      -0.802       1.944

-0.892       1.860       0.885

-0.535      -0.805      -0.590

-1.376       0.802      -1.944

-2.269       2.662      -1.059

1.733      -3.467       0.469

 0.892     -1.860      -0.885

2.269      -2.662       1.059

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 
The matrix of adjustment to transaction costs,  , has positive and negative elements and 
all , ,i i k

  are zero, as expected. 

The deviations from supply and demand intercepts are given by: 
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1 2 3

-0.522       0.174       0.028

 0.054       0.116       0.104ˆ
 0.029      -0.043       0.098

 0.006       0.005       0.014

A

B

U

E

 
 
 
 
 
 

V
   

1 2 3

0.522      -0.174      -0.028

-0.054      -0.116      -0.104ˆ
-0.029       0.043      -0.098

-0.006      -0.005      -0.014

A

B

U

E

 
 
 
 
 
 

U
 

 

Matrix Û is the negative of matrix V̂ . This is because of the over-parameterization of the 
model, as indicated above. The elimination of these deviation matrices does not affect the 
calibration of the trade model. 

 
 
Deviations of supply and demand slopes are given by: 
 

1 2 3

 0.001      -0.025      -0.012
.1

-0.025       0.611       0.302.2
-0.012       0.302       0.149.3
 0.253       0.255       0.282.1
 0.255       0.257       0.284.2
 0.282  .3ˆ

.1

.2

.3

.1

.2

.3

A

A

A

B

B

B

U

U

U

E

E

E

Y
     0.284       0.314

 0.267      -0.012       0.286

-0.012       5.2E-4    -0.013

 0.286      -0.013       0.306

 0.124       0.078       0.100

 0.078       0.049       0.063

 0.100       0.063       0.081

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

  

1 2 3

 0.019      -0.111       -0.110
.1

 -0.111      0.638        0.638.2
 -0.110      0.638        0.637.3
  0.398      0.433        0.218.1
   0.433      0.471        0.2.2

.3ˆ
.1

.2

.3

.1

.2

.3

A

A

A

B

B

B

U

U

U

E

E

E

W

37

  0.218      0.237        0.119

  0.352     -0.074        0.265

 -0.074      0.016       -0.056

  0.265     -0.056        0.200

  0.072      0.060        0.066

  0.060      0.051        0.056

   0.066      0.056        0.062

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 
 
In phase II, when the estimates of the adjustments are included in the model and 
calibrating constraints omitted, the optimal solution is as shown below: 
 
Total supply and demand quantities: 

 
                

1       2      3

11.000       3.500       3.000

  4.000       2.000       3.000

  6.500       2.500       2.500

18.000       9.500       2.000

S

A

B

U

E



 
 
 
 
 
 

X
   

               
1         2     3

14.500       3.500       8.000

  6.000      4.000

 8.000      1.000       0.500

11.000      9.000       2.000

XD

A

B

U

E



 
 
 
 
 
 
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Matrices of supply and demand prices:       

     
                

1            2       3

14.665       6.594      11.197

13.824       8.201       9.844

15.200       7.399      11.787

12.931      10.061     10.728

S

A

B

U

E



 
 
 
 
 
 

p
  

               
1            2       3

14.665       6.594      11.197

13.824       8.201       9.844

15.200       7.399      11.787

12.931      10.061     10.728

D

A

B

U

E



 
 
 
 
 
 

p
 

 
The model calibrates exactly each country’s production and consumption of the three 
commodities and in each country demand prices equal supply prices. Two examples of 
optimal trade flows matrix associated to this optimal solution are provided below. The 
first one – obtained using the realized trade flows, and the corresponding total demand 
and supply quantities and demand and supply prices as initial values – calibrates exactly 
the observed trade flows The second matrix is obtained using alternative initial values, 
xij  10 , and the model does not calibrate the observed trade flows. 

 

1 2

1 2 3 1 2 3

.

.
. 11.000 3.500 3.000

.
. 1.000 3.000

.
. 3.000 2.000

.
. 0.500 2.000

.
. 2.000

.
. 6.000 0.500 0.500

.
. 2.000

. 3.000

. 2.000 0.500

. 11.000 9.000 2.000

X X

A A

A B
A A

AU
B A

A E
B B

B A
U A

B E
U B

U A
U U

U U
E A

E B

E U

E E

 

 
 
 
 
 
 
   
 
 
 
 
 
  

0.500 1.000

6.000

1.000

4.500 2.500 2.000

4.000 3.000

2.000

2.000

0.500

. 6.500 2.500

. 10.000 3.500

. 4.000

. 8.000

. 2.000

U E

E A

E B

E U

E E

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

    

   
It can be easily verified that in the three cases the model calibrates exactly on total 
demanded and supplied quantities in each country. The value of total transaction costs is 
the same in all three cases and equal to 14.406. 
 
Example 6:  Four countries that are potentially export or import traders of three 

commodities; full, asymmetric positive semidefinite demand and supply 
slope matrices; unit transaction costs are measured with imprecision. 
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In general, systems of demand and supply functions do not exhibit symmetric Jacobian 
matrices of first derivatives (slopes). When three or more commodities are involved, 
these systems cannot be integrated into a meaningful STJ objective function. The solution 
of such trade models relies upon the specification and solution of an Equilibrium 
Problem, as illustrated in section 2.4. The following numerical example exhibits 
asymmetric matrices of demand and supply slopes. The relevant data are as follows: 
 
Matrices of inverse demand and supply intercepts:  
               

1    2      3

30.0 25.0 20.0

22.0 18.0 15.0

25.0 10.0 18.0

28.0 20.0 19.0

A

A

B

U

E

 
 
 
 
 
 

     

               
1     2   3

0.4 0.1 0.7

0.2 -0.4 0.3
 
-0.6 0.2 -0.4

-0.5 -1.6 -1.2

B

A

B

U

E

 
 
 
 
 
 

  

 
Matrices of inverse demand and supply slopes: 
 

1 2 3

.1 1.2 0.2 -0.2

.2 0.3 2.1 0.2

.3 -0.1 0.1 0.7

.1 0.8 -0.1 0.2

.2 -0.2 1.6 0.4

.3 0.3 0.3 2.6

.1 0.8 0.2 0.5

.2 0.3 0.9 -0.1

.3 0.4 0.0 1.7

.1 1.1 0.1 0.3

.2 0.0 0.8 0.2

.3 0.4 0.3 0.9

D

A

A

A

B

B

B

U

U

U

E

E

E

 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
  

  

                  
1    2    3

.1 1.4 -0.4 0.3

.2 -0.2 2.1 0.2

.3 0.2 0.3 1.7

.1 2.4 0.5 0.2

.2 0.7 1.6 0.3

.3 0.1 0.5 1.8

.1 1.9 -0.1 0.5

.2 -0.1 2.8 0.4

.3 0.6 0.5 2.1

.1 0.6 -0.1 0.2

.2 -0.1 1.1 0.5

.3 0.3 0.3 0.5

S

A

A

A

B

B

B

U

U

U

E

E

E

 







 







 



















  

 
Matrix of accounting transaction costs: 
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1     2     3

. 0.5 0.5 0.5

. 1.5 1.5 1.5
. 1.0 1.0 1.0
. 3.0 3.0 3.0
. 1.5 1.5 1.5
. 0.5 0.5 0.5
. 2.2 2.2 2.2
. 4.0 4.0 4.0
. 1.0 1.0 1.0
. 2.2 2.2 2.2
. 0.5 0.5 0.5
. 3.7 3.7 3.7
. 3.0 3.0 3.0
. 4.0 4.
.
.

TC =

A A
A B
AU
A E
B A
B B
BU
B E
U A
U B
U U
U E
E A
E B
E U
E E

0 4.0
3.7 3.7 3.7
0.5 0.5 0.5

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
The optimal solution obtained without calibrating the model, is shown below: 
 
Equilibrium trade flow matrix: 
 

1 2 3

. 3.910 1.740 4.637

. 2.834 2.887

. 3.684

. 4.835

. 5.356 3.037

. 2.704 2.037

. 7.618 0.837

. 9.809 0.450

. 12.909 12.124 0.158

X

A A

A B

AU

B A

B B

U A

U U

E A

E E



 
 
 
 
 
 

  
 
 
 
 
 
 

  

 
Equilibrium total supply and demand quantities: 
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1        2       3

10.429 4.627 4.637

5.356 3.037 4.835

7.618 2.704 2.873

22.718 12.124 0.608

XS

A

B

U

E



 
 
 
 
 
 

  

               
1         2       3

13.719 4.445 11.958

8.190 5.924

11.302 0.837

12.909 12.124 0.158

XD

A

B

U

E



 
 
 
 
 
 

  

  
Corresponding supply and demand prices: 
                

1        2       3

14.540 8.659 12.057

15.540 9.659 11.057

15.040 8.159 11.557

12.040 9.769 9.557

pS

A

B

U

E



 
 
 
 
 
 

  

               
1         2      3

15.040 9.159 12.557

16.040 10.159 10.766

15.540 8.659 12.057

12.540 10.269 10.057

pD

A

B

U

E



 
 
 
 
 
 

 

 
Supply prices differ from demand prices, in each country, by the amount of 0.5 which is 
the domestic transaction cost as exhibited by the matrix TC . Let us now consider the 
following matrix of realized trade flows: 
 

1 2 3

. 3.000 2.000 3.000

. 2.500 2.500

. 2.000

. 0.500 4.000

. 5.000 2.000

. 1.000 1.000 1.000

. 6.000

. 10.000

. 12.000 10.000

X

A A

A B

AU

B A

B B

U A

U U

E A

E E

 
 
 
 
 
 

  
 
 
 
 
 
 

  

 
and the corresponding values of realized produced and consumed quantities of the three 
products in the four countries (sums over columns and over rows of the X  matrix): 

                1        2       3

x S 

A
B
U
E

7.500 4.500 3.000
5.500 2.000 4.000
7.000 1.000 1.000

22.000 10.000



















  

                1        2       3

x D 

A
B
U
E

14.500 3.000 8.000
7.500 4.500
8.000

12.000 10.000


















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When the calibrating constraints (phase I) are included in the model, the matrix of dual 
variables *  (adjustment to accounting costs) is given below. Many of its elements are 
negative. The same is true for the matrix of effective transaction costs *TC : 

1 2 3

. 3.100 3.600 6.400

. 4.950 2.150 1.250

. 7.600 -2.050 5.150

. 0.800 0.350 -0.450

. -3.100 3.400 5.000

. 0.750 3.950 1.850

. 1.200 -2.450 3.550

. -5.400 0.150 -1.850

. -0.500 9.050 8.150

. 1.15

.

.

.

.

.

.

A A

A B

AU

A E

B A

B B

BU

B E

U A

U B

U U

U E

E A

E B

E U

E E

 

0 7.400 2.800

5.000 4.400 7.900

-3.000 5.600 1.100

-1.100 2.550 8.350

0.750 1.100 3.200

3.200 -3.300 6.900

1.600 4.300 6.500

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

      

1 2 3

. 3.600 4.100 6.900

. 6.450 3.650 2.750

. 8.600 -1.050 6.150

. 3.800 3.350 2.550

. -1.600 4.900 6.500

. 1.250 4.450 2.350

. 3.400 -0.250 5.750

. -1.400 4.150 2.150

. 0.500 10.050 9.150

. 3.3

.

.

.

.

.

.

TC +

A A

A B

AU

A E

B A

B B

BU

B E

U A

U B

U U

U E

E A

E B

E U

E E

 

50 9.600 5.000

5.500 4.900 8.400

0.700 9.300 4.800

1.900 5.550 11.350

4.750 5.100 7.200

6.900 0.400 10.600

2.100 4.800 7.000

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 
Phase II equilibrium matrices of supply and demand quantities: 
 

*

1 2 3

7.500 4.500 3.000

5.500 2.000 4.000

7.000 1.000 1.000

22.000 10.000

xS

A

B

U

E

 
 
 
 
 
 

   *

1 2 3

14.500 3.000 8.000

7.500 4.500

8.000

12.000 10.000

xD

A

B

U

E

 
 
 
 
 
 

  

 
These matrices match the corresponding realized matrices of total demand and supply 
quantities. 
 
Phase II equilibrium matrices of supply and demand prices: 

*

                  
1           2           3

10.000       8.650       8.650

15.200       7.850       9.050

13.100       2.700       6.400

11.700       7.200       4.200

pS

A

B

U

E

 
 
 
 
 
 

        
*

                 
1           2           3

13.600     12.750      15.550

16.450     12.300      11.400

18.600       7.600      14.800

13.800     12.000      11.200

D

A

B

U

E

 
 
 
 
 
 

p
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These supply and demand prices differ, in each country, by the domestic effective 
transaction costs exhibited in the ( *TC ) matrix. The phase II equilibrium model 
calibrates exactly the realized trade flows as long as all the available information is used 
(as long as the realized trade flows, and the corresponding marginal quantities of supply 
and demand, and demand and supply prices are used as initial values) to guide the solver 
in search of an equilibrium solution: 
Matrix of trade flows N. 1 – realized trade flows, and corresponding marginal quantities 
of supply and demand, and demand and supply prices are used as initial values: 

 1  2 3

X
1
* 

A.A
A.B
A.U
B.A
B.B
U .A
U .U
E.A
E.E

3.000 2.000 3.000
2.500 2.500
2.000
0.500 4.000
5.000 2.000
1.000 1.000 1.000
6.000

10.000
12.000 10.000































  

 
Matrix of trade flows N. 2 – alternative initial values, xij  10 : 

 

2

   1         2         3

. 7.500 3.000 3.000

. 1.500

. 4.000

. 5.500 2.000

. 4.484 1.000

. 2.516 0.677

. 0.323

. 2.516

. 4.984 2.323

. 8.000

. 6.500 7.677

X

A A

A B

B A

B E

U A

U B

U E

E A

E B

E U

E E



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 
 
In both equilibrium trade flow matrices, the total supplies and demands of every 
commodity is equal to the corresponding observed quantities. The value of total 
transaction costs is the same in both cases and is equal to 267.400. 
 
 



 51

Example 7:  Four countries that are potentially export or import traders of three 
commodities; full, asymmetric positive semidefinite demand and supply 
slope matrices; demand and supply functions are measured at the same 
market level with imprecision; unit transaction costs are measured with 
imprecision.  

The corresponding model is calibrated to reproduce observed trade patterns as well as to 
adjust intercepts and slopes of demand and supply functions so that demand prices will 
equal supply prices in each region. Except for the transaction costs (where, now, the 
domestic amounts are all set equal to zero), input data are the same as in example 6. The 
modified data are as follows: 
 
Matrix of accounting transaction costs: 
 
                

1     2     3

. 0.0 0.0 0.0

. 1.5 1.5 1.5

. 1.0 1.0 1.0

. 3.0 3.0 3.0

. 1.5 1.5 1.5

. 0.0 0.0 0.0

. 2.2 2.2 2.2

. 4.0 4.0 4.0
. 1.0 1.0 1.0
. 2.2 2.2 2.2
. 0.0 0.0 0.0
. 3.7 3.7 3.7
. 3.0 3.0 3.0
. 4.0 4.
.
.

TC

A A
A B
AU
A E
B A
B B
BU
B E
U A
U B
U U
U E
E A
E B
E U
E E



0 4.0
3.7 3.7 3.7
0.0 0.0 0.0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The optimal solution obtained without calibrating the model is shown below. 
 
Equilibrium trade flows matrix: 
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1 2 3

X 

A.A
B.A
B.B
U .A
U .B
U .U
E.A
E.B
E.U
E.E

10.640 4.653 4.943
4.794

5.461 3.305
1.673

2.646
7.930 1.159
3.125 0.423
2.886
3.074

13.405 12.311 0.352



































 

 
Total supply and demand quantities: 
                

1         2       3

10.640 4.653 4.943

5.461 3.305 4.794

7.930 2.646 2.832

22.490 12.311 0.775

XS

A

B

U

E



 
 
 
 
 
 

        

               
1         2       3

13.765 4.653 11.833

8.347 5.951

11.003 1.159

13.405 12.311 0.352

XD

A

B

U

E



 
 
 
 
 
 

 

 
Corresponding supply and demand prices: 
                

1        2       3

14.918 8.732 12.628

15.918 10.148 11.128

15.618 7.948 11.628

11.918 10.081 9.628

pS

A

B

U

E



 
 
 
 
 
 

          

               
1        2       3

14.918 8.732 12.628

15.918 10.148 11.128

15.618 7.948 11.628

11.918 10.081 9.628

pD

A

B

U

E



 
 
 
 
 
 

. 

 
Supply prices are now equal to demand prices, in each country, because the domestic unit 
transaction cost is set for all commodities at a zero level. Let us now consider the 
following matrix of realized trade flows: 
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1 2 3

. 10.000 2.000 4.000

. 1.000

. 0.500 3.500

. 5.000 2.000

. 2.500

. 1.000

. 2.000

. 6.000 2.000

. 2.000 1.000

. 2.500 1.500

. 1.500

. 11.000 11.000

X

A A

A B

B A

B B

B E

U A

U B

U U

E A

E B

E U

E E

 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
  

 

 
The equilibrium solution obtained when imposing the condition that demand prices must 
be equal to supply prices and other calibrating constraints is shown below: 
Matrix of adjustments to transaction costs *  and effective transaction costs *TC : 
 

*

 1 2 3

. 0.000 0.000 0.000

. -2.354 2.569 -2.442

. -1.557 -0.224 -0.785

. -3.810 3.123 -1.868

. -0.646 -2.569 0.942

. 0.000 0.000 0.000

. -0.703 -2.793 1.657

. -2.956 -3.446 0.574

. 1.557 0.224 -0

.

.

.

.

.

.

.

A A

A B

AU

A E

B A

B B

BU

B E

U A

U B

U U

U E

E A

E B

E U

E E


.215

0.703 0.593 -1.657

0.000 0.000 0.000

-2.253 3.347 -1.083

0.810 -3.123 -1.132

-1.044 -4.554 -0.574

-1.447 -3.347 1.083

0.000 0.000 0.000

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

         

*

1  2 3
. 0.000 0.000 0.000

. -0.854 4.069 -0.942

. -0.557 0.776 0.215

. -0.810 6.123 1.132

. 0.854 -1.069 2.442

. 0.000 0.000 0.000

. 1.497 -0.593 3.857

. 1.044 0.554 4.574

. 2.557 1.224 0.785

. 2

.

.

.

.

.

.

TC +

A A

A B

AU

A E

B A

B B

BU

B E

U A

U B

U U

U E

E A

E B

E U

E E



.903 2.793 0.543

0.000 0.000 0.000

1.447 7.047 2.617

3.810 -0.123 1.868

2.956 -0.554 3.426

2.253 0.353 4.783

0.000 0.000 0.000

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

    

 
 
Deviations of demand and supply intercepts: 
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1          2       3

0.000 0.031 0.010

0.002 0.028 0.019ˆ
0.053 0.014 0.010

0.009 0.001 0.005

V

A

B

U

E

 
 
 
 
 
 

              

              
1          2       3

0.000 -0.031 -0.010

-0.002 -0.028 -0.019ˆ
-0.053 -0.014 -0.010

-0.009 -0.001 -0.005

U

A

B

U

E

 
 
 
 
 
 

 

 

Matrix Û  is the negative of matrix V̂ .  This is because of the over-parameterization of 
the model, as indicated above. The elimination of these deviation matrices does not affect 
the calibration of the trade model. 

 
Deviations of supply (Y) and demand (W) slopes:   

     

1 2 3

.1 0.008 0.002 0.003

.2 0.342 0.062 0.125

.3 0.115 0.021 0.042

.1 0.012 0.005 0.007

.2 0.154 0.070 0.098

.3 0.104 0.047 0.066ˆ

.1 0.318 0.106 0.159

.2 0.084 0.028 0.042

.3 0.059 0.020 0.030

.1 0.151 0.102 0.009

.2 0.024 0.0

.3

A

A

A

B

B

B

U

U

U

E

E

E

Y

16 0.001

0.083 0.056 0.005

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

          

1 2 3

.1 0.010 0.002 0.007

.2 0.389 0.062 0.296

.3 0.130 0.021 0.099

.1 0.018 0.009 0.000

.2 0.237 0.126 0.000

.3 0.160 0.085 0.000ˆ

.1 0.398 0.000 0.106

.2 0.104 0.000 0.028

.3 0.074 0.000 0.020

.1 0.097 0.102 0.000

.2 0.015 0.0

.3

A

A

A

B

B

B

U

U

U

E

E

E

W

16 0.000

0.054 0.056 0.000

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 
Phase II equilibrium matrices of supply and demand quantities: 
 

*

1   2 3

11.000 2.000 4.000

5.500 4.500 3.500

6.000 2.000 3.000

17.000 11.500 1.000

xS

A

B

U

E

 
 
 
 
 
 

              *

1 2 3

12.500 2.000 9.500

8.500 4.500

7.500 2.000

11.000 11.500

xD

A

B

U

E

 
 
 
 
 
 

  

 
 
Equilibrium matrices of supply and demand prices 
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*

                  
1          2        3

16.308 7.321 11.780

15.454 9.889 9.338

14.752 7.097 10.994

12.498 10.443 9.912

pS

A

B

U

E

 
 
 
 
 
 

        
*

                 
1          2        3

16.308 7.321 11.780

15.454 9.889 9.338

14.752 7.097 10.994

12.498 10.443 9.912

pD

A

B

U

E

 
 
 
 
 
 

 

 
Supply and demand prices within each country are equal, as required by theory when 
demand and supply functions are measured at the same market level. Also this model 
calibrates exactly each country’s observed production and consumption of the three 
commodities. This equilibrium model exhibits multiple equilibrium solutions; two 
examples of equilibrium sets of trade flows are shown below.  The first matrix – obtained 
using the realized trade flows, and the corresponding total demand and supply quantities 
and demand and supply prices as initial values - calibrates exactly the observed trade 
flows. The second matrix is obtained using alternative initial values, xij  10 , and the 

model does not calibrate the observed trade flows: 
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2
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In both equilibrium trade flow matrices, the total supplies and demands of every 
commodity is equal to the corresponding observed quantities. The value of total 
transaction costs is the same in both cases and is equal to 34.747. 
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