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1. Introduction

In the area of trade, modelers have a wide variety of tools at their disposal: spatial and
non spatial partial equilibrium models, computable general equilibrium models. There is
no superiority between them but rather a better adequacy or efficiency to deal with the
specific issue at hand. Pros and cons of the different classes of models are addressed,
among the others, in Anania (2001), Bouét (2008), Francois and Reinert (1997), and van
Tongeren, van Meijl and Surry (2001). Partial equilibrium models tend to better
accommodate explicit representations of complex policy instruments, allow for a more
detailed representation of markets and require less restrictive assumptions. Computable
general equilibrium models can deal with interdependence among sectors and income and
employment effects.

In this paper we deal with spatial partial equilibrium models, that is with partial
equilibrium models which are “naturally” able to reproduce bilateral trade flows without
having to resort to the Armington assumption (Armington, 1969). These models are
particularly useful when the market, or the markets, considered are relatively small with
respect to the countries’ overall economy and relevant trade policies include
discriminatory instruments, that is policies which discriminate by country of origin
(destination) of imports (exports), such as preferential tariffs, country specific tariff rate
quotas or embargos. In particular, the focus of this paper is on mathematical
programming spatial partial equilibrium models.

Empirical models of international trade are subject to a common pitfall that is represented
by the discrepancy between actual and optimal trade flows, that is, between realized
commaodity flows in a given year and the import-export patterns generated by the model
solution for the same year. In fact, mathematical programming models tend to suffer from
an “overspecialization” of the optimal solution with respect to observed trade flows. The
main reason for this discrepancy often originates with the transaction costs per unit of
commodity bilaterally traded between two countries; generally this piece of crucial
information is measured with a degree of imprecision which is well above that of other
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parameters in the model. When this event occurs, a calibration of the trade model for the
given base year allows for more effective policy simulations. Different approaches have
been used in the past to calibrate mathematical programming trade models, mostly based
on including in the model additional constraints limiting the space of feasible solutions.
The original calibration procedure proposed in this paper follows the approach used in
Positive Mathematical Programming (PMP) (Howitt, 1995a and 1995b).

The paper is structured in two parts. The first part discusses the proposed calibration
procedure with reference to a variety of spatial transportation and trade models; the
second part provides numerical examples that support the implementation of the
calibration procedure of the proposed models.

Regarding the types of trade models to be analyzed in the present paper, we distinguish
between models that involve either one or two commodities and those that jointly involve
three or more commodities. This distinction has to do with the integrability conditions of
systems of demand functions.

When dealing with either one or two commodities, Samuelson, first, and
Takayama and Judge, after him, have shown that the preferred specification of a spatial
trade model among R regions corresponds to the maximization of a quasi welfare
function (QWF) subject to two sets of constraints regarding the demand and the supply of
the various regions. The QWF objective is defined as the integral of the inverse demand
function(s) minus the integral of the supply function(s) and the total transaction costs.

As theory does not require symmetry of the Jacobian matrix in Marshallian
systems of three or more demand functions, these systems are not integrable into a total
gross revenue function and no suitable objective function is available for analyzing them.
In these cases, the specification of an Equilibrium Problem will replace the formulation
of a dual pair of optimization problems.

2. Calibrating Mathematical Programming Spatial Trade Models
2.1 The Classical Transportation Model

We begin with a simple transportation model involving J importing and | exporting
countries. We assume a single homogeneous commodity whose quantities consumed by

the j-th destination, )_C/D and supplied by the i-th origin, X, are known together with the
realized trade flow, ¥, and the fixed accounting transaction cost per unit of commodity,

tc;, transported between country pairs. In all statements, indexes range as
i=L.,landj=1,.,J.

This simple model can be stated as follows:

min77C = ZI: i 1c;x; 1)

i=1 j=1
Dual
variables



|
subject to X0 <> p’ (2)

J
S, <5 o 3)
j=1

and x;>0. The interpretation of the dual variables pf and p; corresponds,
respectively, to commodity prices at destination and at origin.

In general, transaction costs are estimated imprecisely, often extending the same unit cost
to routes for which a direct figure is not available. An initial goal of the proposed
calibration procedure, therefore, is to obtain a correct marginal transaction cost by means
of a dual parameter, say A, that is consistent with the structure of the transportation

model and the knowledge of realized trade flows. Thus, the corresponding linear
programming model minimizes the total transaction cost, TTC, subject to conventional
demand and supply constraints together with calibration constraints as in the following
primal specification:

1 J
minT7TC = ZZtcijxij 4)
i=1 j=1
Dual
variables
|
subject to X2 <D X p’ (5)
i=1
J
Sx, <7 P! (6)
j=1
Xy = Xy Ay ()

and x;>0. A, expresses the difference between the accounting and the effective
transaction cost per unit of bilaterally traded commodity. While dual variables ij and

p; are nonnegative by virtue of the specified direction of the associated constraints,
nothing can be said a priori about the sign of dual variables A, associated with

calibration constraints (7). In fact, differently from the traditional PMP approach (Howitt,
1995a and 1995b), in this paper the calibrating constraints are stated as a set of equations,
rather than inequalities. This means that either a reduction or an increase of the
accounting — and, often, poorly measured — transaction cost is admissible. The
specification of the calibration constraints admits the common event of “self-selection”
that occurs when the realized trade between a given pair of countries is null. The



economic justification for this occurrence is attributed to the “fact” that the marginal cost
of trade is strictly greater than the associated marginal revenue.

The dual specification of the transportation model (4)-(7) is stated as the maximization of
the net value added, NVA, of the transportation industry subject to the economic
equilibrium constraints according to which its marginal cost per unit of commodity
exchanged between a given pair of countries must be greater than or equal to its marginal
revenue, that is

J 1 1 J
max NVA = Zp‘?fjp - priis - ZZ/IU)_C@/ @)
j=1 i=1 i=1 j=1
Dual
variables
subject to Py <P} +(te; + 4y) Xij ©)

and pf’ >0, pl >0, A; free variable. The term («c; +4,) constitutes the effective

transaction cost per unit of commodity transported from the i-th to the j-th countries. The
supporting idea is that information about transaction costs is more difficult to obtain than
information on trade flows. Hence, the utilization of all the available information —
whether the accounting and, admittedly, imprecise transaction costs and the more
accurate trade data — should provide a better specification of the international trade
model. The level and the sign of the dual variable 4, resulted from the solution of model

(4)-(7) will determine whether the accounting transaction cost zc, was originally either

over- or under-estimated. The crucial realization, therefore, is that a solution of either the
primal or the dual models defined above should not be regarded as a tautological
statement but as a way to elicit the complete and more accurate marginal transaction costs
to be used in subsequent analyses.

With knowledge of the dual variables 4, obtained from the solution of LP model (4)-(7),
say )Lj , a second phase LP model can be stated as follows:

I J
min77C = Y Y (tc, + A )x;, (10)
i=1 j=1
Dual
variables
|
subject to X0 <> p’ (11)
i=1
J
z Xj < Yis p; (12)
j=1

with x;20,i=1L...landj=1,..,J.



Classical PMP modifies a linear objective function by adding a quadratic function which
accounts for additional costs inferred based on the difference between the observed
realization and the solution from the uncalibrated model. The calibration procedure
proposed in this paper does not alter the objective function, but only “corrects” one set of
its parameters (bilateral transaction costs). The classical PMP approach assumes that
costs in the uncalibrated model can be only underestimated, while the approach proposed

assumes that transaction costs can be either underestimated or overestimated (/1; are

unrestricted). Classical PMP and the calibration procedure proposed here both assume the
model is well specified in all its parts but in the parameters being subject to the
calibration; this means, for example, that if the model is ill-designed with respect to the

representation of existing policies, these errors will be captured by the /1] and subsequent
policy simulations will yield distorted results.

The empirical solution of model (10)-(12) should be carried out using all the available
information that includes the realized levels of activities. When the initial values of
the trade flow variables are set equal to the realized level of trade flows, model (10)-(12)
calibrates perfectly all its components. If initial values are set at levels different from the
realized ones there is the possibility that the empirical model will detect alternative
optimal trade flow matrices (Dantzig, 1951; Koopmans, 1947; Paris, 1981). However, the
optimal solution always reproduces quantities consumed and produced in each country as
well as demand and supply prices; this occurs because the structure of the objective
functions at the optimum and that of the constraints is identical. To illustrate this
assertion, let us specify the dual of model (10)-(12):

J 1
maxNVA:pr)_ch —Zpis)_cis (13)
j=1 i=1
Dual
variables
H D S *
subject to p; <p;+ (e, + ;) X, (14)

with p? >0, p’>0. Constraints (5), (6) and (9) in the model with calibrating

constraints are identical to constraints (11), (12) and (14) in the model without calibrating
constraints. Furthermore, at the optimal solution the primal and dual objective functions
in the two models are equal. This establishes the equivalence of the two specifications.

A more informative discussion about the correct adjustment appearing in the objective
function of the calibrating model (10)-(12) involves the Lagrangean function of model

(4)-(7):

1 J J 1 1 J 1 J
L= szczyxa + ZPJD(’_C/D - sz:/) + pr(Zx,;,- —X))+ 22’1@/(’“@/ -x;) (19
=1 i=1 =l =l
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with derivatives
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which indicate the correct adjustment of the per-unit transaction costs in the form
of pf <(tc,; + A;) + p’, as given in constraints (9) and (14). Hence — because ;‘ch and

i
x’are exogenously determined and the trade flows x;are the only variables — the

objective function (10) expresses the desired and required parameterization for obtaining
a set of multiple optimal solutions which contains the one that mimics the realized trade
pattern.

The stylized nature of the above LP structures may be enriched with a more appropriate
specification of an international trade model involving the paraphernalia of tariffs,
subsidies, quotas, penalties, preferential trade treatments, exchange rates, etc. Hence,
within reasonable parameter intervals, models (10)-(12) and (13)-(14) — augmented of the
appropriate constraints — can be used to evaluate the likely effects of changes in policy
interventions regarding tariffs, subsidies and other control parameters of interest.

2.2 A Model of International Trade with One Commodity

We assume R importing and exporting countries. When supply demand functions for
each country are available, the classification between importing and exporting countries
cannot be done in advance of solving the problem. Let us, therefore, define indices that
cover all the regions (countries) without distinction between importers and exporters,
I, j=1...,R. The known inverse demand function of the single commodity for the j-th

country is assumed as p? =a; - Djij , While the known inverse supply function for the

same homogeneous commodity is assumed as p’ =b, +S,x’. The coefficients a;,D;, S,
are known positive scalars. Parameter b, is also known but may be either positive or
negative. In this specification, quantities x? and x’*are unknown and must be
determined as part of the solution together with the trade flows x; . We assume, however,

the availability of information concerning realized trade flows, X., and — as a

ij 1
consequence — knowledge of total quantities demanded, YjD, and supplied, X°, for each
country. We also assume knowledge (albeit imperfect) of the unit transaction costs, t;,
ibj=1..R.

The Samuelson-Takayama-Judge (STJ) model (Samuelson, 1952; Takayama and Judge,
1971) exhibits an objective function that maximizes a QWF function given by the
difference between the areas below the inverse demand and above the inverse supply
functions, diminished by total transaction costs. This specification corresponds to the
maximization of the sum of consumer and producer surpluses netted out of total
transaction costs.



The two elements of the QWF function — demand and supply functions, on one side, and
total transaction costs, on the other side — may be subject to imprecise measurements. We
assume here that only transaction costs are measured with imprecision. In fact, this is the
crucial source for the discrepancy between realized and optimal traded quantities and
total quantities demanded and supplied in each country, obtained from the solution of the
STJ model.?

When information about the realized trade pattern, X; , is available, a phase | PMP
specification of the primal model takes on the following structure:

R R R R
maxQWF =" (a; —D;x] /2)x) = > (b +S,x° /2)x* =D > tex;  (17)
j=1 i=1

i=1 j=1
Dual
variables
R
subject to X7 <X Py (18)
i=1
R
Z <X P (19)
j=1

X = X A (20)

and nonnegative variables, x >0,x° >0,X X 20,3,j=12,...,R).

The dual of model (17)-(20) may be stated as follows
R R R R
MINTCMO = xPD;x] 12+ x*S,x° 12+ > 4%, (21)
j=1 i=1 i=1 j=1
Dual
Variables

subject to p; >a,—D;x} X} (22)
b +S% > p/ X? (23)
piS + (tcij + ﬂ,”) 2 p? X (24)

2 Jansson and Heckelei (2009) propose a calibration procedure for mathematical programming spatial
equilibrium models based on the estimation of transportation costs and prices, assumed to be stochastic,
with measurement errors independent and identically distributed with known variances.



and x7>0,x 20,x,20; 4 a free variable, (i,j=12,...,R). The economic

interpretation of the objective function is given by the minimization of the total cost of
market options and of the differential total transaction costs. When interpreting a dual
model it is convenient to suppose that a second economic agent — external to the primal
problem — desires to “take over the enterprise” of the primal economic agent. In this case,
the dual agent will have to quote prices and quantities that will reimburse the primal
agent of its “potential profit” (consumer and producer surpluses) plus the differential total
transaction costs. The dual constraints express the demand and supply functions as well
as the condition that the supply price in the i-th country plus the marginal effective
transaction cost of the traded commaodity between each pair of countries must be greater-
than-or-equal to the demand price in the j-th country.

The solution of model (17)-(20) provides an estimate of the dual variables i,j associated
with the calibration constraints that can be utilized in phase 1l of the PMP procedure for

adjusting the unit transaction costs, as in the following calibrating model:?

R R R R
max QWF =" (a; —D,x7 / 2)x? =Y (b +S;x 1 2)x° = > > (tc; + A, (25)
j=1 i=1 i=1 j=1

Dual
variables
R
subject to X7 <X py (26)
i=1
R
Z Xy <X p’ (27)

and, x; >0,x° >0,x;, >0; (i, j=12,...,R). The adjustment of the unit transaction costs

in (25) follows the same justification as presented in the previous section.

The Lagrangean function of problem (17)-(20) is:

% Bauer and Kasnakoglu (1990) used the PMP approach to calibrate a quadratic programming model of
Turkish agriculture with endogeneous supply functions. Bouamra-Mechemache et al. (2002) calibrated a

model similar to the one considered here by applying the classical PMP procedure (i.e. using inequality

constraints to obtain the /1;; and adding a quadratic cost function to the objective function); however, they

found the calibrated solution not satisfactory and introduced further adjustments in the model.



R R R

L=>(a,-D;x}/2)x? —Z(b +S% 1 2)x5 = > X

j=1 i=1 j=1
R R
+zp] (ZXU_X )+Zp| (X _ZX'J)+ZZ (X” Ij (28)
i=1 j=1
with relevant conditions:
oL _ py —p’ —tc, —4; <0, and ix., 0. (29)
OX; OX

ij

Model (25)-(27) calibrates total the observed total quantities demanded, YjD , and supplied

x*, in each country. When all the available information is fully exploited and the

observed trade flows X; are used as initial values of the trade flow variables, the model

calibrates perfectly. However, in general, a trade model may show multiple optimal
solutions of trade flows, that is, solutions where different sets of trade flows are
associated to the same quantities supplied and demanded in each country, the same total
incurred adjusted transaction costs (calculated over all trade flows), and, as a result, the
same value of the objective function. The possibility of multiple optimal solutions in
terms of trade flows being associated to the unique optimal solution in terms of countries’
net imports and exports does not come as a surprise because this is a common feature of
this class of models (Dantzig, 1951; Koopsmans, 1947; Paris, 1983). In order to calibrate
the observed trade flows, one needs just to use all the available information as initial
starting values to guide the solver in search of the solution.

Let us assume now that only information about total demand, x”, and total supply, x’,
is available. The STJ model assumes the following specification:

R R R R
maxQSW =>"(a; —=D;x> /2)xY = > (b +S;x° 1 2)x° = > > te; X (30)
j=1 i=1 i=1 j=1
Dual
Variables
R
subject to X7 <X py (31)
i=1
R
Z X < X} p’ (32)
=1
X, =X A7 (33)
X =% x (34)

and, x? 20,%° >0,x;>0,(i,j=12,...,R).

l |J



The solution of model (30)-(34) provides an estimate of the dual variables associated
with the calibration constraints, 2°"and 4°", that can be utilized for adjusting the unit

transaction costs as in the following calibrated model:

R
Z (tc, + A~ +27)x,  (35)

1

R R
maxQWF =" (a; —D;x} /2)x> = > (b, + S, 1 2)x’ —
=t i=1

R
1

i=1 j=1

Dual
Variables
R
subject to X2 <D py (36)
o ]
Z Xy <% p’ (37)

and, x; >0,% >0,x;

>0,(,j=12,...,R).
The solution of model (35)-(37) calibrates exactly total demanded and supplied quantities
in each country.

In order to justify the adjustments of the transaction costs in equations (35), the
Lagrangean function of model (30)-(34) comes to the rescue:

R

L=> (a,-D;x}/2)x} —zR:(bi +S.x° 1 2)x® —ZR:ZR:tcijxij
i=1

j=1 i=1 j=1

+ij (ini_xj)"';pi (%; _J_Z:;Xij) 38)

j i=1

3

=1
R R

A5 (R =)+ AP (P =)
=1 j=1

with relevant conditions

oL

PR Py —p—A°—-27<0, or p)<p’+tc;+A°+47, (39)
ij

and AL =0 (40)
OX;;

ij
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These conditions define the adjusted per-unit transaction cost ( tc; +4° + 4 ) needed for
the model to calibrate observed demanded and supplied quantities.

2.3 A Multi-Commodity Samuelson-Takayama-Judge Model of International Trade

The extension of international trade models to multi-commodity exchanges requires a
substantial adjustment to the structure of the mathematical programming models
discussed above. First of all, it requires a considerably larger quantity of information that,
if and when available, imposes the need of a careful management. The major shift from
previous models is constituted by the specification of systems of demand and supply
functions for each country. It follows that a properly defined system of demand and
supply functions — for each country involved in the commodity exchange — ought to
exhibit full matrices of demand and supply cross-price parameters. This is a formidable
information requirement that, when overcome, may produce adequate empirical results as
well as sensible policy analyses. Secondly, a special comment regards matrices D; and

S, , the matrices of cross-derivatives of the j-th country systems of demand and supply

functions. In principle, demand and production theory requires neither the symmetry nor
the positive semidefinitess of such matrices. However, the specification of a STJ problem
in the form of maximizing a QWF objective function that assumes a quadratic structure
would impose the requirement that the matrices D; and S; be symmetric and positive

semidefinite. This is quite a strong assumption, since there is no reason why D, and S,

should satisfy these conditions. Hence in section 2.4 we will present and discuss a
structure, called the Equilibrium Problem, that will admit asymmetric D; and

S, matrices.

We assume K homogeneous commodities, K >3. Each country owns a system of K

inverse demand functions, p? =a, —Djx?, j=1,..., R, and an inverse system of K

inverse supply functions, p{=b,;+S;x}

iX;, J=1..,R. The matrix of nominal unit

transaction costs is defined in three dimensions as T =[tcijk], Lj=1..,R, k=1.,K

where tcjj is the vector of unit transaction costs from country i to country j for the K
commaodities and tc;; is the vector of domestic transaction costs in country j. We assume

that information about the trade pattern for all commodities,X;, and, hence, total

demands, ijD, and total supplies, X, is available for a given base year.

2.3.1 Case 1. demand and supply functions are well measured at different market levels

* Based on (39), an alternative interpretation of the role played by the l,sand /11-D parameters could be in
terms of adjustments of the intercepts of supply and demand functions.

11



We will consider two different cases. First inverse demand and supply functions are
measured at different levels, e.g. the supply function at the farm gate and the demand
function at retail, and the only information in the model which is measured with
imprecision are transaction costs.

Except for the dimensionality of the price, quantity and transaction cost vectors, the
corresponding STJ model exhibits a structure that is similar to that of model (17)-(20):

R R R R
max QWF =>"(a; - D x7/2)'x7 = > (b, +S,x; /2)'x; = > > te}x; (41)
i1 i-1 i1 j1
Dual
variables
R
subject to X0 <Y x; p’ (42)
i=1
R
inj < Xis pis (43)
[
X =X; 7"ij (44)

All variables are nonnegative. The dual of model (41)-(44) is obtained in the usual
fashion, by formulating the associated Lagrangean function, deriving the Karush-Kuhn-
Tucker (KKT) conditions and, furthermore, by simplifying the Lagrangean function,
which assumes the role of objective function in the dual problem.

R R R R
MINTCMO =) x'°D;x] /2+ ) x{°S;x} 12+ Y > Xi; (45)
j=1 i=1 i=1 j=1
Dual
Variables
H D D D
subject to p; 2a,-Dx; X; (46)
b, +S,x’ >p’ e 47)

piS + (tcij +}"ij) 2 P? Xj; (48)
All variables are nonnegative except A; which is regarded as a vector of K free variables.

The economic interpretation of model (45)-(48) is similar to that one given for dual
model (21)-(24).

The solution of model (41)-(44) provides estimates of dual variables A, say x*u , that
can be used to define effective transaction costs along the line of the PMP methodology

12



proposed above. Hence, the calibrating STJ model for this more general international
trade specification can be assembled as in the following structure

R R
maxQSW =>"(a; =D ;x5 /2)'x” = > (b, +S,x; / 2)'x;
=t i=1

. ) (49)
—ZZ(tcij +7»ij)'xij
i=1 j=1
Dual
variables
R
subject to D ox; =x” P} (50)
i=1
R
inj < xiS pis (51)

with all variables nonnegative. The solution of model (49)-(51) will calibrate precisely
the realized demanded and supplied quantities.

Extension 1: Estimation of Systems of Demand and Supply Functions

=D

When information about the vectors of total demand quantities, X, and supply

quantities, X;, is available for a number of T years — together with the corresponding

demand prices, ﬁth, and supply prices, p;, ¢ =1,...,T, it is possible to estimate systems

of demand and supply functions for each country. This estimation is performed in the
same spirit of PMP; it attempts to utilize — and exploit in a logical and consistent way —
all the available information.

Demand Functions

A least-squares approach is proposed for estimating the system of demand functions. In
order to satisfy the integrability condition — which admits the definition of the proper
objective function for the STJ model — the estimation is subject to the symmetry of the
matrix of cross-derivatives, D;, as well as to its positive semidefiniteness. Hence,

.
minZ(uth)’u'th (52)
t=1
subject to py=a,-D X +u (53)
D,=LOL, (54)
T
duf=0 (55)

—

=1

13



with ®;,, > 0. Constraint (53) specifies the system of demand functions. Constraint (54)
defines the Cholesky factorization that generates the symmetry and the positive
semidefiniteness of the D; matrix. The matrix L; is a unit lower triangular matrix while
the matrix @, is a diagonal matrix with all nonnegative elements that guarantee the

positive semidefiniteness of the D; matrix. Constraint (55) guarantees that all the year
deviations add up to zero.

The interpretation of the term u deserves a special comment. Within the context of a

calibrating PMP approach, and under the assumption that only information for a very
limited number of years is available, it is convenient to interpret this term as a yearly
deviation from the average system of demand functions rather than as either an “error” or
a “disturbance term.” In other words, the yearly realization of the demand prices in the r-

th region would deviate from the average prices by the amount u; . Knowledge of this

deviation, therefore, is crucial for assuring the calibration of the model over every region
and every year.

An analogous approach may be used to estimate the system of supply functions.

Extension 2: A Multi-Year STJ Model of International Trade

With the estimation of the demand and supply systems, a PMP model may be specified
over T years along the lines presented in equations (52)-(55). Thus, assuming that

information about the trade flows in each year, X;;, is available:

T R
max QWF :ZZ( —Dx5/2+0%)x5
t=1 j=1 (56)
T R T R R
Z:Z(bI +S|XIt /2+u,t)’ ZZZtth X
t=1 i= t=1 i=1 j=1
Dual
variables
R
subject to D Xy = x5 P (57)
i=1
2 S S
injt < X Pi (58)
j=1
Xt = iijt Z‘ijt (59)

14



with all nonnegative variables, but A, which is unrestricted. This first phase model

provides the essential estimates of the dual variablesA.

i say A7;. Therefore, the
calibrating PMP model can be specified as follows

T R
maxQWF:ZZ(J D x5/ 2+@%)x}

j=1

T R T R R (60)
Z“Z(bI +S|XIt /2+ult)’xﬁ —ZZZ(tc +A ut
t=1 i=1 t=1 i=l j=1
Dual
variables
R
subject to D Xy 2 x], P> (61)
i=1
R
Xt < Xisi pi (62)

with all nonnegative variables. The above model calibrates the quantities demanded and
supplied in each country.

2.3.2 Case 2: demand and supply functions are measured with imprecision at the same
market level

We consider a second case where demand and supply functions are measured at the same
market level - the retail one - and transaction costs as well as demand and supply
functions are measured with imprecision. This means that tcj; A the vector of domestic

transaction costs in country j, is the null vector and p?: p? ,forallj=1,2,...,R.

This is the case where the calibration procedure, makes the model reproduce observed
trade patterns, and, at the same time, adjusts parameters of the demand and supply

functions to make these and observed trade flows, X;;, consistent with the condition p? =
P

In this case in phase I, a least-squares approach is proposed to estimate simultaneously
the adjustments of transaction costs and of demand and supply function parameters
needed for the model to reproduce observed trade patterns and comply with the condition
that supply prices equal demand prices. In order to satisfy the conditions needed for the
definition of the proper objective function for the STJ model, the estimation takes into
account the need to assure the symmetry and positive semidefiniteness of the adjusted
matrices of cross-derivatives.

The objective function is composed of the Sum of Squared Residuals of the intercepts
and slopes of the demand and supply functions, plus a primal-dual component that
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represents the combination of the dual objective function of the problem minus the primal
objective function. At the optimum this primal-dual portion of the objective function
should achieve the value of zero. The constraints combine primal and dual constraints.

Using the familiar notation the model can be specified as follows
R , R , R , R ,
min LS =Zuj u, /2+Z"i v, /2+Ztrace(W W) 12+ trace(Y'Y, )/ 2+
j i j i=1

O35y 2y 4,) -0 W) XD -S54 XN (69)

j=1 i=1

R R
-2 2.t}
i=1 j=1
subject to

R
Zl:xij > X'jD (64)
R
inj < xis (65)
j=1
Xij :iij (66)
W;=L,0/L] (67)
Y, =M,®M;’ (68)
p} >(a;+u;)—(D; +W)x} (69)
(b +v;)+(S; + Y)x; >p] (70)
p; +(te; +A;) >p” (71)
P, =p; (72)

with ©;,, >0, @;,, >0. The matrices L; and M; are unit lower triangular matrices,
while matrices ©; and ®are dlagonal matrices with all nonnegative elements

Constraints (67) and (68) define the Cholesky factorization that generates the symmetry
and positive semidefiniteness of the W; and Y; matrices, a sufficient, although not
necessary, condition for the symmetry and semidefiniteness of the matrices of the
adjusted slopes, (D; + W;) and (S; + Yj), in the systems of demand and supply functions.

The phase 11 calibrating model takes on the familiar maximization structure:

max QWF = i((aj +i1,)—(D; + W,)x? /2)x° —i((bi +V)+ (S, +Y)x /2)x
i=1 i=1 (73)

R R

=D (e + ?1” )'x;

i=1 j=1
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subject to

X > ij (74)

X, <x (75)

where u j,Qi,WJ,i and iij are the least-squares estimates obtained in phase I of the
corresponding parameters.

This model calibrates demanded and supplied quantities and assures that the prices of
demand are equal to the prices of supply in each region.

2.4 The Equilibrium Problem

When matricesD; and the S; are not symmetric, the system of demand and supply

functions cannot be integrated and no suitable objective function exists for the STJ-type
model. The Equilibrium Problem constitutes the appropriate mathematical programming
structure for analyzing this trade scenario.

Definition

Let us consider the demand (Dem) and supply (Sup) of a commodity with quantity (Q),
price (P) and marginal cost (MC). Then, the Equilibrium Problem is jointly defined by
the following two sets of relations:

Primal: P >0, Dem < Sup, (Sup—Dem)P =0 (76)
Dual: Q>0 MC > P, (MC-P)Q=0 (77)

Hence, the phase | Equilibrium Problem with systems of demand and supply functions
whose matrices D; and S; are not assumed to be symmetric is specified as follows:

R R
Primal relations: p; =0, xP<>x, O x; —x)p? =0 (78)
i=1 i=1
R R
piS 20, inj < XiS ' (Xus _zxij)’pis =0 (79)
= -1
A; free, X; =X, (X; —x;)A; =0 (80)
Dual relations: x>0, a,-Dx]<p7, (p7 —a;+D;x})x] =0 (81)
x; 20, p; <b+Sx7, (b, +Sx; —p;)'x; =0 (82)
x; 20, pljD Spis +(tcij +)\‘ij) , [p|s +(tcij +)“ij)_p?]lxij =0. (83)
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The asymmetry of the D; and S; matrices causes neither theoretical nor computational

difficulties since the systems of demand and supply functions appear directly into the
dual constraints (81) and (82) without the need of passing through an integral of the
system — that does not exist in this case — and the corresponding (not existent) primal
objective function.

2.4.1 Case 1. imprecision with transaction costs, demand and supply functions are
measured at different market levels

As we did for the STJ model in section 2.3, we also consider two different cases for the
Equilibrium Problem.

When parameter imprecision is assumed to regard only transaction costs, the solution of
Equilibrium Problem (78)-(83) can be obtained by introducing primal and dual slack
variables into the structural constraints and exploiting the complementary slackness
conditions — that add up to zero — in the form of an auxiliary objective function to be
minimized, since each term is nonnegative. Thus, using nonnegative slack variables
Zip Zipy Zinyr Zings Zips» (Where the subscript of z,,,z,,, stands for primal constraints 1

and 2 and the subscript of z,,z;,,,2;,, stands for dual constraints 1, 2 and 3) the

solution of the phase | Equilibrium Problem can be obtained by solving the following
specification:

min{zij [Z’jPlijD "‘Ziypzpi'S +Z’jD1X|jD "'ZgozxiS +Zi,jD3Xij]} (84)
Dual
variables
R
subject to X0 4z = inj : p; >0 (85)
R
inj +Zp, =X, p =0 (86)
i=1
X; =X, A free (87)
aj—Djx?+szl=ij, X?ZO (88)
p’ +2zy,=b, +Sx’, x> >0 (89)
plj3 tZjp; = P;S + (tcij +)“ij)’ X; 2 0. (90)

One advantage of this mathematical programming specification is that the optimal value
of the objective function is known and it is equal to zero. Once again, the crucial task of a
phase | Equilibrium Problem is to obtain consistent estimates of the dual variables A,
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associated to the calibrating constraint (87), say x” With such estimates, a calibrating
Equilibrium Problem can be stated as the following Phase 11 specification:

min{zij Z’jPlp? + Zi’PZPiS + Z,leXIJ? + Zi,DZXiS + Z;jDSXij} (91)
Dual
variables
R
subject to, XD 2 =D X p; >0 (92)
i1
R
inj +Zp, =X, p; >0 (93)
=
aj—Djx?+szl:p?, X?ZO (94)
s _ s s
p, +zp, =b, +Sx;, x; 20 (95)
p? + 2y = po+ (te; +k;}) , X; 0. (96)

This calibrating model can now be used to estimate the response to changes in specific
policy measures.

2.4.2 Case 2: imprecision of unit transaction costs and demand and supply functions
(demand and supply are measured at the same market level)

When demand and supply functions are measured at the same market level and are

inconsistent with the condition that, X; = x;;, and with that (p?: p?) forj=1,2,...,Ras

required by theory, we assume that such demand and supply functions as well as unit
transaction costs, are measured with imprecision. As a remedy, we associate vectors and
matrices of deviations to both the intercepts and the slopes of the supply and demand
functions, as well as to the unit transaction costs. All these deviations are jointly
estimated in a least-squares model subject to appropriate constraints.

The relevant phase | model can be specified as follows: vectors u, and v, are

unrestricted adjustments to the intercept vectors defining the demand and the supply
functions, respectively. Similarly, matrices W, and Y, are unrestricted adjustments to the

slope matrices defining demand and supply functions, respectively. All these parameters
will be estimated by a least-squares approach subject to the economic relationships of the
equilibrium problem. The complementary slackness conditions of the equilibrium
problem (which are equal to zero) will appear in the objective function together with the
sums of squared adjustments:
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R R R R
minLS =Y u'u; 12+ v,'v,/2+ ) trace(W';W,)/ 2+ trace(YY,
= i1

subject to

i-1 =1

2.2 %A -1 _R ((a;+uj)—(D; +W)) x7)'x} —

V) (S +Y) Xis)lxiS _ZR:ZR:tci’inj]}

i=1 j=1

X =X;;

ij Z(aj +uj)—(Dj +Wj)xjD
(b, +v)+(S, +Yi)xis 2piS

piS +(tcij +;\’ij) ZP?

P, =p;

)2+

(97)

(98)

(99)

(100)
(101)
(102)
(103)
(104)

The complementary slackness conditions of the equilibrium problem appear in the
portion of equation (97) within the curly brackets which should achieve a zero value
when an optimal solution is reached. The remaining components of the objective function
are the sums of squared deviations.

The phase Il calibrated model includes the estimates of the adjustment coefficients
obtained in phase | (u;,v; ,W,,Y,,and; ), in the minimization structure of the

Equilibrium Problem:

subject to,

H ! D ' S ' D ’ S !
mm{zijszlpj +Zip Py +Zip X +Zip,X; +ZijpsX}

Dual
variables
R
D _ D
X; +sz1—inj, P; >0
i=
2 S S
inj+ZiP2:Xi ) p; 20

(a; +ﬁj)—(Dj+Wj)x?+szl=p?, x'j3 >0

pis+zi02:(bi+€’i)+(si+i(i)xis' Xi820
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P° +2,0, =p° +(te, +1,), x; 20. (110)

N

Problem (105)-(110) calibrates the observed total demand and supply quantities, ij’, X

J
and — when realized trade flows, total demands and total supplies, supply and demand
prices are used as initial values in the search by the solver of the equilibrium solution —
the realized trade flows, x;, .

Adjustment vectors u; and v, and matrices WJ. and Y, constitute an over-

parameterization of the model. In general, therefore, it is sufficient to adjust the demand
and supply functions either by modifying the corresponding intercepts or slopes.

3. Numerical Examples and Empirical Implementation

Seven numerical examples of increasing complexity will illustrate the application of the
PMP methodology developed in previous sections to mathematical programming spatial
trade models. The list of models is given as follows:

1. Four exporting countries and four distinct importing countries of a single
commodity; unit transaction costs are measured with imprecision.

2. Four countries that are potentially export or import traders of a single commaodity;
unit transaction costs are measured with imprecision.

3. Four countries that are potentially export or import traders of three commaodities;
matrices of demand and supply slopes are diagonal, unit transaction costs are
measured with imprecision.

4. Four countries that are potentially export or import traders of three commaodities;
full, symmetric positive semidefinite demand and supply slope matrices, unit
transaction costs are measured with imprecision.

5. Four countries that are potentially export or import traders of three commodities;
full, symmetric positive semidefinite demand and supply slope matrices, demand
and supply functions are measured with imprecision at the same market level, unit
transaction costs are measured with imprecision.

6. Four countries that are potentially export or import traders of three commodities;
full, asymmetric positive semidefinite demand and supply slope matrices; unit
transaction costs are measured with imprecision.

7. Four countries that are potentially export or import traders of three commodities;
full, asymmetric positive semidefinite demand and supply slope matrices; demand
and supply functions are measured with imprecision at the same market level; unit
transaction costs are measured with imprecision.

The matrix of transaction costs may be regarded as the array of effective marginal
transaction costs between trading countries with the following structure
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TC=tc; + 4 ] (111)

where tc; is the accounting transaction cost generally measured with imprecision, and ﬂ,,’;

is the differential between the effective and the accounting marginal transaction cost
implied by the observed trade flows. As discussed above, in this paper, and contrary to
the traditional PMP literature, the calibrating constraints are stated as a set of equations,

rather than inequalities, thus the sign of ﬂ,,;is a priori undetermined. This choice is based
on the consideration that, if the accounting transaction costs are measured incorrectly,
they may be either over or under estimated. Thus, the value and sign of the estimated ﬂ,;

will determine the effective marginal transaction costs that will produce a calibrated
solution of the quantities produced and consumed in each country.

In general, a meaningful effective transaction cost will be nonnegative. However, when
trade policies are not explicitly modeled, effective transaction costs will include their
effects; when export subsidies are larger than the sum of the other transaction costs, the
overall effective transaction cost will be negative.

Example 1: Four exporting countries and four distinct importing countries of a
single commodity; unit transaction costs are measured with
imprecision.

Four countries, I=A,B,U,E produce and export a single homogeneous commodity

which is imported and consumed by four countries, J = DA, DB, DU, DE . The required

information is as follows:

Parameters of the inverse demand functions:

DA| 30.0 0.55
DB| 22.0 0.37
a= , D= ;
DU| 25.0 0.42
DE| 29.0 0.49
Parameters of the inverse supply functions:
Al 04 1.4
B| 0.2
b= , S— 2.4
U 06 1.9
E| 05 0.6

Matrix of accounting (observed) transaction costs:
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DA DB DU DE

12 15 1.0 0.1
1.0 1.0 04 0.5
20 05 1.5 21
30 1.2 2.0 1.0

TC =

Qo

The optimal solution obtained without calibrating the model is as shown below:

Optimal trade flow matrix:
DA DB DU DE

A[13.394
. B| 3318 4.662
“U| 0832 8511
E 7.836 20916

Total supply quantities:

x*" = [13.394, 7.980, 9.343, 28.752]
A B U E

Total demand quantities:

x”" =[17.543, 8,511, 12.497, 20.916]
A B U E

Corresponding supply prices:

ps*:[19.151, 19.351, 18.351, 17.751]
A B U E

and corresponding demand prices:

pD*:[20.351, 18.851, 19.751, 18.751] .
DA DB DU DE

Let us now consider a matrix of realized trade flows (that differs from the above optimal
matrix of trade flows):

DA DB DU DE

A[11.500 2.000
_ B| 2500 3.500
X=Ul 2000 7.000
E 6.000 22.500

23



and the corresponding value of realized produced and consumed quantities in the eight
countries considered:

x° =[13.500, 6.000, 9.000, 28.500]
A B U E

x” =[16.000, 7.000, 11.500, 22.500]
DA DB DU DE

The matrix of dual variables, A", associated with the calibrating constraints is:
DA DB DU DE
A|0.700 -0.130
. B|5600 3810 5170 2875
“U[1500 1210  0.970
E|0.600 0.610 0570 -0.625

And the matrix of effective unit transaction costs, TC + A" ,:

DA DB DU DE
A|[1.900 1.500 0.870 0.100
. B|6.600 4.810 5.570 3.375 | -
TC+A =
U | 3.500 1.710 2.470 2.100

E[3.600 1810 2570 0.375

The optimal solution obtained using the PMP approach, i.e. after replacing the original
transaction costs with TC + A" is as shown below:

Total supply quantities:

x>" =[13.500, 6.000, 9.000, 28.500]
A B U E

Total demand quantities:

XD*=[16.000, 7.000, 11.500, 22.500]
DA DB DU DE

Supply prices:
p°" =[19.300, 14.600, 17.700, 17.600]
A B U E

Demand prices:
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pD*:[Zl.ZOO, 19.410, 20.170, 17.975]'
DA DB DU DE

The model calibrates exactly each country’s total observed production and consumption.
Multiple sets of optimal trade flows are associated to this calibration. When realized trade
flows, X;, are used as initial values in the optimization procedure, the optimal solution
calibrates them as well.

Matrix of trade flows N.1- obtained by using realized trade flows as initial values:

DA DB DU DE

A|11.500 2.000 13.500
. B| 2.500 3.500 6.000
' U| 2.000 7.000 9.000

E 6.000 22.500| |28.500

[16.000 7.000 11.500 22.500]

Matrix of trade flows N.2 — obtained by using alternative initial values, X; =10

DA DB DU DE
A|10.327 3.173 13.500
X = B 6.000 6.000
2 Ul 0673 8.327 9.000
E| 5.000 7.000 16.500 28.500

[16.000 7.000 11.500 22.500]

R R
The value of total transaction costs, ZZ(tcij +X;)x; , is the same in both cases and is
i=1 j=1

equal to 102.412.

Example 2: Four countries that are potentially export or import traders of a single
commodity; unit transaction costs are measured with imprecision.

Four countries, R=A,B,U,E, can potentially be either export or import traders of a

single homogeneous commodity. Each country produces and consumes that commodity.
The required information is as follows:
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Parameters of the inverse demand functions:

Al 350 12
B| 59.0

e b 1.4
Ul 36.0 1.1
E| 380 0.9

Parameters of the inverse supply functions:

Al 04 1.4
Bl 0.2
b= , = 2.4
Ul 0.6 1.9
E|l 05 0.6

Matrix of accounting (observed) transaction costs:

A B U E
0.10 450 7.50 9.00
450 010 7.50 12.00
750 750 0.10 7.50
9.00 12.00 7.50 0.10

TC=

m C mw >»

Without calibrating constraints — that is, computing the equilibrium solution without
using the PMP approach — the optimal solution corresponds to:

Optimal trade flow matrix:

A B U E
A1 9.179  7.596
. B 11.702
X p—
U 11.767
E 2.570 23.905

Total supply quantities:

x*" =[16.775, 11.702, 11.767, 26.475]
A B U E

Total demand quantities:

x” =[9.179, 21.868, 11.767, 23.905]
A B U E

Corresponding supply prices:
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ps*:[23.885, 28.285, 22.957, 16.385]
A B U E

Corresponding demand prices:

p° =[23.985, 28.385, 23.057, 16.485]
A B U E

Notice that supply prices differ from demand prices in each country by the amount of
domestic (internal to each country) transaction cost that was specified in the amount of
0.10 for every country in the TC matrix. This implies that demands functions may be
measured at retail level while supply functions may be measured at farm or some other
intermediate level.

Let us now consider the following matrix of realized trade flows:

A B U E
A|9.000 6.000
2 B 9.000  1.000
U 1.000 8.500  0.500
E|1.000 3.000 21.000

and the corresponding values of realized produced and consumed quantities in the four
countries considered (supplies are sums over columns, demands are sums over rows of

the X matrix:

x° =[15.000, 10.000, 10.000, 25.000]
A B U E

x° :[10.000, 19.000, 9.500, 21.500]
A B U E

The matrix of dual variables, A", associated with the calibrating constraints is:

A B U E
Al 1.500 6.500
. B 8.100 -6.150
A:U 5300 5850 -8.450

E[-1.500 4900 2550 3.050
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And the matrix of effective unit transaction costs, TC + A":
A B U E
A[1.600 11.000 7.500  9.000
. B[4.500 8.200 1.350 12.000
U|7500 12.800 5.950 -0.950
E|{7.500 16.900 10.050 3.150

In general, a meaningful effective transaction cost will be nonnegative. However, when
trade policies are not explicitly modeled, effective transaction costs will include the
effects of missing policy instruments; for example, when export subsidies are larger than
the sum of other transaction costs, the overall effective transaction cost between two
countries may be negative, as is the case for one of the elements of the TC+ A" matrix
above.

Using the calibrating constraints — that is, using the PMP approach — the optimal solution
is given as:

Total supply quantities:

xs*:[15.000, 10.000, 10.000, 25.000]
A B U E

Total demand quantities:
x”" =[10.000, 19.000, 9.500, 21.500]
E

A B U

Supply prices:

p° =[21.400, 24.200, 19.600, 15.500]
A B U E

Demand prices:

p° =[23.000, 32.400, 25.550, 18.650]
A B U E

In each country, supply prices are not equal to demand prices and, in particular, they
differ by an amount that is much larger than the domestic transaction cost of 0.10
characterizing the price difference in the model without calibrating constraints. The
amount by which supply and demand prices differ in each country is equal to the
domestic effective transaction costs reported on the main diagonal of matrix (TC+A").
The PMP model calibrates exactly each country’s total observed production and
consumption, as given by the marginal sums of columns and rows of the realized matrix
of trade flows. Multiple sets of optimal trade flows are associated to this calibration.
When realized trade flows, X;, are used as initial values in the optimization procedure,

the optimal solution calibrates them as well.

28



Matrix of trade flows N. 1 — obtained by using realized trade flows as initial values:

A B U E
A| 9.000  6.000 15.000
X = B 9.000 1.000 10.000
YU 1.000 8.500 0.500| |10.000
E| 1.000  3.000 21.000 25.000

[10.000 19.000 9.500 21.500]

Matrix of trade flows N. 2 — obtained by using alternative initial values, x; =10

A B U E
A[10.000 5.000 15.000
X*ZB 0.500 9.500 10.000
2 U 10.000 | | 10.000
E 13.500 11.500 | | 25.000

[10.000 19.000 9.500 21.500]

R R
The value of total transaction costs, ZZ(tij +A;)x; , is the same in both cases and
i=1 j=1

equal to 342.800.

Example 3: Four countries that are potentially export or import traders of three
commodities; matrices of demand and supply slopes are diagonal, unit
transaction costs are measured with imprecision.

Four countries R=A,B,U,E are either import or export traders of three commaodities
M =1,2,3. We assume that no linkages exist across commodities either in production or
consumption, that is, the matrices of the demand and supply slopes are diagonal. This

means that solving this problem is analogous to solving the three individual commodity
models individually. The relevant data are as follows:

Matrix of inverse demand and supply intercepts:

1 2 3 1 2 3

Al 30.0 25.0 20.0 A [04 01 07
A:B 22.0 18.0 15.0 B B 02 -04 03
U| 25.0 10.0 18.0 U |-06 02 -04

E| 28.0 200 19.0 E |05 -16 -12

Matrix of inverse demand and supply slopes:
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Al
A2
A3

B.1
B.2
B3

U.1
U2
U3

E.1
E2
E3

0.8

0.8

1.1

1.6

0.9

0.8

0.7

2.6

1.7

0.9

Matrix of accounting transaction costs:

TC

The optimal solution obtained without calibrating the model, is as shown below:

AA
AB
AU
AE
B.A
B.B
BU

_BE

“U.A
U.B
uu
U.E
E.A
E.B
EU
E.E

1
0.5
1.5
1.0
3.0
1.5
0.5
2.2
4.0
1.0
2.2
0.5
3.7
3.0
4.0
3.7

05

2

0.5
1.5
1.0
3.0
1.5
0.5
2.2
4.0
1.0
2.2
0.5
3.7
3.0
4.0
3.7
0.5

3
0.5]
1.5
1.0
3.0
1.5
0.5
2.2
4.0
1.0
2.2
0.5
3.7
3.0
4.0
3.7

0.5 |

Equilibrium trade flow matrix:

30

Al
A2
A3

B.1
B2
B.3

U.1
U2
U3

E.1
E2
E3
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1.9

0.6

1.6

2.8

1.1

1.7

1.8

2.1

0.5




1 2 3

aa[ 5543 4492 5.487]

AB| 1020

AU | 3.553

B.A 2.744
X =BB| 6401 5594  2.105

U.A 2635  0.038

UUl 8244 0519  4.690

E.Al 6,904 5.264

EEl14034 11105 12192

Equilibrium total supply and demand quantities:

1 2 3 1 2 3
A|10.116 4.492 5.487 A|12.448 7.127  13.532
B| 6.401 5.594 4849 | . B| 7421 5.594 2.105

TU| 8244 3155 4727 U|1L796 0519  4.690
E|20.938 11.105 17.455 E|14.034 11.105 12.192

S*

Corresponding supply and demand prices:

1 2 3 1 2 3

A[14563 9533  10.028 A[15.063 10.033 10.528

.. B|15563 8550 9.028| .. B|16.063 9.050  9.528
P ~Ul15063 9033 9528 P Tul15563 9533  10.028
E|12.063 10616  7.528 E[12563 11116  8.028

Supply prices differ from demand prices, in each country, by the amount of 0.5 which is
the domestic transaction cost as exhibited by the matrix TC. Let us now consider the
following matrix of realized trade flows:

31



1 2 3

aa[ 5000 4000 6000

ap | 1.000

AU | 3000

BA| 1.000 2.000

BB| 5000 5000  2.000
< _BE 1.000

U.A 2.000

UU| 7.000 2.500

U.E 1.500

E-A| 6,000 4.500

EB| 1000 0.500

EEl12000 8000 10.500 |

and the corresponding value of realized produced and consumed quantities of the three
products in the four countries (sums over columns and over rows of the X matrix:

1 2 3 1 2 3
A| 9.000  4.000  6.000 A[12.000 6.000 12.500
< _B| 6000 6000  4.000 _o_B| 7000 5000 2500
U 7.000 3.500 2.500 _U 10_000 2_500
E[19.000 8000 15500 E|12.000 10500 10.500

When the calibrating constraints (phase 1) are included in the model, the matrix of dual
variables A" (adjustment to accounting costs) is given below. Many elements of A" are

negative. However, the elements of the matrix of effective transaction costs, TC+ A" ,
are all not negative:
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Phase Il equilibrium matrices of supply and demand quantities:

AA
AB
AU
AE
B.A
B.B
BU
B.E
U.A
uU.B
uu
U.E
E.A
E.B
EU
E.E

1
[ 2.100
1.900
3.000

-0.500
1.300
0.200

1.900
1.500
3.800

1.700
1.500
2.400

| 3.400

1

2
3.400

0.500
0.100
1.700
0.300

-1.600
1.400

-0.500

-2.100
2.200

3.900

1

3
-0.1507 A.A[2.600
AB |3.400
1.850 AU | 4.000
AE | 3.000
2.250 B.A [1.000
0.500 B.B |1.800
4.050 BU | 2.400
. B.E|4.000

TC+A =

5.400 U.A| 2.900
1.450 U.B|3.700
8.400 UuU|4.300
1.000 U.E|3.700
1.700 E.A|4.700
-2.050 E.B[5.500
3.500 EU |6.100
2500 | E.E [3.900

1

A[ 9.000
_ B 6.000
“U| 7.000
E|19.000

S*

2 3
4.000 6.000
6.000 4.000
3.500 2.500
8.000  15.500

A[12.000
_B| 7.000
~U|10.000

E|12.000

D*

2
3.900
1.500
1.500
3.100
3.200
0.800
2.200
2.400
2.400
2.200
0.000
1.600
5.200
4.000
3.700
4.400

2
6.000
5.000

10.500

3
0.350]
1.500
2.850
3.000
3.750
1.000
6.250
4.000
6.400
3.650
8.900
4,700
4.700
1.950
7.200
3.000 |

3
12.500
2.500
2.500
10.500

These matrices match the realized matrices of total demand and supply quantities.

Phase Il equilibrium matrices of supply and demand prices:

P

S*

1
A[13.000
B|14.600

~U|12.700
E|10.900

2
8.500
9.200

10.000
7.200

3
10.900
7.500
4.850
6.550

1
A[15.600
B|16.400

~U|17.000
E|14.800

D*

P

33

2
12.400
10.000
10.000
11.600

11.250
8.500
13.750
9.550



As previously supply and demand prices differ, in each country, by the domestic effective
transaction costs exhibited in the (TC+ A") matrix. The phase Il equilibrium model
calibrates exactly the realized trade flows as long as all the realized trade flows, and the
corresponding marginal quantities of supply and demand, and demand and supply prices
are used as initial values to guide the solver in search of an equilibrium solution:

Matrix of trade flows N.1 — realized trade flows are used as initial values:

1

1.000
3.000
1.000
5.000

7.000

6.000
1.000

2

[ 5.000 4.000

5.000
1.000
2.000

1.500

12.000  8.000

3
6.000 |

2.000
2.000

2.500

4.500

0.500
10.500

Matrix of trade flows N. 2 — alternative initial values, x,= 10:

AA[

AU
AE
B.A
B.B
X, =U.A
uu
UE
E.A
E.B
E.E

1

9.000

6.000

6.000

1.000

7.000

12.000
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2
3.985

0.015
1.000
5.000
1.015

2.485
0.000

8.000

3

3.500 |
2.500

4.000
2.000
0.500
3.000

2.500
10.000




In both equilibrium trade flows matrices, the total supplies and demands of every
commodity in each country, are equal to the corresponding observed quantities. The
value of total transaction costs is the same in both cases and is equal to 300.875.

Example 4: Four countries that are potentially export or import traders of three
commodities; full, symmetric positive semidefinite demand and supply

slope matrices, unit transaction costs are measured with imprecision.

When the Jacobian matrices of first derivatives (slope) are symmetric, systems can be
integrated into a meaningful STJ objective function. The relevant data are as follows:

Matrices of inverse demand and supply intercepts:

1 2 3 1 2 3
A|30.0 25.0 20.0 Al 04 01 07
B[220 18.0 15.0 Bl 02 -04 03

"U[250 100 180| Pyl 02 -04
E|28.0 20.0 19.0 E|l-05 -1.6 -1.2

Matrices of inverse demand and supply slopes:

1 2 3 1 2 3
Al[ 12 03-02]  Al[14 04 03]
A2| 03 21 01 A2|-04 21 02
A3]-02 0.1 07 A3| 03 02 17
B.1| 0.8 0.2 0.2 B1| 24 05 0.2
B2[-02 16 0.4 B2| 05 16 03

p_B3/ 0204 26| B3 02 0318
U.ll 0.8 03 0.4 U1l 1.9 -0.1 05
U2/ 03 09 0.1 U2(-01 28 04
U3 0.4 0.1 17 U3l 05 04 21
E1l 11 01 03 E.1| 06 -0.1 0.2
E2| 0.1 08 0.2 E2[-01 11 05
E3| 03 02 09] E3/02 05 05

Matrix of accounting transaction costs:
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1 2 3

AA[05 05 05]
AB|15 15 15
AU |10 1.0 1.0
AE|30 30 30
B.A|15 15 15
B.B|05 05 05
BU|[22 22 22
_BE|40 40 40
"U.A|10 10 10
UB|22 22 22
UuU|05 05 05
U.E|3.7 37 37
E.A|3.0 30 3.0
EB[40 40 4.0
EU|[3.7 37 37
EE[05 05 05] -

TC

The optimal solution obtained without calibrating the model is as shown below:

Equilibrium trade flow matrix:

1 2 3
AA| 3520 2764  4.398]
AR | 3478  2.787
AU | 3.866
B.A 5.083
X" =BB| 5321 3.442
U.A 2453  3.140
UU| 7481 0.538
EA| 9662 0.332
EE|12128 10407 3.037]

Equilibrium total supply and demand quantities:
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1 2 3 1 2 3

A[10.843 5552  4.398 A[13.182 5218 12.954
. _B| 5321 3442 5083 ., B| 8798 6229

U| 7481 2453  3.678 U|11.347 0.538

E[21.790 10.407  3.370 E|12.128 10.407  3.037

Corresponding supply and demand prices:

1 2 3 1 2 3
A|14.707  8.293  12.547 A|15.207 8793 13.047
B[15.707  9.293  11.547 5. B|16.207  9.793  10.749

TU|15.207  7.793  12.047 P TU|15.707  6.650 12.547
E|12.207 9.354  10.047 E|12.707 9.854 10.547

S

Supply prices differ from demand prices, in each country, by the amount of 0.5 which is
the domestic transaction cost as exhibited by the matrix TC. Let us now consider the
following matrix of realized trade flows:

1 2 3
AA 3.000 2500 4.500]
AB | 2500  2.000
AU | 4.000
B.A 0.500  4.000
B.B|2.500  3.500
X = B.E | 0.500

U.A{1.000 1500 2.000
UU|6.000 0.500

U.E 1.000
E.A17.000 0.500
EE

18.500 10.000  3.500 |

and the corresponding value of realized produced and consumed quantities of the three
products in the four countries considered (sums over columns and over rows of the X
matrix):
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1 2 3 1 2 3
Al 9.500 4500  4.500 A[11.000  4.500 11.000
. B| 3.000 4.000 4.000 . B| 5.000  5.500
U| 7.000 2.000 3.000 U|10.000  0.500
E|15.500 10.000  4.000 E| 9.000 10.000 4.500

When the calibrating constraints are included in the model, the matrix of dual variables,

A’ (adjustment to accounting costs) is given below. Its elements are positive and
negative while the elements of the matrix of effective transaction costs are all positive:

1 2 3 1 2 3
[3.900 4.000 1.450] AA[ 4400 4500 1.950 |
2:2 4350  2.050 AB| 5850 3550  1.500
AU | 2600 0.950 AU| 3600 1.000 1.950
AE 0.550 AE| 3.000 3550  3.000
BA|5.950 0950  3.250 B.A| 7.450 2450  4.750
BB (8400 1.000 2.000 B.B| 8900 1500  2.500
BU | 4.450 2.550 BU| 6.650 2.200  4.750
. B.E|1550 . BE| 5550 4.000 4.000
AN = TC+A =
U.A|2.650 3.850 2.850 U.A| 3650 4.850  3.850
U.B|2.900 1.700 U.B| 5100 3.900  2.200
UU|2350 -0250 3.350 UU| 2850 0250  3.850
UE 0.200 -3.650 U.E| 3700 3900 0.050
E.Al6.050 2.150 EA| 9050 3000 5.150
E.B
EU 6.500 E.B[10.500 4.000  4.000
EE 4.550 1.450 EU| 8250 3.700 5.150
16650 -0.150  0.850 ] EE| 7150 0350 1.350 |

With the calibrating constraints — that is using the PMP approach — the optimal solution is
as shown below:

Total supply and demand quantities:
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1 2

Al 9500  4.500

.. B| 3000 4.000
“U| 7.000  2.000
E|15.500 10.000

Supply and demand prices:

1 2
A[13250  6.650

.. B|10200 8700
P Zul14000 6300
E| 8600 9.850

3 1
4,500 A11.000
4000| _o. _B| 5000
3.000 U|10.000
4.000 E| 9.000
3 1
12.100 A[17.650
90.300| .. B|19.100
10200| P Tu|16.850
8.900 E|15.750

2
4.500
5.500
0.500
10.000

11.150
10.200
6.550
10.200

3
11.000

4.500

14.050
11.800
14.050

10.250

The supply prices are different from the demand prices, the differences are equal to the
domestic effective transaction costs reported on the main diagonal of matrix (TC+A").
The PMP model calibrates exactly each country’s total observed production and
consumption, as given by the marginal sums of columns and rows of the realized matrix
of trade flows. Multiple sets of optimal trade flows are associated to this calibration.
When realized trade flows, X;, are used as initial values in the optimization procedure,

the optimal solution calibrates them as well.

Matrix of trade flows N. 1 — obtained by using realized trade flows as initial values:

1 2
AA[3000 2500
AR |2500  2.000
AU | 4.000
B.A 0.500
B.B|2500  3.500

X; = B.E | 0.500
U.A|1.000  1.500
UU|6.000 0.500
UE
E-A|7.000
EElg500 10000

3
4.500 |

4.000

2.000

1.000
0.500
3.500 |
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Matrix of trade flows N. 2 — obtained by using alternative initial values, x, =10

1 2 3
A.A[9.034 4500 i
AU | 0.466
B.A| 0.003 4.000
B.B 4.000
B.E| 2.997
X = U.A| 1.962
? U.B|5.000 1.500
U.U|0.038 0.500
U.E 3.000
E.A 2.500
EU| 9.497
E.E{ 6.003 10.000 1.500 |
R R
The value of total transaction costs, ZZ(tcij +X;)x; , is the same in both cases and
i=1 j=1

equal to 290.675.

Example 5: Four countries that are potentially export or import traders of three
commodities; full, symmetric positive semidefinite demand and supply
slope matrices, demand and supply functions are measured with
imprecision at the same market level; unit transaction costs are
measured with imprecision.

Here the model is calibrated in order to reproduce trade patterns as well as to adjust
intercepts and the slopes of demand and supply functions so that demand prices are equal
to supply prices in each region. Except for the transaction costs, which have been
modified to make all the domestic ones equal to zero, input data are the same as in
example 4:

Matrices of inverse demand and supply intercepts:

12 3 1 2 3
A|30.0 25.0 20.0 Al 04 01 07
B| 220 18.0 15.0 B| 02 -04 03

“u|250 1200 180 ®Zyl.6 02 -04
E|28.0 20.0 19.0 E|l-05 -1.6 -1.2

Matrices of inverse demand and supply slopes:
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1 2 3 1 2 3

Al[ 12 03 -0.2 ] ALl 1.4 04 0.3]
A2 03 21 01 A2|-04 21 02
A3[-0.2 0.1 07 A3l 03 02 17
B.1] 0.8 -0.2 0.2 B.1| 24 05 0.2
B.2|-0.2 16 0.4 B.2| 05 1.6 0.3
D=B'3 02 04 26 S_B.3 02 03 18
U.l 08 03 04 “U.1| 19 -01 05
U.2l 0.3 09 -0.1 U.2/-01 28 04
U3 04 -01 17 U.3| 05 04 21
E1ll 11 01 03 E.1| 06 -0.1 0.2
E2| 0.1 08 0.2 E2/-01 1.1 05
E3[ 03 02 09] E3[ 02 05 05

Matrix of accounting transaction costs:
1 2 3
AA[O 0 0 |
AB|15 15 15
AU 10 10 10
AE|[3.0 3.0 30
B.A[15 15 15
BB|0O 0 O
BU|[22 22 22
_BE|40 40 40
“U.A|[10 10 10
UB|22 22 22
uujo 0 O
UE|37 37 37
E.A[3.0 30 30
EB|[40 4.0 40
EU |37 3.7 37
EE/O 0 O

TC

The optimal solution obtained without calibrating the model is as shown below:

Optimal trade flow matrix:
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1 2 3

AA[11071 5456 4710

AR 0.110

BA 5.076

BB| 5418 3732

U.A 2826 |
X' =UB 2.399 !

UuU| 7.787 0.834

EA| 2126 0.177

EB| 3535

EU| 3314

EEl12609 10583  3.289

Total supply and demand quantities:

1 2 3 1 2 3
A[11.071  5.567  4.710 A[13.196 5456 12.790
s _ Bl 5418 3.732 5.076 X0 = B| 8954  6.242
U| 7.787 2399  3.661 U|11.101 0.834
E|21.584 10583  3.466 E|12.609 10.583 3.289

Corresponding supply and demand prices:

1 2 3 1 2 3
A[15.085 8304 13.141 A[15.085 8304 13141
. B|16.085 9804 11641| . B[16.085 9.804 10.712
“u|15785 7604 12141 P TU|15785 6753 12.141
E|12.085 9615 10.141 E|12.085 9615 10.141

P

Supply prices are now equal to demand prices, in each country, because the domestic unit
transaction cost is set for all commodities at a zero level. Let us now consider the
following matrix of realized trade flows:
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The optimal solution obtained when imposing that demand prices must be equal to supply

1 2 3
A 11000 3500 3.000]
A 1.000 3.000
BB| 3000  2.000
U.A| 0500 2.000
< _UB 2.000
UU| 6000 0500 0.500
EA| 2000
EB]| 3.000
EUT 2000 0500
EEl11.000 9.000 2.000 |

prices and other calibrating constraints is as shown below:

Matrices of adjustments to transaction costs A™ and effective transaction costs TC + A’

1 2 3 1 2 3
ag| 234 0107 -2.854 AB[-0841 1607 -1.3547
Au| 0465 0195 -0.410 AU| 0535 0805 0590
AE|-4733 0467 -3.469 AE|-1.733 3467 -0.469
B.A|-0659 -3107 -0.146 BA| 0841 -1.607 1.354
BU|-0.824 -3.002 -0.256 BU| 1.376 -0802  1.944

. _BE|4802 2140 -3115  BE|0802 1860 0885
U.Al-1535 -1.805 -1.590| TC+A “UA 0535 0805 -0590
BE 2222 1(3)2: :3';:;‘ UB|-1.376 0802 -1.944
EAl oy com e UE|-22690 2662 -1.059
EB| gocs oy so EA| 1733  -3467  0.469
EU| Ta ooty yens EB| 0892 -1.860 -0.885

-1 : 641 EU| 2269 -2.662 1.059

The matrix of adjustment to transaction costs, A", has positive and negative elements and
all A, are zero, as expected.

The deviations from supply and demand intercepts are given by:
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1

A|-0.522

B
U
E

V=

0.054
0.029
0.006

2

0.174
0.116
-0.043
0.005

3
0.028
0.104
0.098
0.014

1

A| 0522 -0.174 -0.028
fj:B -0.054 -0.116 -0.104
U|-0.029 0.043 -0.098
E|-0.006 -0.005 -0.014

Matrix U is the negative of matrix V . This is because of the over-parameterization of the
model, as indicated above. The elimination of these deviation matrices does not affect the
calibration of the trade model.

Deviations of supply and demand slopes are given by:

Al
A2
A3
B.1
B.2
B.3
u.l
u.2
u.3
E.l
E.2
E.3

>
Il

1
[ 0.001
-0.025
-0.012
0.253
0.255
0.282
0.267
-0.012
0.286
0.124
0.078

| 0.100

2
-0.025
0.611
0.302
0.255
0.257
0.284
-0.012

5.2E-4

-0.013
0.078
0.049
0.063

3
-0.012]]
0.302
0.149
0.282
0.284
0.314
0.286
-0.013
0.306
0.100
0.063

0.081

Al
A2
A3
B.1
B.2

Ul
u.2
u.3
E.l
E.2
E.3

1
[ 0.019
-0.111
-0.110
0.398
0.433
0.218
0.352
-0.074
0.265
0.072
0.060

0.066

2
-0.111
0.638
0.638
0.433
0.471
0.237
-0.074
0.016
-0.056
0.060
0.051
0.056

3
-0.110]
0.638
0.637
0.218
0.237
0.119
0.265
-0.056
0.200
0.066
0.056
0.062 |

In phase Il, when the estimates of the adjustments are included in the model and

calibrating constraints omitted, the optimal solution is as shown below:

Total supply and demand quantities:

1

A[11.000
B| 4.000
“U| 6500
E|18.000

Sx*

2
3.500
2.000
2.500
9.500

3
3.000
3.000
2.500
2.000

1

A[14.500
B| 6.000
“u| 8.000
E|11.000

D=
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2
3.500
4.000
1.000
9.000

3
8.000

0.500
2.000



Matrices of supply and demand prices:

1 2 3 1 2 3
Al14665 6.594 11.197 Al14665 6.594 11.197
.. B|[13.824 8201 9.844 o. B[13.824  8.201  9.844
P TU|15.200 7.399 11.787 P TU|15.200 7.399 11.787
E|12.931 10.061 10.728 E|12.931 10.061 10.728

The model calibrates exactly each country’s production and consumption of the three
commodities and in each country demand prices equal supply prices. Two examples of
optimal trade flows matrix associated to this optimal solution are provided below. The
first one — obtained using the realized trade flows, and the corresponding total demand
and supply quantities and demand and supply prices as initial values — calibrates exactly
the observed trade flows The second matrix is obtained using alternative initial values,
x; =10, and the model does not calibrate the observed trade flows.

AA[ 0.500 1.000]
AA[11.000 3.500 3.000] :’5 o000 1000
B.A| 1.000 3.000 AE| 4500 2500 2.000
B.B| 3.000 2.000 s Al 2000 3,000
U.A| 0.500 2,000 sel 2000
- _UB 2.000 X U A 2000
*"uu| 6000 0500 0500 "t 0.500
E-g z-ggg U.E| 6500 2.500
EU| 2.000 0500 E'BA 100 j'ggg
E.E[11.000 9.000 2.000| =u! 8.000
EE 2.000

It can be easily verified that in the three cases the model calibrates exactly on total
demanded and supplied quantities in each country. The value of total transaction costs is
the same in all three cases and equal to 14.406.

Example 6: Four countries that are potentially export or import traders of three

commodities; full, asymmetric positive semidefinite demand and supply
slope matrices; unit transaction costs are measured with imprecision.
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In general, systems of demand and supply functions do not exhibit symmetric Jacobian
matrices of first derivatives (slopes). When three or more commodities are involved,
these systems cannot be integrated into a meaningful STJ objective function. The solution
of such trade models relies upon the specification and solution of an Equilibrium
Problem, as illustrated in section 2.4. The following numerical example exhibits
asymmetric matrices of demand and supply slopes. The relevant data are as follows:

Matrices of inverse demand and supply intercepts:

1 2 3 1 2 3

A1 30.0 25.0 20.0 Al 04 01 0.7
Ao B|122.0 18.0 15.0 _ Bl 02 -04 03
U|250 10.0 18.0 Ul -06 02 -04
E|28.0 20.0 19.0 E| -05 -16 -12

Matrices of inverse demand and supply slopes:

1 2 3 1 2 3
Al 12 02 -0.2] A1l 1.4 -04 03]
A2l 03 21 02 A2/ 02 21 02
A3|-01 01 0.7 A3 02 03 17
B.1 0.8 01 0.2 B.1| 24 05 0.2
B2(-02 16 04 B2| 07 1.6 03

,_B3/ 03 03 26 B3| 01 05 18
Ul 08 02 05 U1l 1.9 01 05
U2/ 03 09 -0.1 U2/ -01 28 04
U3l 04 00 17 U3l 06 05 21
E1 11 01 03 E1l 06 -0.1 0.2
E2/ 00 08 02 E2/-01 1.1 05
E3| 04 03 09| E3| 03 03 05

Matrix of accounting transaction costs:
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1 2 3

AA[05 05 05|
AB|15 15 15
AU|10 1.0 10
AE[3.0 3.0 30
B.A|15 15 15
B.B|05 05 05
BU|[2.2 22 22
_ BE[40 40 40
T U.A[10 10 1.0
UB|22 22 22
UuU|05 05 05
U.E|37 37 37
E.A[3.0 3.0 30
E.B|40 4.0 40
EU|3.7 37 37
EE|05 05 05]

TC

The optimal solution obtained without calibrating the model, is shown below:

Equilibrium trade flow matrix:

1 2 3
AA[ 3910 1740 4.637]
AB| 2.834 2887
AU | 3.684
B.A 4.835
X'=BB| 5356 3.037
U.A 2.704 2.037
Uu| 7.618 0.837
E.A| 9.809 0.450
E.E[12.909 12.124 0.158]

Equilibrium total supply and demand quantities:
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1
A[10.429
B| 5.356

“u| 7.618
E|22.718

S

2
4.627
3.037
2.704

12.124

3
4.637
4.835
2.873
0.608

D*

1
A[13.719
B| 8.190

TU 11302
E|12.909

Corresponding supply and demand prices:

1
A[14.540
B|15.540

“U|[15.040
E|12.040

S

P

Supply prices differ from demand prices, in each country, by the amount of 0.5 which is
the domestic transaction cost as exhibited by the matrix TC. Let us now consider the

2
8.659
9.659
8.159
9.769

3
12.057
11.057
11.557

9.557

p

D=

following matrix of realized trade flows:

1

A.A[ 3.000
AB| 2.500
AU| 2.000
B.A| 0.500
X = B.B| 5.000
U.A| 1.000
UuU| 6.000
E.A[10.000
E.E|12.000

and the corresponding values of realized produced and consumed quantities of the three

2

2.000
2.500

2.000
1.000

10.000

3
3.000 |

4.000

1.000

1
A[15.040
B|16.040

“U|15.540
E|12.540

2
4.445
5.924

12.124

2
9.159
10.159
8.659
10.269

3
11.958

0.837
0.158

3
12.557
10.766
12.057
10.057

products in the four countries (sums over columns and over rows of the X matrix):

1

x° =

A
B
U
E

7.500
5.500
7.000
22.000

2

4.500
2.000
1.000
10.000

3

3.000
4.000
1.000

A

xP =

B
U
E
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14.500
7.500
8.000

12.000

2 3

3.000 8.000
4.500

10.000



When the calibrating constraints (phase 1) are included in the model, the matrix of dual
variables A" (adjustment to accounting costs) is given below. Many of its elements are

negative. The same is true for the matrix of effective transaction costs TC+ A’ :

A*

AA
AB
AU
AE
B.A
B.B
BU

_BE

"UA
U.B
uu
U.E
E.A
E.B
EU
E.E

1

[ 3.100
4.950
7.600
0.800

-3.100
0.750
1.200

-5.400
-0.500
1.150
5.000
-3.000
-1.100
0.750
3.200

| 1.600

2

3.600
2.150
-2.050
0.350
3.400
3.950
-2.450
0.150
9.050
7.400
4.400
5.600
2.550
1.100
-3.300
4.300

3

6.400 |
1.250
5.150
-0.450
5.000
1.850
3.550
-1.850
8.150
2.800
7.900
1.100
8.350
3.200
6.900

6.500 |

TC+A =

AA
AB
AU
AE
B.A
B.B
BU
B.E
U.A
Uu.B
uu
U.E
E.A
E.B
EU
E.E

1

[ 3.600
6.450
8.600
3.800

-1.600
1.250
3.400

-1.400
0.500
3.350
5.500
0.700
1.900
4.750
6.900

| 2.100

Phase Il equilibrium matrices of supply and demand quantities:

S*

These matrices match the corresponding realized matrices of total demand and supply

A
B
U

1
7.500
5.500
7.000

E | 22.000

guantities.

2
4.500
2.000
1.000
10.000

3
3.000
4.000
1.000

1

A|14.500

D*

B| 7.500

“uU| 8.000
E |12.000

2
3.000
4.500

10.000

Phase 11 equilibrium matrices of supply and demand prices:

P

1

A[10.000
s B|15.200
"~ U|[13.100

E|11.700

2
8.650
7.850
2.700
7.200

3

8.650
9.050
6.400
4.200

P
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A[13.600
o B|16.450
U |18.600
E|13.800

1

2

4.100
3.650
-1.050
3.350
4.900
4.450
-0.250
4.150
10.050
9.600
4.900
9.300
5.550
5.100
0.400
4.800

8.000

3

6.900]
2.750
6.150
2.550
6.500
2.350
5.750
2.150
9.150
5.000
8.400
4.800
11.350
7.200
10.600
7.000 |

2 3
12.750  15.550
12.300 11.400

7.600 14.800
12.000 11.200



These supply and demand prices differ, in each country, by the domestic effective
transaction costs exhibited in the (TC+A") matrix. The phase Il equilibrium model
calibrates exactly the realized trade flows as long as all the available information is used
(as long as the realized trade flows, and the corresponding marginal quantities of supply
and demand, and demand and supply prices are used as initial values) to guide the solver
in search of an equilibrium solution:

Matrix of trade flows N. 1 — realized trade flows, and corresponding marginal quantities
of supply and demand, and demand and supply prices are used as initial values:

1 2 3

AA | 3000 2000 3.000

AB | 2500 2500

AU | 2.000

BA | 0.500 4.000
X.= BB | 5000 2.000

U.A| 1000 1.000 1.000

UU | 6.000

E.A | 10.000

E.E | 12.000 10.000

Matrix of trade flows N. 2 — alternative initial values, x,; =10:

1 2 3

AA[7.500 3.000 3.000]

AB 1.500

B.A 4,000

B.E| 5.500 2.000

U.A| 4.484 1.000
X, =U.B| 2516 0.677

U.E 0.323

E.A| 2.516

E.B|4.984 2.323

EU | 8.000

E.E| 6.500 7.677

In both equilibrium trade flow matrices, the total supplies and demands of every
commodity is equal to the corresponding observed quantities. The value of total
transaction costs is the same in both cases and is equal to 267.400.
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Example 7: Four countries that are potentially export or import traders of three
commodities; full, asymmetric positive semidefinite demand and supply
slope matrices; demand and supply functions are measured at the same
market level with imprecision; unit transaction costs are measured with
imprecision.

The corresponding model is calibrated to reproduce observed trade patterns as well as to
adjust intercepts and slopes of demand and supply functions so that demand prices will
equal supply prices in each region. Except for the transaction costs (where, now, the
domestic amounts are all set equal to zero), input data are the same as in example 6. The
modified data are as follows:

Matrix of accounting transaction costs:

1 2 3

AA[0.0 0.0 0.0]
AB|15 15 15
AU |10 10 1.0
AE|3.0 30 30
B.A|15 15 15
B.B|0.0 0.0 0.0
BU|[22 22 22
_BE|40 40 40
"U.A[10 10 1.0
UB|22 22 22
UuU|0.0 0.0 0.0
U.E|3.7 37 37
E.A|3.0 30 3.0
EB|4.0 40 4.0
EU|37 37 37
E.E|0.0 0.0 0.0]

TC

The optimal solution obtained without calibrating the model is shown below.

Equilibrium trade flows matrix:

o1



1 2 3

AA | 10640 4.653 4.943

B.A 4.794

BB | 5461 3305

U.A 1.673
<~ UB 2.646

uu | 7930 1.159

EA | 3125 0.423

EB | 2886

EU | 3.074

E.E | 13405 12311 0.352 |

Total supply and demand quantities:

1 2 3 1 2 3
A[10.640 4.653 4.943 A[13.765 4.653 11.833

. B| 5461 3305 4.794 . B| 8347 5951
TU| 7.930 2646 2.832 ~U|11.003 1.159
E| 22490 12.311 0.775 E|13.405 12.311 0.352

Corresponding supply and demand prices:

1 2 3 1 2 3
A|14918 8.732 12.628 A|14918 8.732 12.628

;. B[15918 10.148 11.128 o. B|15918 10.148 11.128 |-
P TU|15.618 7.948 11.628 P TU|15.618 7.948 11.628
E|11.918 10.081 9.628 E|11.918 10.081 9.628

Supply prices are now equal to demand prices, in each country, because the domestic unit
transaction cost is set for all commodities at a zero level. Let us now consider the
following matrix of realized trade flows:
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X =

AA
AB
B.A
B.B
B.E
U.A
u.B
uu
E.A
E.B
EU
E.E

1
[10.000
1.000
0.500
5.000

6.000
2.000
2.500
1.500

11.000

2
2.000

2.000
2.500

2.000

1.500

11.000

4.000 |

3.500

1.000

2.000
1.000

The equilibrium solution obtained when imposing the condition that demand prices must
be equal to supply prices and other calibrating constraints is shown below:

Matrix of adjustments to transaction costs A" and effective transaction costs TC+ A :

1 2 3 1 2 3
A.A[ 0.000 0.000 0.000 A.A[ 0.000 0.000 0.000]
AB|-2.354 2569 -2.442 AB|-0.854 4.069 -0.942
AU | -1.557 -0.224 -0.785 AU|-0.557 0.776 0.215
AE|-3.810 3.123 -1.868 AE|-0.810 6.123 1.132
B.A|-0.646 -2.569 0.942 B.A| 0.854 -1.069 2.442
B.B| 0.000 0.000 0.000 B.B| 0.000 0.000 0.000
BU|-0.703 -2.793 1.657 BU| 1.497 -0.593 3.857
A B.E|-2.956 -3.446 0.574 TC+ A = B.E| 1.044 0554 4574
U.A| 1557 0.224 -0.215 U.A| 2557 1.224 0.785
U.B| 0.703 0.593 -1.657 U.B| 2903 2793 0.543
Uu| 0.000 0.000 0.000 UuU| 0.000 0.000 0.000
U.E|-2.253 3.347 -1.083 U.E| 1447 7.047 2.617
E.A| 0.810 -3.123 -1.132 E.A| 3.810 -0.123 1.868
E.B|-1.044 -4554 -0.574 E.B| 2956 -0.554 3.426
EU|-1.447 -3.347 1.083 EU| 2253 0.353 4.783
E.E| 0.000 0.000 0.000 E.E| 0.000 0.000 0.000

Deviations of demand and supply intercepts:
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1

A| 0.000
B| 0.002
U|0.053
E| 0.009

V=

2 3
0.031 0.010
0.028 0.019
0.014 0.010
0.001 0.005

U=

A| 0.000
B| -0.002
-0.053
E|-0.009

U

1

3

-0.031 -0.010
-0.028 -0.019
-0.014 -0.010
-0.001 -0.005

Matrix U is the negative of matrix V. This is because of the over-parameterization of
the model, as indicated above. The elimination of these deviation matrices does not affect
the calibration of the trade model.

Deviations of supply (Y) and demand (W) slopes:

Al
A2
A3
B.1
B.2
B.3
u.l
u.2
u.3
E.l
E.2
E.3

Y =

1

0.008
0.342
0.115
0.012
0.154
0.104
0.318
0.084
0.059
0.151
0.024

0.083

2 3

0.002 0.003]
0.062 0.125
0.021 0.042
0.005 0.007
0.070 0.098
0.047 0.066
0.106 0.159
0.028 0.042
0.020 0.030
0.102 0.009
0.016 0.001

0.056 0.005 |

W =

Al
A2
A3
B.1
B.2
B.3
u.l
u.2
u.3
E.l
E.2
E.3

1

0.010

0.389
0.130
0.018
0.237
0.160
0.398
0.104
0.074
0.097
0.015
0.054

2 3

0.002 0.007|
0.062 0.296
0.021 0.099
0.009 0.000
0.126 0.000
0.085 0.000
0.000 0.106
0.000 0.028
0.000 0.020
0.102 0.000
0.016 0.000
0.056 0.000

Phase Il equilibrium matrices of supply and demand quantities:

1

A11
B| 5
“u| 6
E|17

S*

.000
.500
.000

2 3
2.000 4.000
4.500 3.500
2.000 3.000

.000 11.500 1.000

D*

A[12.500
B| 8500
“u| 7.500
E|11.000

Equilibrium matrices of supply and demand prices

54

1

2 3
2.000 9.500
4.500

2.000
11.500



1 2 3 1 2 3

A[16.308 7.321 11.780 A[16.308 7.321 11.780
.. B|15454 0889 9338 . B|15454 0889 9.338
P "Ul14752 7.097 10.994 P ZUl14752 7.097 10.994
E[12.498 10443 9.912 E[12.498 10443 9.912

Supply and demand prices within each country are equal, as required by theory when
demand and supply functions are measured at the same market level. Also this model
calibrates exactly each country’s observed production and consumption of the three
commodities. This equilibrium model exhibits multiple equilibrium solutions; two
examples of equilibrium sets of trade flows are shown below. The first matrix — obtained
using the realized trade flows, and the corresponding total demand and supply quantities
and demand and supply prices as initial values - calibrates exactly the observed trade
flows. The second matrix is obtained using alternative initial values, x, =10, and the

model does not calibrate the observed trade flows:

1 2 3
~ 1 2 3 ~ AA[ 9506 2.000 4.000]
A.A|10.000 2.000 4.000 AB| 1.494
AB| 1.000 3.500 BA 3.500
B.A| 0.500
BB| 5000 2.000 B.B| 5500 1.828
B.E 2500 B.E 0.672
 _UA Lo00| x;=oA 1.000
'"UB 2000 U.B 2.000
Uu! 6.000 2 000 Uu| 6.000 2.000
E.A|l 2.000 1.000 E.Al 2.994 1.000
E.B| 2500 1.500 E.B| 1.506 0.672
EU| 1.500 EU| 1.500
E.E[11.000 11.000 | E.E|11.000 10.828 |

In both equilibrium trade flow matrices, the total supplies and demands of every
commodity is equal to the corresponding observed quantities. The value of total
transaction costs is the same in both cases and is equal to 34.747.
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