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ABSTRACT:

Data on agricultural and natural resource management typically have spatial patterns related to the
landscapes from which they came. Consequently, econometric modes designed to explain the determinants of
humans’ natural resource management practices or their outcomes often have spatial structure that can bring
bias or inefficiency to parameter estimates.

Although econometric tools are available to correct for spatial structure, such tools are largely lacking
for use with discrete dependent variable models.  While one obvious solution would be to develop the
necessary tools, an alternative is to identify conditions under which spatial dependency can be managed
effectively without formal spatial autoregressive models.

This study examines conditions under which spatial structure corresponds closdly to defined agro-
ecological zones, making it possible to mode spatial effects by random effects regression. Using household
survey data sampled along agro-ecological zone strata, this article develops two modes of links between farmer
assets and agricultural natural resource degradation in southern Peru. The first stage mode looks at
determinants of crop yield loss over time (an index of soil productivity), while the second stage model looks at

determinants of the extent of fallow cyclesin crop rotation, a key agricultural practice reducing crop yield loss.
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Diagnostic statistics for spatial dependency reveal spatial structure, particularly in the fallow modd.
This spatial dependency is diminated in the ordinary least squares (OLS) modds by inclusion of the agro-
ecological zone random effects. In the spatially dependent fallow model, comparison of coefficient estimates
between OL S and the spatial autoregressive maximum likelihood modds showed OL S with random effects to
givevirtually identical results to the spatial autoregressive models, making the latter unnecessary.

These results show that spatial structure in natural resource management models can sometimes be
captured by zonal variables. When this occurs, random effects regression can largely diminate spatial
dependency. A necessary precondition for this approach with household survey datais prior sample
stratification according to landscape characteristics. Where random effects modes can effectively capture
gpatial structure, they may also offer analysts greater flexibility in analyzing modeds with limited dependent

variables.
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Keywords: random effects models, spatial autoregressive modes, spatial lag, spatial error, land use,
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Capturing Household-level Spatial Influencein Agricultural M anagement
Using Random Effects Regression

Location is relevant to many classes of economic problems. Von Thinen’s early marginalist
insights were illustrated by the effect of transportation costs on the location and technology of
agricultural production (Von Thunen, 1966). As economists sought ways to incorporate location into
applied analyses, linear programming tools made possible the transportation cost minimization model.
Until recently, however, the complexity of spatia effects has tended to defy explicit incorporation of
spatial attributes beyond distances between pairs of points and selected landscape characteristics.

New tools for gathering and analyzing spatial data have begun a wave of econometric
exploration into how location affects economic phenomena. Recent papers have explored the spatial
patterns in demand for food and real estate (Case, 1991, Pinkse and Slade, 1998), agricultural
technology diffusion (Case, 1992, Foster and Rosenzweig, 1995, Torero, 1992), and land use
transformation (Bockstael, 1996, Nelson, et a., 2001, Nelson and Hellerstein, 1997)

The proliferation of geographic information database management systems (GIS) and the
accessibility of locational technologies such as the global positioning system (GPS) have dramatically
reduced the cost of acquiring and managing spatial data. Despite notable advances in spatial
econometrics, led by Anselin (Anselin, 1988), the statistical tools available to analyze spatial data are
lagging behind the ability to collect it. Anselin has developed both concepts and software for the
diagnosis and correction of spatial autocorrelation (Anselin, 1999, Anselin, 1988) . At present,
however, methods to correct for spatial structure in limited dependent variable models are restricted
to binary dependent variables (Kelgiian and Prucha, 1999, Pinkse and Slade, 1998). Y et many
microeconomic phenomena, particularly those involving choices among discrete alternatives, call for
analysis with other types of discrete variables based on multinomial, rank or count data.

This article develops and illustrates conditions under which a random effects model may be
suitable to correct for spatial structure. Since random effects modeling tools are widely available for
limited dependent variable analysis (e.g., LIMDEP, STATA), this substitution can potentially improve
the efficiency and freedom from bias of parameter estimates from spatialy structured models.

The approach developed here is particularly suited to spatially-referenced survey data.
Household surveys that focus on agricultural or natural resource management often employ a
stratified sampling design based on landscape units such as eco-regions. Rather than sample
randomly from an area frame', limited budgets for household surveys often dictate cluster sampling
(e.g., by village), followed by randomized list sampling within the cluster (Deaton, 1997). Such
sampling permits more effective use of enumerator time, at the cost of household data that are
spatially random.

Much of the literature on spatial data about natural resource management focuses on spatially
dense remote sensing data (e.g., (Bockstael, 1996, Nelson, et al., 2001, Nelson and Hellerstein,
1997). Such data are spatialy comprehensive, although their precision depends upon the sensing
equipment (Aronoff, 1998). Because these data are gathered automatically, they come at high fixed
but low marginal cost. For natural resource management purposes, however, they are have two
limitations. First, the electromagnetic wavelengths sensed do not directly correspond with
agricultural and landscape attributes of interest to humans, athough indexes developed from these
wavelengths may correlate with variables of scientific, management or policy interest (Swinton and
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Jones, 1998). Second, remotely sensed data per se are not linked to the human decision makers who
may play abig rolein the fate of the land. Thislatter limitation has sparked interest in household
surveys to add the missing human behavioral link (Bockstael, 1996).

Because managing spatial dependence in statistical analysis of natural resources management
can pose difficulties (especially with limited dependent variable models), this paper examines
conditions under which natural resource-based strata can adequately capture spatia structure in a
random-effects regression. After developing a conceptual econometric model that incorporates both
gpatial effects and random effects, the paper tests that model with data from a spatially referenced
household survey of links between agricultural practices and land degradation in Peru’s Andean high
plain (Altiplano).

Econometric model
The general spatial regression model takes two parts (Anselin, 1988):
y=pWy+Xp +e 1)
e =Ae + |
The dependent variable is alagged function of spatial neighbors with an error term that is spatially
autocorrelated with neighbors. Interpreted for a household survey with N households, W isa (N x N)
spatial weights matrix, where p isa (N x 1) spatial lag parameter, X isan (N x K) matrix of
explanatory variables and § isa (K x 1) parameter vector. The spatial error term, ¢, is alagged
function of nearby errors, using the same spatial weights matrix, W, the (N x 1) lag parameter, A, and
a(N x 1) i.i.d. normal disturbance vector, J.

The spatial weights matrix characterizes the spatial relationships among observations.
Typically, spatial effects decay with distance. Of interest for our purposes is whether they decay
gradually or abruptly. If the decay is gradual, then aweights matrix is appropriate to describe it. If
the decay is abrupt but error or lag patterns are relatively homogeneous before a fairly discrete
boundary, then it may be adequate to know if an observation i,j isin or out of alocal area of spatial
influence. Under such circumstances, a random effects (RE) model (where sample observations are
available) or afixed effects model (where data from an entire population are available) may well be
adequate without the need for explicit modeling of spatial structure. In the extreme, when W is block
diagonal with blocks having homogeneous spatial influence within each block (i.e., within ablock n, x
n,, w; = 1/n, for al i, ), then spatial effects are perfectly captured by a dummy variable that identifies
observationsin n,.

Case (1991) first proposed fixed and random effects models to proxy for a spatial regression
and illustrated her case using district-level models of spatial rice demand in Indonesia. This paper
extends her method to zones defined to describe natural resources conditions.

A smple, intercept-only RE model can be developed by inserting into Equation (1) what
Bryk and Raudenbusch (1992) refer to as a Level-2 district-specific RE disturbance term, ¢, yielding
the hybrid model (Case, 1991):

y=pWy+XB +¢ (2
e=MWe+o¢+

Equation (2) can be simplified to separate the components into three econometrically distinct parts,
y=Xp+u+[pWy+2AWe + ¢] ©)

In Equation (3), the first two terms represent unbiased parameter estimates and random error, while
the bracketed group captures spatial effects, both those related to the spatial weights matrix, W (as



lagged dependent variable or disturbances), and those that are binary random effects, ¢, that
correspond to defined geographic zones.

The first step empirically isto test the hypothesis that the bracketed term in Equation (3) has
null parameters,

Hl:p=A=¢=0.

If that hypothesis cannot be rejected, then the model does not display pronounced spatial effects, and
non-spatial regression models can be estimated appropriately.

If spatial structure is detected, the next step isto test whether those effects are chiefly
embodied in the zonal dummy variables,

H2: p =A =0 (but alow ¢ # 0).

This test may be applied to a dependent variable in the data set that is continuous (hence suited to
OLS or GLS estimation) in order to characterize spatial structure among right-hand side variables
being considered for a discrete dependent variable analysis. 1f H2 cannot be rejected, then spatial
effects are chiefly captured by the zonal dummy variables, so random effects regression can provide
consistent parameter estimates without further spatial correction. 1f H2 is rejected, then there exists
either a spatial lag or a spatia error effect, and spatial correction with use of a spatial weights matrix
will be necessary to obtain consistent parameter estimates.

Data and sampling method

These hypotheses will be tested using survey data gathered from single-visit interviewsin 170
households in southern Puno department, Peru, during April-June, 1999. The purpose of the survey
was to characterize natural resource degradation problems and their relationship to household
poverty. The approach to understanding poverty-environment links in the region follows two stages.

First, specific natural resource outcomes are regressed on a range of explanatory variablesin
order to discern whether specific agricultural practices affect the status of the natural resource base.

The case examined here involves crop yield decline over a 20-year period (as an index of soil
degradation). The general structure of the model is as follows:

AY =f(P, X, Z) (4)
where AY isthe change in proportionate “typical” crop yield over atwenty-year period ([Y ,-
Y.,ol/Y 5), Pisavector of relative price variables, X is avector of management variables hypothesized
to affect crop yield, and Z is a vector of agrophysical, institutional and household conditioning
factors. Ideally, such amodel should be a panel with all variables expressed as differences over the
20-year period. In the absence of such information, current practices and conditions are assumed to
serve as adequate proxies for unobserved patterns over time.

Second, individual variables describing influential agricultural management practices are
regressed on a set of explanatory variables in order to understand whether and how poverty may
influence the choice of agricultural practices. Some of these variables are the same as in Equation (4),
but this group of variables also includes ones that describe various asset categories (physical,
infrastructural, financial, human and social capital). In the case examined here, the proportion of
fieldsin fallow (X;) turns out to be a key determinant of yield decline, so its determinants are modeled
asfollows:

X; =f(P, XA, 2) (5)
In Equation (5), X, isavector of agricultural practices other than fallowing, A is a vector of asset
variables, and P and Z are again prices and conditioning variables.
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Definitions and descriptive statistics for all variables included in the two empirical models are
presented in Table 1. Of specia interest are the two dependent variables for the way in which their
properties might affect error terms. Both dependent variables are continuous, but occur in bounded
ranges. Both the yield loss over 20 years variable (AY in Equation (4)) and the proportion of fieldsin
fallow (X; in Equation (5)) range from O to 75 percent. Although truncation at zero would normally
imply the need for a tobit model, this was not feasible for diagnosis of spatial structure using the
SpaceStat 1.90 software (Anselin, 1999) and the use of ordinary least squares (OLS) regression was
deemed suitable for illustrative purposes.

The survey employed a clustered, stratified sampling design in the Ilave-Huenque river
watershed of the Lake Titicaca basin (Figure 1). Strata were defined based on three agro-ecological
zones that vary with distance from Lake Titicaca (Tapia, 1996). The flat, Lakeside zone has a frost-
free cropping season of 5-6 months and 700-750 mm. of rainfall annually. Farming in the Lakeside
zone is characterized by intensive potato-based crop rotations that include rising shares of forage
crops to supplement the lake reeds traditionally used for livestock feed. Official measures of poverty
are lowest in the Lakeside zone. Moving up and away from the lake, the Suni zone is next, with a
frost-free season ranging from three to five months and dlightly less rainfall than the Lakeside zone.
Frost risk depends upon landscape position, leading to a distinction between the Suni A and Suni B
zones, where the former has more "lake effect” and is less prone to night-time frosts. Potatoes can be
grown in the Suni A zone, whereas they are a very risky crop in the poorer Suni B zone.
Consequently, households in the Suni B zone rely more heavily on rangefed livestock production and
less on crops than their counterpartsin the Suni A zone. Ex post statistical comparisons supported
the existence of distinct agro-ecological zones as defined for the sampling strata (Swinton, et al.,
1999).

Within each of the three agro-ecological zone strata, two to three villages were selected as
primary sampling units (household clusters). Based on the advice of regiona government officials,
these village pairs or triples were chosen to include one relatively less and one relatively more poor
than the norm for the zone. Within villages, an attempt was made to stratify households by apparent
wealth level, in consultation with village leaders. The sampling stratification scheme was designed to
ensure a broad range of asset levels across the agro-ecological zones in order to test the research
hypotheses about poverty-environment links.

The eight villages surveyed in the three agro-ecologica zones included atotal of 197
households. The location of those householdsisillustrated in Figure 2. Of these, 170 households
provided complete records that were usable for the analyses in the following section. Key among
those records are readings of farmstead location (latitude, longitude and altitude) taken with hand-
held Global Positioning System (GPS) units without differential correction. Details on the study and
empirical results can be found in Swinton and Quiroz (2000).

An empirical test of random effectsin a spatial regression model

The spatial nature of agro-ecological zones offers reason to expect that the zones could
capture part of any existing spatial structure in the household data. We test the hypotheses set forth
above using the two-stage analysis in Equations (4) and (5), which focus on determinants of crop
yield loss and the related agricultural practice of using fallow in crop rotation.

A distance matrix was developed from latitude-longitude data of the farmstead locations.
Based on Bell and Bockstadl’s evidence that statistical results can be sensitive to the spatial weights



methodology when using household-level point data (Bell and Bockstael, 2000), five different
methods were pursued to obtain row-standardized spatial weights matrices:

1. Inverse distance (with upper limit 200 times minimum distance),

2. Inverse distance squared (with upper limit 200 times minimum distance),

3. Four nearest neighbors,

4. Eight nearest neighbors,

5. Sparse distance weights (minimum distance set to ensure at least one neighbor to least-
connected point).

Hypothesis H1 isfirst tested by evaluating Equations (4) and (5) for spatial structure using
diagnostic statistics for spatial error and spatial lag. Spatialy correlated errors are diagnosed by
Moran's| statistic and the spatial error Lagrange multiplier test. Spatial lag structure is tested for
using the spatial lag Lagrange multiplier test (Anselin, 1988, Bell and Bockstael, 2000, Case, 1991).

If H1 isregjected and spatia structure is evident, hypothesis H2 is evaluated in two ways.
Firgt, it isevaluated at the level of the same diagnostic statistics asin H1. Second, a closer
examination is made of how choice of the wrong model might affect coefficient estimates (Havlicek
and Seagraves, 1962). Model estimation results from OLS are compared with those from spatial
autoregressive maximum likelihood (SAR-ML) models with and without the agro-ecological zone
random effects. The three criteria examined are @) numbers of coefficient estimates that are
significant at the 95% level, b) magnitude of differences in those coefficient estimates, and c) overall
goodness of fit. For ease of comparing coefficient estimates, all non-binary variables were
standardized according to the formula (x; -x,)/c, where x, is the sample mean and ¢ is the sample
standard deviation of x.

Given similarities between the pairs of inverse distance and nearest neighbors weights
matrices, we focus only on spatial weights matrices developed from the simple inverse distance and
the nearest four neighbors. Because the sparse distance weights admit only analysis by Kelgjian and
Prucha's generalized moments estimator (Kelgjian and Prucha, 1999), which does not provide a
standard error of the A spatia error coefficient in Equation (1), the sparse distance weights are
omitted. Both spatial error and spatial lag models are estimated, due to evidence that both forms of
spatial structure may exist (Table 2). Although the SAR-ML models do not provide identical results,
they are sufficiently similar to offer ajoint benchmark for comparison of the OL S results.

Results of the test

As shown in Table 2, the evidence of spatial structure for the yield loss base model (Equation
(4)) was negligible, with only the Moran’s | statistic under the sparse distance weights suggesting the
dlightest evidence of spatial autocorrelation of errors. By contrast, evidence of spatial dependency
was strong by all measures for the fallow practice base model. So hypothesis H1 could not be
rejected for the yield loss model, but it was rejected for the fallow model.

Introduction of the agro-ecological zone dummy variables completely removed evidence of
spatial dependency in the random effects models (Table 2). Hypothesis H2 could not be rejected for
either the yield loss or the fallow model. It appears that the spatial structure was strongly correlated
with the agro-ecological zones. Evidently, the correction was strong enough to be robust to
differencesin spatial weight matricesin al cases.

Although the hypothesis of random effects (H2) could not be rejected at the level of
diagnosing spatial structure, it remains of interest to evaluate the OLS-RE model against the spatially
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corrected regression models. In doing this, it makes sense to focus on the fallow practice model (the
one that exhibited clear spatial structure). Due to evidence in Table 2 of both spatial error and
spatial lag effectsin the fallow model, correction for both is examined.

Focusing first on spatial error correction, the results in Table 3 indicate that the OLS-RE
model offers equivalent explanatory power to the SAR-ML models, but the base OLS model does
not. The OLS-RE model eliminates the effect of spatial autocorrelation, so that the A coefficient is
insignificant in the SAR-ML-RE models. By contrast, the base SAR-ML models (without RE) show
significant A coefficient estimates (and associated likelihood ratio tests for spatial error dependence),
reinforcing the evidence that the base OLS mode! fails to address underlying spatial structure.

Of eleven significant coefficient estimates, the base OLS model includes two that are not
significant in either corresponding SAR-ML model (Home equipment and Fertilizer rate). Perhaps
more troubling, the “significant” coefficient estimates from the base OLS model deviate from the
comparable SAR-ML estimates by over 40 percent in some cases (e.g., Natural resources project).

By contrast, the OLS-RE model appears to generate conservative estimates, with two fewer
significant coefficient estimates than the SAR-ML-RE models. It isworth noting that these two were
both significant at a 6 percent probaility of mistakenly rejecting the null hypothesis that 3,=0 (Unmet
basic needs and Association memberships). In magnitude, the estimates of the “significant”
coefficients are within 2 percent of one another across the three RE models. The agro-ecological
zone dummies are significant in al the RE models. Finally, the log likelihood function values for the
OLS-RE modd is virtually equal to the SAR-ML-RE models and significantly higher than the OLS
base model.

Turning to the spatial lag effect, again OLS with RE adequately captured the spatial structure
in these data, but the base OLS model did not. The SAR-ML base models both displayed a
significant spatial lag coefficient estimate (p) and both failed the likelihood-ratio test for spatial lag
dependence. By contrast, none of the SAR-ML-RE models did so. Although the number of
significant coefficient estimates in the OL S base model did not vary from its SAR-ML counterparts,
the magnitude of parameter estimates did vary. The SAR-ML coefficients were up to 50 percent
smaller than their OLS counterparts (e.g., Natural resources project). The RE models again showed
a near-perfect correspondence in significant coefficients except for the “Unmet basic needs’ variable
which, as noted above, was within one percent of the 5 percent confidence threshold. The OLS-RE
significant coefficients deviated from their SAR-ML-RE counterparts by no more than 6 percent.
Finally, on goodness-of-fit, the OLS-RE model shares nearly identical log likelihood function values
with the SAR-ML-RE models, significantly higher than that of the OLS base model.

Conclusion

The general conclusion isthat careful household sampling stratification on the basis of key
landscape features can capture important elements of spatial structure. Where spatial structure is
strongly associated with non-overlapping landscape zones, incorporating these zones in arandom
effects regression model may obviate the need for any more formal spatial regression modeling. The
results presented here for household data on agricultural management and change in typical crop
yields over time in the Peruvian Altiplano indicate that the inclusion of random effects corresponding
to predefined agro-ecological zone sampling strata eliminated all meaningful evidence of spatial
structure from the data. Diagnostic statistics show that the random effects OLS models of yield and
fallow proportion were free of spatial dependence using five different methods of spatial weighting.
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In the spatially dependent fallow model, OLS-RE estimation proved equally robust as its spatially
corrected counterpart models in identifying significant coefficient estimates of similar magnitudes,
eliminating spatial effects, and fitting the data well.

The evidence indicates that with proper natural resource sampling stratification, random
effects can capture spatial dependency effectsin natural resource management models, as Case found
could be done with political boundaries and food consumption data (Case, 1991). In both cases, an
important condition is that the spatial strata be defined as bounded zones that do not overlap. If
significant spatial structure were confined to the village scale, individual villages might equally well
serve as the basis for RE models that capture spatial effects. Asin the caseillustrated here, that could
be tested.

Where random effects models can effectively capture spatial structure, they offer two
important benefits. First, they permit analysis with limited dependent variables that is infeasible with
current methods for modeling spatial structure. Research related to that presented here that includes
probit, tobit and Poisson models that would be difficult or impossible with correction for spatial
structure. Second, RE models permit analysis with statistical software that is more fully featured and
accessible than the current standard in spatial econometric analysis.

A potential limitation of the investigation presented here is that the sample households in each
agro-ecological zonal stratum were located in two or three villages that were not distant from one
another. This clustering within strata may have reduced the diversity of conditions found in each
agro-ecological zone. However, a countervailing effect is that villages were paired to reflect different
wealth levels, so the physical homogeneity should have been offset by socio-economic heterogeneity
(that would not have been captured by the agro-ecological zones). Future research would do well to
examine the effectiveness of random effects models using data from more randomized, area-frame
sampling.
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Endnotes

1 Spatialy random samples can be drawn from an area sampling frame, as in the the USDA
National Resources Inventory ((USDA), 2000)). When the land manager can be identified, this
sampling approach offers a valuable means to connect the condition of the land to the humans who
manage it. Because spatially random area sampling is quite an expensive way to conduct household
survey research, it is not common.



Table 1: Descriptive statistics on variables included in the two models, 170 households, Puno, Peru, 1999.

Variable type Definition Median _Mean St. Dev.  Min. M ax.
Dependent variables

Proportion of yield lost
Yield loss comp. w/ 20 years ago 0.38 0.35 0.18 0.00 0.75
Fallow fields Prop'n of fields 0.25 0.25 0.21 0.00 0.75
Location & Natural factors
Zone: Suni A Binary 0.00 0.37 0.48 0.00 1.00
Zone: Suni B Binary 0.00 0.34 0.47 0.00 1.00
Sandy soil proportion Prop'n of fields 0.40 0.42 0.27 0.00 1.00
Foot-d ope location Prop'n of fields 0.03 0.13 0.19 0.00 0.82
Hillside location Prop'n of fields 0.00 0.12 0.18 0.00 0.75
Management factors
Small grain fields Prop’n planted area 0.45 0.46 0.22 0.00 0.88
Contour furrows Prop’'n of fields 0.00 0.03 0.12 0.00 0.82
Vertical furrows Prop'n of fields 0.77 0.70 0.32 0.00 1.00
Fertilizer rate Kg/ha 16.09 48.98 107.04 0.00 1149.13
Pesticides rate Kg/ha 0.00 2.33 7.18 0.00 71.42
Labor value Peru new soles 680.00 989.07 905.61 33.94 6592.50
Price and location factors
Price of potato Peru new soles’kg 0.43 0.41 0.12 0.17 0.87
Distance to paved road Hourstrave by car 0.42 0.40 0.26 0.01 1.00
Asset variables
Unmet basic needs Sum 1.00 0.78 0.62 0.00 3.00
Cropped area Hectares 0.62 1.00 1.03 0.01 6.13
Pasture area Hectares 0.63 10.64 35.81 0.00 286.50
Vehicles owned Units 0.00 0.31 0.79 0.00 6.00
Store/warehouse Units 0.00 0.28 0.56 0.00 3.00
Well equipment Units 0.00 0.19 041 0.00 2.00
Other ag. equipment Units 3.00 3.23 2.52 0.00 14.00
Home equipment Units 2.00 2.49 1.93 0.00 9.00
Total SEVU's Sheep value units 57.00 75.31 63.78 0.20 433.20
Nonfarm income Peru soles 2381.00 3966.00 4728.00 -1607.00 30221.00
Family ag. labor supply Person-years 2.00 2.38 1.57 -0.40 8.00
Credit Peru soles 0.00 196.47 753.82 0.00 5000.00
Education of HH head Years 1.00 191 155 0.00 6.00
Adultsw/ high school Units 1.00 0.92 1.20 0.00 6.00
Position of HH head Binary 1.00 0.71 0.45 0.00 1.00
Assn. memberships Units 1.00 1.18 0.87 0.00 4.00
Aynoca area Hectares 148.00 121.32 104.15 0.00 278.00

13
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Table 2: Spatial dependence test statistics for five distance weight matrices in two models with and without

random effects, 170 households, Puno, Peru, 1999.

Model: Yield loss (Eq. 4) Fallow practice (Eq. 5)
Variable set: Base Random effects Base Random effects
I nver se distance weights
Moran's| (error) 0.350 -0.013 3.458 1.063
(0.726) (0.730) (0.001) (0.288)
LM (errar) 0.042 0.145 4.271 0.026
(0.837) (0.704) (0.039) (0.872)
LM (lag) 0.198 0.548 29.335 0.276
(0.657) (0.460) (0.000) (0.559)
I nver se distance squar ed
Moran’s| (error) -0.202 -0.083 2.592 1.273
(0.840) (0.934) (0.010) (0.202)
LM (error) 0.280 0.271 3.687 0.290
(0.600) (0.603) (0.055) (0.590)
LM (lag) 0.700 0.881 18.480 0.971
(0.403) (0.348) (0.000) (0.325)
4 nearest neighbors
Moran’s| (error) -0.641 -0.881 2.684 0.871
(0.521) (0.379) (0.008) (0.384)
LM (errar) 0.896 1.630 3.410 0.000
(0.349) (0.202) (0.065) (0.987)
LM (lag) 0.600 0.987 21.224 1.030
(0.440) (0.320) (0.000) (0.310)
8 nearest neighbors
Moran’s| (error) -0.328 -0.651 2.817 1.424
(0.743) (0.515) (0.004) (0.159)
LM (errar) 0.577 1.425 2.275 0.015
(0.447) (0.233) (0.131) (0.901)
LM (lag) 0.334 0.826 29.033 2.176
(0.563) (0.363) (0.000) (0.140)
Spar se distance weights
Moran’s| (error) 1.720 1117 4.284 0.158
(0.085) (0.264) (0.000) (0.875)
LM (errar) 0.792 0.031 4,592 1.125
(0.373) (0.861) (0.032) (0.289)
LM (lag) 0.840 0.083 29.16 1.198
(0.359) (0.773) (0.000) (0.274)

Notes: “Random effects’ refers to model s that include binary variables for agro-ecological zones Suni A and Suni B (
making the constant capture the effect of the Lakeside zone). LM denotes Lagrange Multiplier tests for spatial error
and gspatial lag. Numbersin parentheses are probabilities of failing to reject the null hypothesis of no spatial structure.



Table 3: Regression coefficient estimates for OLS, OLS with random effects, and spatial
error-corrected models using two distance matrices, 170 households, Puno, Peru, 1999.

Regression method:
Spatial weights matrix:

OLS

SAR-ML (error)
No spatial weights Inversedistance 4 nearest neighbors

M odel: Base R.E. Base R.E. Base R.E.

Constant -1.408 -1.317 -1.249 -1.317 -1.3%4 -1.317
Price of potato 0.109 0.003 0.080 -0.001 0.091 0.003
Unmet basic needs 0.148 0.107  0.090 0.109 0.121  0.107
Cropped area -0.036 0.095 0.022 0.097 -0.019  0.095
Pasture area 0.114 0.078 0.110 0.076 0.123 0.078
Vehicles owned 0.051 0.040 0.045 0.039 0.040 0.040
Store/warehouse 0.151 0.116 0.128 0.116 0.146  0.116
Well equipment 0137 0139 0112 0141 0.103  0.138
Other ag. equipment 0.059 -0.054 -0.019 -0.055 0.028 -0.054
Home equipment 0.151 0.107  0.099 0.108 0.117  0.107
Total SEVU's 0.041 -0.039 -0.016 -0.038 0.002 -0.039
Nonfarm income -0.236 -0.184 -0.165 -0.186 -0.183  -0.183
Family ag. labor supply -0.151 -0.123 -0.112 -0.125 -0.123  -0.123
Credit -0.002 -0.030 -0.011 -0.031 -0.003  -0.030
Distance to paved road -0.026 -0.008 -0.020 -0.010 -0.053 -0.008
Education of HH head -0.107 -0.084 -0.080 -0.084 -0.089  -0.083
Adults with high school 0.254 0.185 0.184  0.187 0.198  0.185
Position of HH head 0.110 0.047 0.065 0.046 0.115  0.047
Association memberships 0.072 0.105 0.062 0.108 0.061  0.105
Aynoca area 0417 0.233 0236 0.236 0327 0.232
Foot-slope location 0.185 0.074 0.119 0.072 0.169 0.074
Sandy soil proportion 0.058 -0.006 -0.002 -0.005 0.039 -0.006
Fertilizer rate -0.120 -0.060 -0.083 -0.059 -0.104  -0.060
Pesticides rate -0.081 -0.060 -0.102 -0.056 -0.080  -0.060
Natural resources project 1549 0.574 1.370 0.576 1482 0574
Zone: Suni A 0.840 0.839 0.841
Zone: Suni B 1.429 1.430 1.429
Spatia error (lambda) 0.647 -0.049 0.326  0.003
Log Likelihood (neg) -160.3 -140.7 -154.6  -140.6 -155.4  -139.7

Note: Boldface type denotes probability of Type Il error < 5 percent in rejecting H%: B=0.



Table 4: Regression coefficient estimates for OLS, OLS with random effects, and spatial
lag-corrected models using two distance matrices, 170 households, Puno, Peru, 1999

Regression method: OLS SAR-ML (lag)
Spatial weights matrix: No spatial Inverse distance 4 nearest neighbors
weights

M odel: Base R.E. Base R.E. Base R.E.
Spatia lag-Y (rho) 0.505 0.084 0.375 0.106
Constant -1.408 -1.317 -0.722 -1.215 -0.894 -1.184
Price of potato 0.109 0.003 0.073 0.008 0.084 0.009
Unmet basic needs 0.148 0107 0102 0104 0.119 0.104
Cropped area -0.036 0.095 0.015 0.090 -0.006 0.087
Pasture area 0.114 0.078 0.112 0.081 0.119 0.083
Vehicles owned 0.051 0.040 0.038 0.039 0.038 0.037
Store/warehouse 0.151 0.116 0.128 0.115 0.139 0.117
Well equipment 0.137 0139 0.117 0135 0.108 0.130
Other ag. equipment 0.059 -0.054 -0.009 -0.055 0.011 -0.054
Home equipment 0.151 0107 0.117 0106 0.122 0.105
Total SEVU's 0.041 -0.039 -0.004 -0.038 -0.004 -0.041
Nonfarm income -0.236 -0.184 -0.185 -0.181 -0.185 -0.176
Family agric. labor supply -0.151 -0.123 -0.127 -0.122 -0.121 -0.118
Credit -0.002 -0.030 -0.011 -0.029 0.000 -0.026
Distance to paved road -0.026 -0.008 0.016 -0.001 -0.015 -0.007
Education of HH head -0.107 -0.084 -0.075 -0.081 -0.080 -0.079
Adults with high school 0254 0185 0195 0.183 0.192 0.176
Position of HH head 0.110 0.047 0.085 0.049 0.113 0.055
Association memberships 0.072 0.105 0.085 0.104 0.074 0.101
Aynoca area 0417 0233 0251 0225 0.261 0.212
Foot-slope location 0.185 0074 0123 0075 0.156 0.079
Sandy soil proportion 0.058 -0.006 0.010 -0.007 0.028 -0.006
Fertilizer rate -0.120 -0.060 -0.086 -0.059 -0.098 -0.061
Pesticides rate -0.081 -0.060 -0.096 -0.065 -0.081 -0.063
Natural resources project 1549 0574 0762 0547 0.953 0.529
Zone: Suni A 0.840 0.750 0.735
Zone: Suni B 1.429 1.285 1251
Log Likelihood (neg) -160.3  -140.7 -147.8 -140.5 -150.3 -140.2

Note: Boldface type denotes probability of Type 1l

error < 5 percent in rejecting H% p=0.
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Figure 3: Location of Ilave-Huenque watershed in southern Puno Department, Peru.
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