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1 Introduction 

Tradable permits (tradable quota) have become an important tool in managing 

externalities. Cost efficiency has been seen as the main advantage of these types of policy 

measures: a predefined environmental target can be reached at lowest costs (Baumol and 

Oates, 1971). Assuming perfect market conditions  (i.e. in absence of transaction costs), 

those permits will be used by those who attribute it the highest value (Tietenberg, 2003) 

and this regardless the initial allocation of the permits (Montgomery, 1972).Tradable 

permits are useful when the concerned emissions have no local impact on environment or 

population (Lejano and Hirose, 2005) such as greenhouse gases and NOx. In such cases it 

doesn’t matter where the pollutants are emitted because only the aggregated 

concentration affects the environment. However, when emissions have an immediate or 

almost immediate effect on the local environment, emissions trading does not guarantee 

that initial policy goals are reached for each local receptor. Due to trading of the 

emissions, hotspots of emissions can occur (Lejano and Hirose, 2005), affecting the local 

population and environment. Examples are toxins (lead,  SO2,…) and noise. 

Therefore, Stavins (1995) argues that an ambient or concentration permit trading system 

(CPT) is theoretically to be preferred to regular emission permit trading (EPT). A 

concentration permit is then defined as a permission to deposit a quantity of pollutants at 

a specific receptor (Ermoliev et al., 2000). Theoretically, the market will give a cost 

efficient outcome (Montgomery, 1972) but some authors believe that in practice such 

systems generate high transaction costs and that cost-effectiveness will not be reached 

(Tietenberg, 1995). This complexity can be seen as a major reason why, based on 

literature knowledge, no policies based on CPT have been developed so far. On the other 

hand, some simulations of well-described problems may show the potential of CPTs and 

facilitate the analyses of CPT effects. An example of such a well-described problem is 

the manure problem and manure policy interventions. Basically, the manure policies are 

attempts to solve problems of surplus production at certain locations by spreading the 

impact over a larger area while safeguarding the carrying capacity of the environment at 

each location. The manure problem has been extensively described (Aillery et al., 2009; 

Aubry et al., 2006; Berentsen, 2003; Berentsen and Tiessink, 2003; Courdier et al., 2002; 

Feinerman et al., 2004; Feinerman and Komen, 2005; Helming and Reinhard, 2009; 

Huhtala and Marklund, 2008; Karaczun, 2005; Keplinger and Hauck, 2006; Lauwers, 

1993; Lauwers et al., 1998; Le Goffe, 2008; Lewis, 2008; Oenema et al., 2007; Piot-

Lepetit and Vermersch, 1998; Sims et al., 2002; Staalduinen et al., 2002; Wossink, 2003; 

Wossink and Gardebroeck, 2006), making it a good case to enrich our knowledge on CPT 

based on a spatial modeling system. 

 

The aim of this paper is twofold. First, to compare the EPT system with a CPT system for 

the Flemish manure policy case. For this case both the private costs for farmers as well as 

the environmental impact of both the EPT and the CPT are compared. To do so the paper 

applies a multi actor spatial programming model (earlier described by Van der Straeten et 

al. (2009a)) to simulate a situation in which either a CPT system or EPT system is used. 

The paper highlights the specific characteristics of the market of tradable concentration 

rights and how they can be analysed.  



Second objective is to describe and analyse the socio-economic adjustment of a CPT 

system based on the example of the processing obligation as an abatement strategy for the 

larger firms in the Flemish manure policy.  

The paper is organized as follows. The paper starts with describing the possibility of 

using the manure-policy case, and in particular the Flemish manure policy as an example 

of a CPT system. This section also gives a description of the processing obligation as a 

case for social adjustment of the CPT policy. Section 3 describes the analytical model 

used for analysing the CPT and EPT systems followed by an elaboration of the spatial 

aspects of permit prices and how the costs and benefits from trade in permits can be 

calculated. The result section starts with a comparison between EPT and CPT systems 

followed by the socio-economic analysis of the obligatory emission processing. Section 5 

discusses the results and concludes. 

2 The  Flemish Manure Policy as a CPT Case  

2.1. Fertilization limits as tradable concentration permits 

Ambient or concentration permit trading systems are terms which are used in literature 

for the same thing. In the remainder of the paper we will use the term concentration 

permit trading  (CPT).  

Despite the theoretical advantages (Ng and Eheart, 2005), until now CPT systems have 

not been widely used. Especially for air pollution the system can offer great advantages 

compared to EPT as it can prevent concentration of pollution (Atkinson and Tietenberg, 

1987). As an alternative, problems in which spatial issues of the resource use or emission 

do matter are often tackled by incorporating spatial limitations in trading of the permits 

(Atkinson and Tietenberg, 1987; Tietenberg, 2003). The RECLAIM program in the U.S., 

for example, makes a distinction between two areas (coastal and inland area). Because of 

the predominant wind going from the coast to the inland, EPTs could only be transferred 

within the same area or from the coastal to the inland area. EPT transfers from the inland 

area to the coastal were prohibited (Harrison, 2003).  Similar trade rules were introduced 

in the Dutch Nutrient Quota System. Phosphate production was steered by means of 

animal based manure production rights. Each farm was allowed to produce 125 kg P2O5 

per hectare of land. Farmers producing more manure in terms of phosphate need 

additional manure production rights. These rights are tradable between farmers. Also here 

distinction is made between two regions: a manure surplus (average phosphate 

production is higher than 125 kg per hectare) and a manure deficit (with phosphate 

production below 125 kg/ha) region. Trade of rights is allowed within each region and 

from the surplus region to the deficit region (Wossink, 2003). 

The Dutch Nutrient Quota System was introduced to control the externalities of the 

intensive livestock production. In Flanders, a region within Belgium and adjacent to the 

Netherlands, the same type of problem of animal concentration and production and 

emission of animal manure is found. The Flemish manure policy is, together with the 

Dutch manure policy, probably the most elaborated policy in controlling the use and 

production of nutrients originating from agricultural sources. 

The Flemish manure policy limits the amount of nutrients (N and P2O5) of animal manure 

emission with fertilization standards. Van der Straeten et al. (Van der Straeten et al., 

2009a) describe these standards of organic nitrogen use as Nutrient Allocation Rights 



(NARs). One NAR gives the farmer the right to emit one kg of organic nitrogen. NARs 

are allocated to individual firms based on land use; as an example per hectare of arable 

cropland each farm receives 170 NARs for organic nitrogen. The emitted nutrients must 

be used on that specific hectare of land, which makes NARs an example of concentration 

standards. Concentration standards limit the emission per unit of output, per unit of 

effluent or per receptor (Bruneau, 2005; Ermoliev et al., 2000). NARs have also been 

categorized as tradable emission rights (Lauwers et al., 2003b) because the policy allows 

transactions of NARs between farmers. In contrast to other examples of emission permits, 

the right to emit is locally fixed and the emission right can be traded (Buysse et al., 

2008). Therefore, the NARs are close to and can be described as an example of a CPT 

system. 

2.2. Social adjustments 

The main theoretical advantage of tradable permits, this is efficiency increase, is at the 

same time also a considerable social disadvantage. Large differences in efficiency 

between firms may indeed lead to concentration of permits on the most efficient firms 

(Tietenberg, 2003). This is e.g, very often the case with ITQs (individual transferable 

quotas) in fisheries where concentration of permits in larger vessels is very often 

observed (Branch, 2009) with as a result negative social effects because of the exit of 

many small fishermen (Palsson, 1998). Different social measures can be imposed to 

protect small firms or less competitive communities in such cases (Tietenberg, 2003), as 

e.g. in Alaskan fisheries where quota were allocated to local communities to counteract 

their competitive disadvantage (Ginter, 1995). The European dairy policy is also based on 

a system of tradable permits (Van der Straeten et al., 2009b). Spatial concentration of 

permits in highly efficient regions is avoided by imposing transfer limitations between 

countries (Alvarez et al., 2006). Some member states even imposed trade limitations 

within their country (as e.g. Belgium: Jespers et al. (2006)). 

Within the Flemish system of NARs, social adjustment measures have been taken as 

well. Because of the highly intensive livestock production is concentrated in only some 

regions in Flanders, the introduction of NARs would lead to a large competition for free 

NARs resulting in high market prices. The Flemish farms are mostly rather small family 

farms (Calus et al., 2008) with only a small number of larger farms specialized in 

intensive animal production. The policy maker wanted to mitigate the economic impact 

of the environmental policy on small family farms. Therefore, the regulation intervenes in 

the market for NARs by imposing that larger farms in regions with concentrated animal 

production have to use emission abatement strategies rather than buying additional NARs 

(Lauwers et al., 2003a) (see also further).  

2.3. Making the concept operational 

The Flemish manure policy prescribes how individual firms have to deal with their 

emission (manure). The produced emission per firm is calculated based on the number of 

animals per animal type, feeding technique and housing type. All produced manure must 

either be emitted within the available concentration rights (NARs) or the firm has to 

choose for emission abatement, which is manure processing. The initial allocation of the 

concentration rights is based on land use but the right to emit an amount of manure can 

be traded among firms. Therefore, the firms have three allocation choices. First, they can 

use their produced emission (manure) within their own concentration rights. Second, the 



firms can transport their emissions to other firms with unused concentration rights, which 

means permit trading. Third, the firm has the option to engage in emission processing. As 

a result, the Flemish manure policy has created a demand and supply of concentration 

rights (Van der Straeten et al., 2009a).  

Manure processing or treatment is defined as a comprehensive term for all technologies 

which remove or recover nutrients out of manure (Flotats et al., 2008). The end products 

can be used on farmland, home and public gardens etc (Melse and Timmerman, 2008). 

The decision to opt for manure processing as a result of too high prices for concentration 

rights is in this paper referred to as market driven processing. Market driven processing 

happens when the purchase of NARs and the joint manure transport costs are higher than 

the costs for manure processing. Next to the market driven manure processing, the 

Flemish manure policy has also created legal obligatory processing imposed on a small 

number of larger firms
1
. By imposing obligatory manure processing, the government 

interferes in the NAR market by removing a share of the demand for NARs which should 

reduce the price of NARs.  

Especially in regions with a very high manure production, danger existed that small 

family livestock farms would not be able to compete for free rights. The initial goal of the 

policy was to protect these farms against a significant raise in costs and pass on the costs 

to the more industrial farms. In this paper, we will examine the effectiveness and 

efficiency of this social policy adjustment. 

3 Method 

3.1 The NAR market model 
Geographically, the concentration rights (NARs) are evenly spread, but the production 

leading to emissions is regionally concentrated. This spatial difference between demand 

and supply of NARs can be simulated by a spatial price equilibrium model (SPE). The 

SPE model computes the supply prices, demand prices and emission trade flows 

satisfying the equilibrium condition. This condition states that, when trade between two 

regions occurs, the demand price of a NAR equals the supply price plus the transport 

cost. Trade doesn’t occur when demand price is lower than supply price plus transport 

costs. Transport costs of the emission or reallocation of the sources of emission are the 

main characteristic that distinguishes concentration rights from traditional emission 

rights. Transportation is captured in the SPE model. The demand and supply for NARs of 

each agent is simulated by a mathematical programming model that assumes cost 

minimizing behaviour of the allocation of the emission.  

                                                 
1
 Each firm with a production of more emissions than an equivalent of 10,000 kg 

phosphate and each firm in a municipality with a production of 100 P2O5/ha and a 

production of more than 7,500 kg phosphate, is obliged to process a given share of the 

farm manure surplus. This share depends on the total phosphate production at the farm: 

30% at farms with a phosphate production between 7,500 and 10,000 kg per year, 50% at 

farms with a production between 10,000 and 12,500, 75% at farms with a production 

between 12,500 and 15,000 and 90% for farms with a phosphate production of more than 

15,000 kg. 

 



The combination of mathematical programming models for each agent and the SPE 

model creates an overall Mathematical Programming Multi-Agent Simulation model 

(MP-MAS), which is used in this paper and more in detail described in Van der Straeten 

et al. (2009a). The data needed for the model contain information of each individual firm 

about its location, production and NARs. Based on this information, a firm-specific 

supply or demand of NARs is calculated (Van der Straeten et al., 2009a). The MP-MAS 

allocation model is able to simulate the different costs related to each allocation option at 

firm level and is able to simulate endogenously market prices of the NARs. The model 

distinguishes between the disposal costs, the transport and the treatment cost and the 

concentration right costs, i.e. the costs for obtaining NARs from other firms. The 

transport, disposal and treatment costs are extra costs at sector level while the 

concentration right costs are the result of a redistribution within the sector.  

We start from the equation in Stavins (Stavins, 1995) where the quantity of traded 

permits (ti) by farmer i is defined as: 

                       (1) 

with ui the unconstrained emission, ri the emission reduction or abatement and q0i the 

initial allocated permits. Translated to our manure case, this equation becomes: 

                         (2)  

where TPi is the traded permits by farmer i, NPi the nitrogen production per farmer, NTi 

the volume of treated (processed) nitrogen and NAR0i the initial NAR allocation per 

farmer. To explicit the manure problem as an analogue of the CPT issue, the 

correspondence of terms is given in table I. 
 

Table I: correspondence of terms between CPT – manure problem analogue 

CPT - system  Manure problem 

description symbol  description symbol 

Unconstrained emission U  Nitrogen production NP 

Emission reduction / 

abatement 

R  Nitrogen treatment NT 

Initial allocated permits Q0  Initial allocated NARs NAR0 

Traded permits T  Traded permits TP 

Constrained emission cost
(1)

   Disposal cost Cd 

(1) mostly the cost to emit a pollutant is zero. For example there is no cost to emit CO2 in the air 

Each farmer tries to minimize his total costs (TC): 

                                                        
 (3) 

                                (4) 

in which Ct is the treatment costs, Cd the disposal costs, PNAR the price per traded NAR 

and T(TPi) the transport costs which are function of the distance of farmer i to the NAR-

location (di), the transport cost per unit of distance (Ctrans) and the quantity of obtained 

NARs between both farms (tri). 

When the production exceeds the available permits, the farmer has the choice to buy 

additional permits or to abate the surplus (nitrogen treatment, NT). The optimal level of 

treatment is where total costs are minimized: 



   
          

     
          (5) 

Substituting equation (2) into equation (3) gives: 

                             (6) 

where the price the farmer wants to pay (PNAR) equals the difference between the 

treatment cost and the disposal cost minus the transport costs. The higher the transport 

costs, the lower the price the farmer wants to pay for the permit. 

However, trade in NARs generates benefits for the supplier of NARs. Therefore the 

revenues generated from trade must be taken into account as well, resulting in the net 

costs of farmer i (NCi).  

For a demander of NARs, which generates no profits from sale, the net costs are equal to 

the total costs (equation 7): 

                  (7) 

with TCi implying costs for purchased NARs 

For a supplier of NARs, the revenues from trade are: 

                               (8) 

 Net costs, as it will be modelled for each farm i will then be modelled as revenues to be 

subtracted from the total costs to arrive at the net costs (equation 9):    

                                  (9) 

with NAR_soldi the NARs sold on the NAR market.  

At sector level, the benefits equal the cost of trading NARs, so that the sum of the net 

costs at sector level equals the total amount of money going out the sector. 

The calculation of the price of the NARs and the resulting redistribution over location 

and among farmers is explained in next subsection. 

3.2 Price of NARs 
Under perfect market conditions, and EPT assumptions, a uniform market price can be 

found (Baumol and Oates, 1971). In CPT, however, the unequal distribution of emissions 

and NARs and the distance between suppliers and demanders becomes important in 

price-settings. Stavins (1994, 1995) imputes transport costs the same characteristics as 

other transaction costs because of the similar influence on the market equilibrium. In the 

case of the NAR market, the purchaser of rights bears the transportation costs. This 

results in a downward shift of the demand curve (Figure 1). Similar to transaction costs 

(Stavins, 1995), transportation costs lead to a difference in the price a seller of rights 

receives (PS) and the price paid by the purchaser (PD). The traded volume decreases from 

Qm to QT. However, the shift of the demand curve (figure 1) is not the same for the whole 

range of exchanged NARs because the cost reallocation of emission varies. Reallocation 

of emission can be achieved by reallocating the production or by transporting the 

emission. In the case of manure, the transport of the emission is the cheapest and easiest 

and, therefore, in this paper the reallocation costs are transport costs. The case of manure 

is, however, complicated by the heterogeneous manure transport cost, which depends on 

the quantity of emitted nitrogen.  

 



 
The shift in the demand curve depends also depends on the location of the market for 

NARs. NARs located far from the emission source bear higher transport costs. The 

resulting demand curve shifts more to the left and the observed price of the NARs is 

lower at a lower traded volume. In regions with high emission concentration, competition 

for concentration rights is high. Firms in regions with highly concentrated sources of 

emission have to choose to buy expensive local NARs or reallocate their emission to a 

region with lower prices for the rights but they have to bear the reallocation costs.  This 

specific characteristic of the NARs results in spatial differences in market prices, which 

has also been shown for the manure emission rights (Van der Straeten and Buysse, 2009; 

Van der Straeten et al., 2009a). 

3.3 Specification of costs and benefits from trade of NARs 
The price of the NARs (PNAR) generates a reallocation of revenues within a sector if the 

actual use is different from the initial allocation, i.e. when          . In our case of 

manure emission rights in Flanders, the distribution of the rights is based on land use 

while the emission is based on animal production. There is a strong correlation between 

land use and animal production for cattle farms. However, the correlation is much smaller 

for specialist animal production and specialist arable production. The former have a 

significant shortage of NARs while the latter have a significant surplus.  

The second objective of the paper is to assess shifts in revenue among agents caused by 

socially inspired policy interventions in the trade of NARs and needs an in-detail 

description of the cost and benefits from trade of NARs. The concentration emission from 

manure can be expressed homogeneously as kg N/ha. The source of the emission, 

manure, on the other hand is rather heterogeneous. Each animal type, as a combination of 

species, age and feeding system, produces manure with own characteristics (e.g. nutrient 

content and dry matter content). The model in the current paper considers four different 

manure types with each a fixed nutrient content.  

All four types have a specific nitrogen content resulting in different transport cost per kg 

of nitrogen. This results in a discontinuous demand curve for NARs. A firm first 

transports the cheapest type of manure, resulting in a small downwards shift of the curve, 

Figure 1: graphical representation of the market of concentration rights and the effect of 

transport costs on the market equilibrium 

NAR supply 

NAR demand 

Qm 

Pm 

PD 

PS 

QT 

NAR demand’ 



then with increasing manure transport, the expensive manure types are considered. 

Higher transport costs lead to a larger downward shift of the demand curve. 

The costs for the buyer of the NARs are the sum of the price to be paid for the right plus 

the transport costs. The cost of obtaining the concentration right is PS*QT. The costs of 

reallocation of the emission is not equal to (PD-PS) * QT because our calculation uses the 

marginal transport cost as the transport cost for each right. The marginal transport cost is 

generally higher if the reallocation costs are not homogeneous for all the emission. 

Graphically, only the shaded part in Figure 2 is the actual reallocation cost and not the 

full area a, b, Ps, Pd.  

 
 

3.4 Data 
For our simulations, we used data from the Flemish Land Agency (Vlaamse 

Landmaatschappij, VLM) for 2006, which is a public body controlling manure exchange 

between farmers. The dataset contains the total farm population and offers data about the 

crops, manure production, NARs and the manure allocation behaviour for each Flemish 

farm. In total 38,777 farms are included in the model. These farms have a total acreage of 

677,000 hectares of farmland. 26,555 farms holding animals is resulting in a total 

nitrogen production of 128 million kg and a phosphate production of 57 million kg. More 

than half of the nitrogen is produced by cattle and more than one third by pigs. Poultry is 

the third most important nitrogen producer (almost 10% of total nitrogen production). 

One fourth of the Flemish farms are surplus farms, i.e. they produce more manure than 

they can spread on their own land (with respect to NARs).  

4 Results 

4.1 Comparing  CPT and EPT  
The NAR system, as an example of a CPT policy, is compared with a simpler tradable 

emission permit (EPT) system. In the CTP system, the firm’s emissions are spatially 

limited by the imposed maximum of concentration rights. The simpler system of tradable 

permits gives the firms more degrees of freedom because they can emit the same amount 

Figure 2: transportation costs in the manure market 
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of emissions without fully facing the problem of concentrated emission. In fact, firms are 

facing limits at considerably higher concentration levels. In the manure case, the amount 

of manure per ha will then be determined by the agronomical maximum, beyond which 

production, or utility, would be reduced. For the sake of our simulations, this 

agronomical maximum is set at 500 kg N on grassland, 400 kg N/ha on most other crops 

and 200 kg N /ha for the crops accepting only a limited amount of nitrogen such as 

onions, peas and beans. 

The net costs for all manure emission in Flanders, with the EPT system, is estimated to be 

106 million euro (on annual basis). The more complex EPT system results in a higher net 

cost of 118 million euro for all manure emission. The difference of 12 million euro can 

be seen as a consequence of the reallocation costs of the emission in the case of the 

concentration rights (NARs). These results confirm the statement of Stavins (1995) that 

the control of the emission closer to the source with concentration rights might increase 

the transaction costs. The estimate of the transaction costs in our case is still a lower limit 

because we have only taken the transport costs as proxies for transaction costs into 

account and not the costs for information, negotiation or control. Also the public control 

costs are not considered. This manure emission is controlled by soil samples and 

sometimes even by helicopter. The emission reallocation by long distance transport is 

controlled by GPS. This cost of the GPS markers is imposed on the private firms and is 

included in the 12 million euro. The cost of control by helicopter is public and is not 

included.  

A larger difference between both systems can be found in the total costs, i.e. when the 

benefits from trading are not taken into account. The total costs under EPT were almost 

equal to the net costs (106 million euro), because almost no permit trading occurred. 

Under CTP the total costs increase to 180 million euro, meaning that the trade of rights 

leads to an extra cost of 62 million euro.  

Making distinction between suppliers of NARs (i.e. farms producing less nitrogen than 

their available NARs) and demanders of NARs (i.e. farms producing more nitrogen than 

the available NARs) we see that the increment in total costs is mainly at the expense of 

the demanders of NARs (from 79 to 140 million euro or + 82%). The suppliers 

experience an augmentation in total costs of almost 40% ( from 27 to 37 million euro).    

The environmental consequences of the CPT system and the simpler EPT system is also 

quite different. The CPT system imposes a limit to manure emission to prevent that 

excessive nitrogen leaching would occur. The FLA administrative database shows that 

the CPT type of policy has successfully induced a reallocation of the manure emission. 

Figure 3 gives the average municipal nitrogen use per hectare of farmland under a EPT 

system.  



 
Figure 3: average nitrogen use per hectare of land per municipality under EPT in 2006 (kg N/ha) 

The CPT system prevent concentration of emission and forces the firms to reallocate the 

emissions (Figure 4).  

 

 
Figure 4: average nitrogen use per hectare of land per municipality under CTP in 2006 (kg N/ha) 

The simulation of our MAS model shows that, from the 677,000 ha, 502,000 ha (74.2%) 

would receive a lower or equal manure emission while 175,000 ha (25.8%) would receive 

a higher manure emission. On 83,000 ha (12.3%) the maximum EU nitrogen 

concentration for vulnerable areas (170 kg N from manure / ha) is exceeded more than 

twice (more than 340 kg N from manure). The environmental comparison of the tradable 

concentration right system and the tradable emission right system for the Flemish manure 

policy thus also confirms that from an environmental perspective a control closer to the 

source is preferable.  

4.2 Market description 
Under an EPT system, farmers are only bounded in their nutrient use because of 

agronomical limits. Simulation results show that under EPT practically all manure could 

be spread on own land. A CPT system leads to a distinction between farmers within the 

sector. One part of the sector has an emission which exceeds their NAR, while for the 

other part of the farmers NAR’s are (partly) left unused. Both exceeders and under-users 

of CPTs can benefit from interaction between them, and thus start trading permits. 

Simulation results (Table II) show that permits indeed are traded between individual 

farmers.  
Table II: simulated manure allocation behaviour under CTP (million kg N), 2006 

 On-land 

disposal 

Own-land 

disposal 
transport Processing Production 

Cattle 67.69 59.62 8.07 0.00 67.69 

Legend

gemeenten

ruimte_081010.ha_etp

< 170 

170 - 250

250 - 340

> 340

Legend

gemeenten

ruimte_081010.ha_ctp

< 170 

170 - 250

250 - 340

> 340

Legend

gemeenten

ruimte_081010.ha_ctp

< 170 

170 - 250

250 - 340

> 340

Legend

gemeenten

ruimte_081010.ha_ctp

< 170 

170 - 250

250 - 340

> 340



Pig 32.81 12.07 20.74 12.85 45.66 

Poultry 1.03 0.03 1.00 11.68 12.71 

Other 

animals 
2.44 1.85 0.59 0.00 2.44 

Total 103.97 73.57 30.40 24.53 128.50 

 

In 2006, almost 104 million NARs were used in Flanders. This allows to dispose more 

than 80% of the total produced emissions (128 million kg N). From this total nitrogen use 

of 104 million kg, almost 30% is spread on traded NARs. The NAR market is thus 

frequently used by the farmers and is an important tool for the farmer to manage manure 

emission conform the legal prescriptions. However, the supply of NARs is not enough to 

use all manure on land. Therefore still 24 million kg N had to be transported or exported 

to other countries. 

The results show a clear distinction in allocation behaviour for the four types of manure 

which is the result of the heterogeneous nitrogen content in manure. A higher nitrogen 

content results in lower allocation costs per unit of nitrogen. The highest concentrated 

manure type will be chosen for the most expensive allocation option. This explains why 

poultry and pork manure are the preferable manure types to process. Another implication 

of the difference between types of manure is that the traded NARs are mostly used for the 

disposition of pig manure (72% of the totally traded concentration rights). Cattle manure 

is mostly used under own NARs because of the higher reallocation costs in case of NARs 

exchange (12% of the total production) and the fact that cattle farmers usually do possess 

more land per livestock unit than pig or poultry farmers. 

Most of the Flemish farms are involved in the manure market, from specialist arable 

farms, over mixed farms to specialist livestock farms. In the remainder of the paper we 

make a distinction between four types of farmers: big livestock farms (with a manure 

production with an equivalent of phosphate of more than 10.000 kg), intermediate 

livestock farms (5000 – 10000 kg P2O5), small livestock farms (300 – 5000 kg P2O5) and 

non-livestock farms (<300 kg P2O5). This subdivision is based on manure production. 

Within each group, there can be suppliers and demanders of NARs. 

4.3 Market intervention in a tradable concentration permit system 
The high emission treatment cost and reallocation costs resulting from the NAR system, 

caused many actors to oppose to the manure policy. Increasing political pressure incited 

policy makers to develop a number of accompanying measures trying to reduce the 

burden for many small family-based businesses. One of these accompanying measures is 

the manure processing obligation for large firms. The objective of this subsection is to 

analyse this introduction of the manure processing obligation and the distributional 

effects of the market intervention in the market of tradable concentration rights.  

Net effects of the introduction of obligatory manure processing 

The obligatory manure processing regulation forces some firms, mainly the larger ones, 

to process more than half of the amount that has to be processed (13 million kg N). The 

remainder of the emission treatment remains driven by market impulses. We call it 

therefore market-driven processing. The processing obligation imposes farms, with a 

production higher than 10,000 kg phosphate or 7,500 kg phosphate in municipalities with 

high manure concentration, to process a part of their manure surplus. Table III shows the 



aggregated manure allocation behaviour of the Flemish farmers confronted with the 

processing obligation. 

Simulation results show that under processing obligation other manure types have to be 

processed as well. This results from the reduction in degrees of freedom of the farmer. 

The differences in manure allocation behaviour (as well as in the scenario without 

processing obligation (NPMO) as well as in the scenario with processing obligation 

(WPMO)) have led to differences in the costs and benefits structure of individual farms 

and the farm sector as a whole.  

 

 
Table III: simulated manure allocation behaviour under scenarios with obligatory manure processing (million kg N), 2006 

 On-land 

disposal 

Own-land 

disposal 
transport Processing Production 

Cattle 67.16 59.58 7.58 0.53 67.69 

Pig 32.11 11.94 20.17 13.55 45.66 

Poultry 2.27 0.08 2.19 10.80 12.71 

Other 

animals 

2.43 
1.84 

0.59 0.01 
2.44 

Total 103.97 73.44 30.53 24.49 128.46 

 

The aggregated costs and benefits related to manure allocation are given in table IV. 
Table IV: money flows related to the manure allocation under both scenarios, 2006 

 Net costs NAR costs Total costs  

 Total 

(million €) 

Average 

(€/kg N) 

Total 

(million €) 

Average 

(€/NAR) 

Total 

(million €) 

Average 

(€/kg N) 

NPMO
(1)

 117.68 0.92 62.61 2.06 180.29 1.40 

WPMO
(2)

 120.57 0.94 56.20 1.84 176.77 1.38 

difference (%) 2.46 2.46 -10.25 -10.65 -1.95 -1.95 
(1) NPMO: scenario with no processing obligation 

(2) WPMO: scenario with processing obligation 

The introduction of the manure processing obligation has led to various effects. On the 

one side, the manure processing obligation increases the net costs by almost 2.5%. In 

other words, the farm sector faces a rise of the net costs of almost 2.5% for allocating the 

manure emission, resulting in a net outflow of cash from the agricultural sector.  

Another important implication of the manure processing obligation is the strong decline 

in the prices of NARs of more than 10%. The result of the rise in allocation costs and the 

decline in NAR prices can be found in the total costs which decrease with almost 2%. 

This means that at aggregated level the livestock farms benefit from the introduction. On 

the other hand, the farms with an excess of NARs  (e.g. firms with land but without 

manure production: arable farms) face an important decline in revenues from selling 

concentration rights. These differences in effects between individual farms are analysed 

into detail in the next section.  



Distributional effects of the introduction of obligatory manure processing 

The initial aim of the manure processing obligation was to protect the small family 

livestock farms from the increased costs from the system of tradable concentration rights. 

Table V summarizes the impact of the policy on different firm sizes.  

 
Table V: Percentages of the manure surplus falling under manure processing obligation 

Percentage of manure surplus per farm size  N under processing obligation 

7,500 ≤ 

P2O5 

<10,000 

10,000≤ 

P2O5 

<12,500 

12,500≤ 

P2O5 

<15,000 

15,000≤ 

P2O5 

 (million kg N) % against 

total N 

surplus 

0 0 0 0  0 0.00 

7.5 12.5 18.75 22.5  3.14 12.80 

15 25 37.5 45  6.29 25.63 

22.5 37.5 56.25 67.5  9.44 38.47 

30 50 75 90  12.59 (current) 51.30 

37.5 62.5 93.75 100  14.82 60.39 

45 75 100 100  16.07 65.48 

75 90 100 100  19.29 78,61 

90 100 100 100  20.99 85,53 

100 100 100 100  21.88 89,16 

 

The results of table 4 show that the processing obligation affects the different groups in a 

totally different way. The non-livestock farms experience a decline of the average total 

costs per farm (-3 %) but at the same time their average net costs per farm increase 

(+12.5%). This is the result of the decline in NAR market prices, which leads to less 

benefits for these farmers. On the other hand, big livestock farms experience a serious 

increase in total costs because of the manure processing obligation. The average total 

costs per produced kilogram nitrogen increase with 8% and the average total costs per 

farm even with 9.5%. The net costs per kg N and per farm increase as well with 8.2 and 

9.6%, respectively. The largest benefits can be found in the class of small livestock 

farms. The total costs per kg produced N decrease with 4.4% for the very small livestock 

farms and 3.2% for the intermediate livestock farms. The change in net costs is less 

pronounced, but still decreasing (-1.4% for  small livestock farms and -3% for 

intermediate livestock farms). These farms face a decline in total costs as well as in net 

costs. The effect in net costs is less distinct because also the benefits generated by selling 

NARs is taken into account and these benefits would decrease because of the processing 

obligation. 

4.4 Efficiency and effectiveness of the introduction of obligatory 
manure processing 

The distinction between total and net costs is important in the determination of the 

efficiency and effectiveness of the policy adaptation. Effectiveness can de defined as to 

what extent the desired effect is reached while efficiency indicates whether this is done in 

the most economic way. Mentzer & Konrad (1991) define efficiency as the invert of the 

ratio between the normal level of inputs and the actual level of inputs. Effectiveness can 



be measured as the real set of outputs and the desired set of outputs (Van der Meulen and 

Spijkerman, 1985). 

Translated to the manure problem, the real level of inputs is the net cost for the entire 

farm sector. Efficiency can be calculated by following equation (10): 

    (10) 

The initial policy goal was to decrease the costs for the small livestock farms. The 

effectiveness of the policy can be seen as the extent to which these small livestock farms 

experience a cost reduction and is given by equation (11): 

   (11) 

The current policy has an efficiency score of 97.54% and an effectiveness of 4.11%. To 

achieve an average cost reduction of 4.11% for small livestock farms, the total allocation 

costs of the sector had to lose almost 2.50% in cost efficiency. Both figures depend 

strongly on the initial rules for obliged processing. Therefore, not only the absolute value 

of both parameters is important but also the sensitivity of both parameters to changing 

levels of obliged processing. To asses this effect the percentages of the manure surplus 

that falls under obligatory manure processing per group of farms is experimentally 

changed for ten simulation runs (Table 6). In 2006 24.54 million kg N was in surplus, 

meaning this amount of nitrogen had to be processed. Under the current regulation 12.59 

million kg N must be processed under obligatory processing. By changing the 

percentages of the manure surplus that has to be processed, the total amount of nitrogen 

that has to be processed changes (table VI). 

Table VI: Aggregated results per farm size class, 2006 

  Non-

livestock 

farms 

Small 

livestock 

farms 

Intermediate 

livestock 

farms 

Big livestock 

farms 

Number of farms 18781 17020 2543 433 

Net cost NPMO (€/farm) -1258 3365 24518 50059 

Net cost WPMO (€/farm) -1096 3319 23954 54860 

Total cost NPMO (€/farm) 394 5037 25504 51502 

Total cost WPMO (€/farm) 382 4817 24870 56277 

Net cost NPMO (€/kg N) -6.80 0.5245 1.69 1.80 

Net cost WPMO (€/kg N) -6.07 0.52 1.64 1.94 

Total cost NPMO (€/kg N) 2.50 1.07 1.76 1.85 

Total cost WPMO (€/kg N) 2.39 1.02 1.70 2.00 

 

The results of this sensitivity analysis are given in figure 5 where the efficiency and 

effectiveness are given per percentage of surplus manure that falls under obligatory 

manure processing.  

The higher the percentage of the aggregated manure surplus that falls under the 

obligatory manure processing policy, the more effective the policy will be. A higher 

percentage under processing obligation, means that large farms are required to process 

more, and more NARs become available for small farms. Moreover, because of the 

declining demand for NARs, NAR-prices will decrease which again lowers the costs. The 



drawback of this, is the decreasing efficiency. The rise in effectiveness of the social 

correction is coupled with a decline in total costs efficiency. Since more and more 

allocation choices are determined by government policies, the market situation departs 

more and more from the most efficient allocation. If 90% of the aggregated manure 

surplus would fall under the processing obligation, the total costs for small farms would 

decrease with almost 12%. The cost the sector has to pay for this, is an increase of the net 

costs with almost 6%. 

 
Figure 5: Efficiency and effectiveness under different degrees of manure processing obligations 

5 Discussion and Conclusion 
Montgomery (1972) has already shown theoretically that a competitive market of a 

tradable concentration rights system ensures the minimization of total emission control 

costs subject to the constraint of attaining the predetermined environmental standard at 

each receptor. Stavins (Stavins, 1995) refined the statement by considering the fact that 

transaction costs shift the market equilibrium also in the case of emission permits. Stavins 

(Stavins, 1995) suggested that transaction costs impede the implementation of tradable 

concentration permit systems despite the theoretical advantages in pollution control.  

The research described in this paper use the well-known manure problem as an analogue 

to these tradable concentration permits and allows to describes transportation costs in the 

pricing. The case is token from the Flemish manure policy. The paper uses a multi agent 

simulation model on the administrative database of 36,000 firms active in the trade of 

manure concentration rights to simulate the cost and the effectiveness of emission policy 

alternatives. The model is a combination of mathematical programming models 

simulating the least cost disposition of the emissions of individual firms and a spatial 

equilibrium model to simulate the spatial price formation of the concentration rights. The 

reallocation costs of the emissions are also simulated as an important part of the 

transaction costs that the firms face in the context of tradable concentration rights.  

The simulations show that the CPT system outperforms the traditional tradable emission 

permit system in terms of reaching maximum environmental standards in the different 

locations in Flanders. This environmentally better performance comes at an emission 

reallocation cost for the emission producing firms. In Flemish manure case this accounts 

for 56 million euro which is about 5,828 Euro per firm with excess emissions. The 



conclusion is that a tradable concentration permits system is an adequate policy 

alternative for a case with following features: a low reallocation cost of the emission, a 

transparent distribution of the concentration rights and a market for concentration rights 

with many participants.  

In the case of manure, the emission is transportable to the location of the concentration 

rights. This gives the opportunity to more firms to participate in the market for the 

concentration rights resulting in a more competitive market. The regional submarkets 

face different prices but they are still linked by the emission reallocation costs. These 

findings allows for generalisation to concentration permit trading. The reallocation cost 

of the emission is an important reason why the system is not often used as a pollution 

control option. In the case of air or water toxins, where reallocation costs are very high, 

this means that rights can only be transferred to firms within a certain area and several 

small markets would exist (Atkinson and Tietenberg, 1987).  

The distribution of the concentration rights in the Flemish manure case is based on the 

usage of agricultural land. A number of concentration rights is assigned to each plot 

based on its size, its location and vulnerability to nitrate leaching. The cost of 

administration of these concentration rights is currently limited, because the agricultural 

land area per farmer has to be  administered anyway for the common agricultural policy 

direct payments. The main extra cost is the administration of the exchange of NARs 

between firms. 

An important topic for controversy are the different possibilities of transferability of the 

concentration rights (Tietenberg, 2003). Those who are in favour of free exchange of the 

permits argue that any restriction reduces the efficiency of the system (Tietenberg, 2003). 

Yet, others argue that intervention in the free market of rights is justifiable to prevent 

socially unacceptable outcomes such as destruction of community interest, degradation of 

the environment and concentration of rights. The last argument was the motivation of the 

Flemish government to intervene in the system of tradable concentration rights of 

manure. The policy has introduced an obligation to the largest firms to process a part of 

their emission to prevent them from dominating the concentration right market. Our 

analysis of the policy intervention confirms what has already been revealed in other 

studies: intervention increases overall emission abatement costs (Tietenberg, 2003; Van 

der Straeten et al., 2009a).  

The more the government intervenes, the higher the loss in efficiency is. Our model 

results also confirm that imposing obligatory manure processing on the larger farms 

protects the small family livestock farms against the competition for concentration rights 

from the large firms. Results show that the obligation to process has indeed a positive 

effect on the total costs of the small family livestock farms. A stronger intervention leads 

to a higher effectiveness of this policy be it at a certain overall cost for the sector. It is the 

task of policy makers to make a trade-off between efficiency and effectiveness. The 

stronger the intervention, the more the costs to meet the prescriptions are passed on from 

the small family livestock farms to the large livestock farms. 
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