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Abstract 
In Germany, since several decades the RAUMIS modelling system is applied for policy impact 
assessments to measure the impact of agriculture on the environment. A disaggregation at the 
municipality level with more than 9.600 administrative units, instead of currently used 316 
counties, would tremendously improve the environmental impact analysis. Two sets of data 
are used for this purpose. The first are geo-referenced data, that are, however, incomplete 
with respect its coverage of production activities in agriculture. The second set is the micro 
census statistic itself, that has a full coverage, but data protection rules (DPR) prohibit its 
straightforward use. The paper show how this bottleneck can be passed to obtain a reliable 
modelling data set at municipality level with a complete coverage of the agricultural sector in 
Germany. We successfully applied a Bayesian estimator, that uses prior information derived a 
cluster analysis based on the micro census and GIS information. Our test statistics of the 
estimation, calculated by the statistical office, comparing our estimates and the real protected 
data, reveals that the proposed approach adequately estimates most activities and can be 
used to fed the municipality layer in the RAUMIS modelling system for an extended policy 
analysis. 
 
Keywords: Highest Posterior Density estimator (HPD), RAUMIS, Down scaling 
 
JEL classification: C11, C61, C81, Q15.  

1. INTRODUCTION  

Frequently, the impact of agricultural activities on the environment can only be properly as-
sessed if the underlying distribution is well-covered. For instance, the likely impact of new 
pests such as the western corn rootworm (Diabrotica virgifera ssp. virgifera LeConte), which 
is relevant to the debate on bT-maize, depends on the share of maize in the crop rotation. 
Namely, if the share of maize exceeds 50%, western corn rootworm may have a serious 
impact (CARRASCO et al., 2009). If we analyse the cultivated area in 2007 at the county level 
which are 316 regions in Germany, the results indicate that the cultivation of maize in 
Germany should barely be affected by the rootworm (FDZ, 2010). However, if we conduct 
the same analysis on the municipality level, almost 13% of the maize cultivating areas would 
be affected by the rootworm. Thus, because agricultural land use and its dynamics are site-
dependent, the utilisation of wider regional averages to model specific situations can be 
misleading (e.g., OSTERBURG et al., 2009, p. 40 ff.).  
The agricultural and environmental modelling and information system RAUMIS 
(HENRICHSMEYER et al., 1996) is a mathematical programming, modelling and information 
platform used to cover Germany’s agricultural sector. RAUMIS is used to analyse agricultural 
and agri-environmental policy instruments and currently operates at the county level. Similar 
to economic models such as CAPRI (BRITZ and WITZKE, 2008), the RAUMIS model 
simulates an aggregate over all farms in a particular region. To overcome problems related to 
data aggregation, the underlying heterogeneity of farming patterns must be represented. Thus, 
several different approaches have been applied to disaggregate regional models. For example, 
a specifically tailored component in the CAPRI model has been used to disaggregate crop 
shares, stocking densities and fertilizer application rates from about 250 administrative 
regions across Europe into clusters of 1x1 km grid cells (LEIP et al., 2008) that are based on 
homogeneous spatial mapping units (KEMPEN et al., 2005). Other downscaling approaches of 
agricultural statistical data with the help of geographical and/or remote sensing data are 
presented by DENDONCKER et al., (2006), VERBURG et al. (2006), YOU and WOOD, (2006). 
However, the resulting resolution with respect to animal and crop categories is very limited 
and therefore less useful in modelling agricultural decision process. Also if the results are 
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spatially disaggregated into clusters of grid cells, the borders of the clusters do not necessarily 
coincide with administrative boundaries. Alternatively, a disaggregation of regional 
production levels into farming groups such as done by GOCHT and BRITZ (2010) is an option. 
However, this approach also has serious disadvantages because of the missing territorial 
representation which in turn does not allow spatially geo-referenced data to be linked, an 
important feature for regional models as RAUMIS.  
Alternatively and in the focus of this study, county data are disaggregated to the municipality 
level using Agricultural Census and GIS data. In contrast to gridding that distributes data 
published by statistical offices according to a rule set we develop an approach that is capable 
to exploit the geographic information in the Agricultural Census as far as possible. However, 
the public availability of high-resolution data (both regarding topological and / or geographic 
aspects) is limited by legal constraints. In particular, many production activities at the 
municipality level fall under the data protection regulation (DPR) and are not reportable 
because the number of observations is limited. Currently, the DPR is ensured by censoring 
data if they are derived from less than three observations or if a one or two observations 
dominate the result. A result is viewed as being dominated if a single observation contributes 
more than 80% to the aggregate (EUROSTAT, 2009). Furthermore, additional aggregates are 
censored to ensure that data censored in step one cannot be retrieved from the published data. 
As result, the likelihood that the data will be censored increases with increasing resolution. 
If we want to overcome this and disaggregate the county data for the RAUMIS model to the 
municipality level using Agricultural Census data we need a method to extract additional 
information from official statistical offices without violating DPR. In contrast to GOCHT and 
ROEDER (2010) who apply a method based on locally weighted averages and restricted their 
analysis to a specific region in Germany, we propose an algorithm that recovers local 
information with the help of the activities’ median at the municipality level German wide. 
These medians are calculated for clusters of similar municipalities. The aim of the present 
study is to develop an algorithm that is capable to depict the distribution of agricultural land 
use with the spatial resolution of municipalities. We evaluate the estimated results with 
respect to both relative intensities (i.e. shares in the crop rotation and stocking levels) and 
absolute values (i.e. ha or livestock units (LU)). To our knowledge no attempt has been made 
so far at this coverage and administrative resolution, which results in a public and not 
traceable dataset for policy impact assessment. 
The remainder of the paper is organized as follows. Section 2 highlights some key 
characteristics of the data. In Section 3, we describe the applied data manipulation algorithms 
and introduce the estimation framework. Lastly, Section 4 presents the results, and we 
conclude in a final section. 

2. METHODS  

The section starts with explaining the preparatory steps necessary to overcome inconsistent 
data definitions between the statistical data bases and the RAUMIS model definition, before 
we describe the estimation framework and we finalize introducing the test statistic used to 
evaluate our estimates. 
Figure 1 presenting the consecutive processing steps in order to facilitate the understanding of 
the data processing and handling. It distinguishes between two data processing environments. 
Processing at the Research data centre (FDZ) is done via sending data processing algorithm 
of standard statistical packages to the FDZ and because a researcher has never direct access to 
the micro data, one is forced to construct the processing algorithm virtually blind, knowing 
only the data structure and definition of the data. These conditions are rather uncomfortable 
because a validation whether a result is an observed trend or just a phenomena resulting from 
mapping or definition errors is difficult. Also the situation that economic simulation models 
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are rarely realized in a standard statistical package makes the direct processing in the FDZ 
environment very cumbersome, and often impossible for economic policy evaluation. 
However, the big advantage is to have the opportunity to use the high resolution micro data 
shown in Figure 1 with the AFiD-Panel Agriculture database, to derive indicators. The AFiD 
Panel Agriculture is derived from the Farm Structure Survey (FSS) and provides extensive 
information on the agricultural activities in a four year interval for all German farms. 
All routines to be processed at the FDZ will be checked and results leave the FDZ only when 
they are in compliance with the DPR, presented in Figure 1 as the dotted rectangle between 
the two processing environments. Figure 1 also shows the processing at office environment, 
which is the researcher's office. Here we can use the outcome of the FDZ, which is 
anonymous not traceable and in compliance with the DPR for further analysis and 
applications. In Figure 1 step 3 illustrates the setup of an estimation framework, in which we 
use GIS data together with the FDZ information to obtain a consistent municipality data set. 
We now explain step 1 until 3 in more detail: The data preparation in Step 1 comprise the 
usual preparatory data work, mainly harmonizing definitions. As we need for RAUMIS a 
consistent data set at municipality level for several years from 1999 onwards we had to adjust 
and map regional definitions. As example, municipalities merged, split or exchanged and 
hence significant amounts of land. After harmonizing we remained with 9,679 time consistent 
municipality units. We had to aggregate some statistical codes to be in line with our 36 
RAUMIS agricultural production activities. A complete list of the production activities can be 
found in GOCHT and RÖDER (2010). 
 

A) Consistent municipality data set

B) Data set with test statistics

1) Data preparation

4) Calculate 
test statistics

3) Estimate consistent 
municipality data set

Farm Structure Survey Microdata
(FDZ 1999, 2003, 2007)

GIS land use data
(BKG, 2008)

Control of Compliance with data protection regulations

Processing at FDZ

Processing at Office

2) Calculate 
Municipality clusters

Country aggregates for activities
(FDZ, 2010)

 
Figure 1: Information flow in the estimation procedure 
Source: Own elaboration 

As the DPR prevent a direct retrieval of RAUMIS production activities at municipality level, 
we developed in Step 2 a processing algorithm that complies with the DPR. We clustered the 
9,679 regional units into 180 clusters based on several indicators for general land use, arable 
land use and animal density given in Table 1. For the three groups we independently applied 
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the kMeans-algorithm (WITTEN and FRANK, 2005). The algorithm was sent to the FDZ and 
applied to the micro data. 

Table 1: Indicators obtained from each cluster 
Indicator group Unit Indicators 

General land use % of utilized agricultural area (UAA) 
Arable land, cereals, root crops, vegetables, main forage 
area, fruits, grassland, rough pastures 

Arable land use  % of arable land 

winter wheat, summer barley, rye, other winter cereals, 
other cereals, grain maize, rape seed, potatoes, sugar beet, 
green maize, other forage crops on arable land, other 
crops, set aside 

Livestock husbandry

 

Livestock units (LU) per ha of UAA 
Suckler cows, dairy cows, heifers, bulls, calves, sheep, 
horses, poultry, pig fattening, pig breeding 

Source: Own elaboration 

From the processing at FDZ we obtained for each cluster, and hence the municipalities 
belonging to it, a median and standard deviation of the respective indicators given in Table 1. 
In Step 3 we setup an estimation framework with the aim to estimate the municipality 
production structure of the 36 RAUMIS production activities. We setup the model per county. 
Hence aiming for a complete German wide coverage we had to solve 316 models. With each 
model we estimate the maximum 36 possible production activities for all municipalities. The 
number of municipalities per county range from 6 to 159 with a median of 25. In addition, the 
estimation algorithm uses GIS information on the extent of five land use types (utilized 
agricultural area (UAA), arable land, grassland, wine yards and orchards) and the agricultural 
production statistic at the country level, which is publicly available. 
The cluster median for each indicators is interpreted as a priori information in the Bayesian 
sense, whereas the data information consists of the given county production values, sum of 
production activities over the municipalities is equal to the county level, and the constraint 
that the estimated activity levels add up to observed land use type, observed in GIS data (see 
Gocht and Roeder, 2010). 
Our Bayesian Highest Posterior Density estimator (HPD) maximizes the log of the joint 
posterior density (see Heckelei et al., 2008), i.e. it searches for the most probable deviations 
from the cluster median fitting our data information on country activity level and the land 
type GIS information. Without knowledge about the exact distribution of the error terms in 
the clustered data, normally distributed errors with a co-variance of zero between the different 
medians and the obtained variance from FDZ are assumed. 
The constraints alone do not allow a unique solution to be identified as there are too many 
unknown vectors of estimated cropping hectares and livestock herd sizes, exceeding the 
number of data constraints from GIS and county level statistic. Therefore, prior information 
must be included in combination with a penalty function. Generalised maximum entropy 
(Golan et al., 1996) has frequently been applied to this end. However, we used the HPD 
estimation, which allows a direct and transparent formulation of prior information and 
reduces the computational complexity of the model (Heckelei et al., 2008). Subject to the 
constraints, the objective function, assuming a normal distributed error (Heckelei et al., 2008), 
is a loss function, which minimize the sum of the standardized proportional deviations 
between our prior expectation and the estimates: 

(1) 
( ) ( )∑∑ 
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where M are the municipalities in a county and A either the GIS land use types (UAA, arable 
land, ..) or the RAUMIS activities, se the estimated share, sp the respective prior information 
on median and σ obtained by the cluster algorithm (RAUMIS) or the GIS analysis (extent of 
land use types). Xp is a weight expressed as the expected level of the production activity in a 
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municipality. We standardize the difference between se and sp by σ to account for differences 
in the confidence we have in sp. Hence, the objective function minimizes the deviations 
between estimated and observed cropping shares, livestock densities, and composition of the 
municipalities stock. 
After we applied the estimation we obtained absolute and relative shares for all RAUMIS 
activities. In Step 4, we calculate test-statistics to verify our findings by comparing the 
estimates with the micro census data. This is possible using the real micro census data. Hence 
we had to use the virtually blind approach, sending the estimates together with the test 
statistic routine to the FDZ and could validate our results. We evaluated the distribution of the 
differences between estimated and observed cropping shares and livestock densities weighted 
with the respective local production level to assess the overall quality of the results. 
The following software was used for the analysis at the FDZ: SAS 9.1 for regression and 
cluster analysis and the Conopt3-solver in GAMS 23.5 for the Bayesian minimisation 
problem. 

3. RESULTS 

In section 3.1 we present the general fit of the prior data & constraints compared to our 
estimates for the 316 models. In section 3.2 we analyse the estimates compared to the real 
observations. This evaluation is possible because we could compare our estimates with the 
real data population at FDZ and calculate certain test statistics. We finalize with an analysis of 
the distribution and development over time of land use of maize in Germany to illustrate the 
potential of the obtained high resolution data at municipality level and to come back to our 
illustrative example from the introduction. 

3.1. Regional variation in the consistency of the prior information 

We start by investigating how consistent the different prior information (clusters based on the 
FSS and GIS) are in comparison to our obtained results. As aggregated indicator overall 
production activities and municipalities in a county we present the deviations according to 
formula (1) in Figure 2. The deviations are in relative terms low in Southern Germany, 
medium in the North and reach high values in the East. An explanation for these regional 
differences is the relation of farm size to municipality size. The FSS attributes the farm’s 
activities according to the situs principle to the municipality of the farm’s headquarter 
(farmstead). In contrast, the GIS data are attributed according to the location of the plot. This 
implies that the larger a farm is in relation to the municipality it is located in, the higher is the 
likelihood that some of the farm land or livestock herd, is located in reality, compared to the 
statistical data at FDZ, outside of the municipality. Therefore, we get a biased estimate from 
the cluster analysis. Figure 2 shows that this is particular the case in Eastern Germany. 
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Figure 2: Deviation from the prior value aggregated over all municipalities and activities for 

1999 
Source: FDZ, and own calculation. 

3.2. Error Distribution 

The indicator in Figure 2 does not provide us with quality measure for our estimates. To 
obtain this we need to compare the estimates with the true "observed" production activities at 
the municipality level. Although the DPR at FDZ prohibit a test statistic for individual data 
estimates, we can derive, sending our estimates and the test statistic to the FDZ, an aggregated 
test statistic including the error distribution. In order to avoid a bias by municipalities with no 
or only a very small stock, we weighted for each municipality the deviation between the 
observed and estimated stocking density with the respective observed stocking level. This test 
statistic is presented in Figure 3 for livestock husbandry. It shows that for the livestock 
activities the estimated livestock densities on municipality level match the observed ones very 
well. In general, more than 50% (the interval between the 25% and 75% quantile = blue box) 
of the respective total German stock is attributed with an error regarding the stocking density 
of well less than ±0.05 LU per ha. For most activities even 90% of the respective stock 
(Whiskers) are attributed with an error of roughly ±0.1 LU per ha. However, the proposed 
method is not capable to fully depict the high local intensities characterising pig and poultry 
production. Here, the interpolation associated with the use of cluster medians implies a large 
aggregation error. The Box Plot for the plant production activities is depicted in the Annex. 
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Figure 3: Boxplot of the deviations on municipality level for animal activities in 2007 
Description of the activities see Table 2; 
Box: 25% and 75% Quantile; Whiskers: 5% and 95% Quantile 
Source: FDZ, own calculation. 

The absolute levels of deviations between the observed and estimated levels are shown in 
Table 2 for 2007 for different quintiles. The error mean (50% quantile) locates near zero for 
all production activities. Our estimation hence fits the underlying population. Further, the 
table tells us that for example in ~4,200 of ~8,400 municipalities (between the 25% and 75% 
quantile) the stock of dairy cows (row four) is over(under)estimates by at most ~59(-67) LU. 
For the majority of cases (municipalities and activities) the error regarding the absolute level 
of the local stock lies between ± 20 LU. However, larger errors are not unlikely in particular 
for pigs, bulls, heifers and dairy cattle. At least for the cattle activities these larger errors 
occur predominantly in municipality with large stocks, therefore limiting the proportional 
error regarding the attributed stock. 

Table 2: Distribution of the absolute differences between the estimated and observed livestock 
at municipality level in 2007 (in LU) 

Avg. herd Quantile of the error distribution 
RAUMIS Description 

n° of 
munici-
palities 

size per 
municipality  5% 25% 50% 75% 95% 

CALV Calves  9074 66 -60 -9 0 10 48 

BULL Male cattle > 6 month; stock bulls 8972 138 -134 -15 3 28 136 

HEIT Heifers 9191 273 -198 -37 0 34 156 

DCOW Dairy cows 8382 486 -363 -67 2 59 263 

SCOW Suckler and fattening cows 8826 84 -138 -23 0 20 107 

SHGM Sheep 8476 24 -90 -7 1 9 47 

OANI Other livestock (horses) 8796 59 -101 -21 -2 15 78 

SOWS Sows for piglet production 7622 117 -166 -16 1 20 140 

PIGF Pig fattening 8614 250 -203 -18 1 20 154 

HENS Laying hens 8854 25 -41 -1 0 3 36 
POUF Poultry fattening (broiler, turkeys, etc.) 8480 34 -64 0 0 2 44 
Source: FDZ, own calculation. 

To finalize the analysis we compare for maize the estimation results at municipal level with 
an approach in which we assume that county aggregated shares, available from RAUMIS are 
a good estimate of our municipal shares. Figure 4 shows that although, in many areas in 
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Germany the county averages are a reasonable estimate for the municipality shares (e.g. 
Rhineland-Palatine, Hesse, Thuringia, and Saxony) the county averages underestimate 
drastically the relevance of maize in the Geest of Schlewig-Holstein and Lower Saxony, and 
in the foothills of the Alps, the Bavarian Forst and the Odenwald. Also the relevance of maize 
is overestimated for large parts of the Black forest, the marsh land of Lower Saxony and the 
north eastern part of Schleswig-Holstein. 

 
Figure 4: Difference between the estimated shares of maize on arable land for 2007 (estimated 

municipality shares – county averages) 
Source: Own estimation 

3.3. Development and cultivation of maize in Germany 

After we evaluated the quality of the estimates compared to the real population and for maize 
compared to a naive approach using equal municipality shares from the county, we will use 
the obtained results to analyse the distribution and development of maize shares in Germany 
at municipality levels, to gain more insight into possible phytosanitary problems. To our 
knowledge, such an exercise is done for Germany for the first time with such a resolution. 
Figure 5 depicts the estimated distribution on municipality level of maize (grain and green) in 
Germany for 2007. Despite the fact that maize was grown only on 16% of Germany’s arable 
land, maize covers more than 33% of the respective arable land in a couple of areas. One 
centre lies in north-western Germany between the Ruhrgebiet and Rhine in the south-west and 
the Elbe in the north-east. A second large hot spot is located in south-eastern Bavaria east of 
the Inn and between the Alps and the Bavarian Forest. Smaller areas with high shares of 
maize (beyond 33%) can be found in the Geest (Schleswig Holstein), the Upper Rhine valley 
(Baden-Württemberg), the foothills of the Allgäu (Baden-Württemberg and Bavaria) and the 
Sauerland (Northrhine-Westphalia). Maize reaches, hence, in several areas quite critical levels 
regarding phytosanitary issues when the distribution is analysed at municipality level. 
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Figure 4: Dynamic of estimated maize shares on arable land 2007 compared to 1999 
Source: Own estimation 

The area cultivated with maize expanded by 300,000 ha between 1999 and 2007 resulting in a 
moderate increase of maize’s share on total arable land from 13.3% to 15.9%. However, these 
aggregate figures cover a quite significant dynamic on the local level that we now are able to 
analyze with the outcome of the estimation. In large parts of North-Western Germany, in the 
Geest, and in the vicinity of mountain ranges (e.g. Eifel, Sauerland, and Alps) maize’s share 
on arable land increased by more than 10% points. The cultivation of maize declined in the 
north-western part of Northrhine Westphalia, the eastern part of Bavaria and the northern part 
of Baden-Württemberg. Till 2002 the cultivation of maize was strongly linked to arable 
forage cropping in particular dairy farming and bull fattening. This explains the high shares of 
maize in areas with high cattle densities (e.g. along the North Sea and in the foothill of the 
Alps). Grain maize including corn-cob mix was important in the Upper Rhine Valley, along 
the border between Northrhine-Westphalia and Lower Saxony and in south east of Bavaria. 
While the area of grain maize remained nearly constant over the last decade the area of green 
maize declined parallel to the declining cattle stock till 2002. From 2002 till 2007 the maize 
area expanded by more than 360,000 ha due to the promotion of biogas production based on 
silage maize (BMELV, various years). The described development is critical for two reasons. 
First, maize cultivation is expanded in areas where maize is already the dominant crop, 
increasing phytosanitary risks. Second, the cultivation of maize in mountain ranges induces a 
high risk of erosion, as in these areas the precipitation is high, the terrain is fairly undulated 
and maize is developing a protective vegetation cover late in the year. 

4. CONCLUSIONS AND OUTLOOK  

The proposed method of disaggregation, which combined the highest posterior density (HPD) 
and a cluster analysis improved land use estimates at the municipality level and complied with 
the data protection rules (DPR) at the FDZ. 
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The correlation between the observed and predicted values was analysed for the entire data set 
in German, and the results indicated that the proposed approach can adequately depict the 
spatial and density distribution of most RAUMIS activities while complying with the DPR. 
Not surprisingly the described procedure greatly improves the mapping quality for activities 
whose distribution shows are clear spatial pattern that does not coincidence with the county 
borders e.g. the distribution of rough pastures or the distribution of maize in Schleswig-
Holstein and Baden-Württemberg. If an activity is widespread and dominant the advantage of 
the estimated results versus a naive downscaling of the county shares is less clear. 
On the local level the described procedure generally reaches a high level of accuracy 
regarding relative indicators as stocking densities and cropping shares. However, the absolute 
reported values on this level must be interpreted with some caution. 
For most activities the described procedure generally covers well the intensity gradient 
present in Germany’s agriculture. There seem to be two main reasons why our estimated 
results deviate from the census data. First, we are deriving prior information and constraints 
from two databases (FSS and GIS) which are not consistent in its recording rules. The cluster 
prior information is derived from the sum of all farmsteads in a municipal (FSS) 
independently where the fields or herd sizes are located in reality. This is known as situs 
principle. In contrast, the GIS data are attributed according to the location of the plot. The 
treatment of this error is difficult, because it is part of the definition how to record the 
statistic. This error could be reduced by aggregating neighbouring municipalities based on 
their similarity as long as certain thresholds regarding minimum farm numbers and UAA are 
reached. The delimitation of appropriates rules has to be left for a further study. The second 
reason for deviation comes from the clustering algorithm and the moments derived for each 
production activity as prior. Due to the execution times of the estimation problem of several 
days on a grid cluster server it is not possible to extensively test different assumption as the 
normal error distribution for the prior information or the weighting of the error term. 
Statistical offices in Germany and the EU record each year a lot of data highly relevant for 
land use policy assessment. Strict data protection rules limit the use and the research 
community is often forced to smooth data which results in a reduced accuracy (increases the 
aggregation bias) and often complicates the analysis. We have shown that clustering together 
with Bayesian estimation applied to different data sources yield a robust estimate of the 
statistical data at municipality level for land use. Nevertheless it is weird to know that all the 
invested time and resources could have been saved if the data would be public. 
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Annex: 
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Figure 3: Boxplot of the deviations on municipality level for plant production activities in 

2007 
WWHE: Winter wheat, spelt; SWHE: Summer wheat, durum wheat; WBAR: Winter barley; SBAR: Summer barley; 
RYEM: Rye, and winter cereal mixes; OATS: Oats and summer cereal mixes; MAIZ: Grain maize (including CCM); 
OCER: Other cereals, triticale; RAPE: Rape and turnip rape; PULT: Pulses; INDC: Other oilseeds and industrial crops 
(hops, tobacco, etc.); POTA: Potatoes; SUGB: Sugar beet; ROOF: Other root crops (fodder beet, etc.); MAIF: Green and 
silage maize; OFAR: Grass on arable land (including all other fodder on arable land); MGRA: Meadow; PGRA: Pasture; 
HGRA: Rough pastures; SetA: Set aside; VEGE: Vegetables, strawberries; OCRP: Other plant production (flowers, 
nurseries, etc.); FRUT: Fruits (without strawberries); WINE: Wine 
Source: FDZ, own calculation. 


