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Risk-Risk Tradeoffs in Fish Consumption: Can You Have the Cake and Eat It Too? 
 

C.M. Rheinberger 1 and J.K. Hammitt 1,2 

 

Fish is commonly perceived as a healthy food. It is rich in proteins, vitamins A and D, selenium and 

iodine, and in long-chain n-3 polyunsaturated fatty acids (PUFAs). Over the past two decades, 

evidence for the preventive effects of PUFAs on the risks of coronary heart diseases (CHD) and 

strokes has grown [1-3]. PUFAs have even been found to enhance the neurodevelopment in fetuses 

and infants [4,5]. However, fish may also be contaminated with toxicants such as methylmercury 

(MeHg), polychlorinated biphenyls (PCBs), and dioxins. MeHg is well known to have detrimental 

effects on neurodevelopment [6,7] and may also promote the development of cardiovascular disease 

(CVD) [8,9]. PCBs and dioxins belong to the so-called endocrine disruptors, which are thought to 

inhibit the action of natural hormones, alter the normal regulatory function of the immune, nervous, 

and endocrine systems and may cause different forms of cancer [10]. 

In most aquatic systems these toxicants are present only in low concentrations, but may 

accumulate along the food chain and eventually reach potentially harmful concentrations in large 

predatory fish and marine mammals. In consequence, consumers have to make implicit risk-risk 

tradeoffs [11,12] when deciding whether, how much and which fish to eat. Generally speaking, 

consumers cannot increase their intake of PUFAs without increasing their risk of contamination. Yet, a 

smart species selection strategy may allow keeping the intake of contaminants at a safe level while still 

benefiting from the positive nutritional effects of fish. In 2001, the U.S. Food and Drug 

Administration (USFDA) launched a mercury advisory that informed consumers about the potential 

harms of fish consumption and instructed households with pregnant women and young children to eat 

no more than 12 ounces (340g) of fish a week and to avoid certain species with high mercury 

concentrations. 

While this advisory had some effects on fish consumption, it is unclear whether the campaign 

impaired rather than improved public health because many consumers not belonging to the target 

group of the advisory reduced their consumption as well [13]. In this paper, we aim to shed light on 

how consumption behavior would have to alter in order to have the most beneficial effects on public 

health. We pursue a damage function approach that analyzes how changes in current consumption 

would affect public health in the U.S. population. In particular, we assess a number of alternative 

consumption scenarios (in this paper we will focus on two) and their effects on public health due to 

reductions or increases in the population’s intake of MeHg and PUFAs using Monte Carlo 

simulations. We then monetize these health effects relying on benefit transfer functions to value 

changes in mortality, morbidity, and productivity. 

                                                            
1 Toulouse School of Economics (LERNA-INRA); Email: crheinbe@univ-tlse1.fr 
2 Harvard University (Center for Risk Analysis); Email: jkh@harvard.edu 
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Building on previous research on the physical benefits of reducing MeHg exposure [14,15], and 

the economic value of those physical benefits [16,17], we provide an integrated assessment of the risk-

risk tradeoffs inherent to fish consumption behavior of the U.S. population. In contrast to previous 

studies for the U.S. population [18] and for a population of frequent fish consumers in France [19], we 

express health outcomes in terms of money rather than in terms of QALYs as this may convey more 

information to consumers about the options they face [20]. In the next section, we describe the 

methods and data sources used for the physical impact modeling and the economic valuation of the 

relevant health endpoints. We then present preliminary results considering only effects of MeHg and 

PUFAs, but ignoring effects associated with PCBs and dioxins for the time being. We close with some 

remarks on the sensitivity of the observed health effects toward modeling assumptions and discuss the 

feasibility and desirability of the studied scenarios. 

 

Methods and Data 

Health effects of fish consumption are modeled as “the product of exposure to the active agent (µg/day 

of MeHg, mg/day of PUFA), and the dose–response relationship for that agent (incremental risk per 

µg/day of MeHg, reduction in risk per mg/day of PUFA)” [18:326]. Below, we first describe the 

consumption scenarios analyzed. We then outline the quantification of the impact of changes in fish 

consumption on MeHg and PUFA intake and describe the dose–response relationships between 

MeHg, PUFA, and different health endpoints. 

Alternative consumption scenarios. In this paper, we limit the analysis to two scenarios that are 

of health policy relevance: (1) perfect compliance with the USFDA advisory, i.e. women younger than 

45 years eat no more than 340g fish/week and no high mercury fish; everyone else does not change 

their consumption habits; (2) undesirable side effects of the advisory on the amount of fish consumed, 

i.e. while the target group adheres to the advisory, other consumers reduce their fish consumption as 

well, say by up to 20%. Overreaction of consumers to warnings is well-known and–as empirical 

evidence suggests [13]–may countermine the intended reduction in health risks.  

Fish consumption model. We extend the fish consumption model developed by Carrington et al. 

[14,15] to quantify the impact of changes in fish consumption behavior on MeHg and PUFA intake. 

The model draws on food survey data from the 2007-08 U.S. National Health and Nutrition 

Examination Survey, NHANES [21], to estimate consumption rates for some 40 types of fish covering 

more than 95% of the U.S. seafood market supply. (NHANES contains choices over 26 types of fish 

and aggregates other types into two broad categories, other fish and other shellfish). Carrington et al. 

[14,15] developed frequency distributions for MeHg concentrations in fish based on USFDA 

surveillance data [22] and information from the National Marine Fisheries Service [23]. We used an 

updated version of these data as well as data from the USDA [24] and a meta-database of nutrients in 

fish [25] to construct frequency distributions of MeHg (in µg/g fresh weight) and PUFA (in mg/g fresh 

weight) concentrations [Table 1].  
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These PUFA and MeHg concentration distributions served as input into a Monte Carlo 

simulation of the market basket available to U.S. consumers. We took 10,000 draws from the 

concentration distributions for each fish species and multiplied them by observed patterns of 

consumption by fish type that we sampled randomly from the NHANES consumer survey. This way, 

we capture both the selection frequency of each type of fish and correlations among fish types 

consumed. We assumed a triangular distribution function to account for variations in serving size, 

implying average serving sizes of fish ranging from 10g to 200g with a mode of 50g per meal [26]. By 

summing up over types of fish, we obtained the monthly MeHg and PUFA intake from fish 

consumption of each of the 10,000 stylist consumers. 

Health effects valuation model. This model quantifies the welfare implications, W, of the health 

endpoints expected from changes in fish consumption behavior. These health effects can be broadly 

summarized as the net present value of changes in neurotoxicity, VN, and the net present value of 

changes in cardiovascular events, VC, including fatal and nonfatal heart attacks and strokes. For each 

of the consumption scenarios including the baseline, we estimate the present value of the discounted 

streams of health effects generated by reduction, increase or selection of fish consumption.  

Both neurotoxicity and cardiovascular effects are multifaceted, and interdependences between 

PUFA and MeHg intake may confound the impact analysis. In line with earlier research [14,16,18], 

we use proxies to quantify the most dominant consequences. For neurotoxicity, we focus on unborn 

children as few infants eat fish in amounts sufficiently large to be harmful. Information on the 

relationship between maternal PUFA intake during pregnancy and cognitive development in the fetus 

is limited [5]. Following Cohen et al. [18], we assume that the PUFA to IQ point relationships 

observed in toddlers can be used to approximate the cognitive benefits of maternal PUFA intake on 

neurodevelopment. We estimate the present value of future earnings expected from IQ increases 

(decreases) in an annual birth cohort as: 

,ΔN BEV   (1) 

where ΔE denotes the expected gain (loss) in the present value of lifetime earnings L per IQ point 

gained (lost) and B is the annual number of births in the population. Since IQ changes in this context 

are rather small, the dose–response relationships between a child’s future earnings, IQ, and maternal 

intake of PUFA (ΔP), docosahexaenoic acid (ΔPDHA), hair MeHg (ΔMH), blood MeHg (ΔMB), and 

MeHg (ΔM) are assumed to be linear with slope parameters η, ι, θ, γ, λ, and , respectively: 

,ΔβΔ;ΔλΔ;ΔθΔ;ΔιΔγΔ;ΔηΔ BBHDHAH MMMMPPPMIQIQLE   

and upon inserting into Eq.(1): .)ΔθιΔβλγ(ηN BPMLV   (2) 

We assume that cardiovascular deaths are prevalent only among individuals aged 40 years or 

more. The change in CVD death risk is denoted by ΔDG (deaths/year among individuals of gender G) 

and the change in nonfatal heart attacks and strokes by ΔHG (cases/year among individuals of gender 
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G). The economic value of reducing (increasing) fatal and nonfatal consequences of fish consumption 

on cardiovascular health is measured in monetary terms as: 

  
τ

0 G GGGC .dτρτ)exp()ΔΔ( HVHANVSLNV  (3) 

Eq.(3) draws on the value of statistical life [27], VSL ($/death), and the value per avoided nonfatal 

heart attack [28], VHA ($/case), to value changes in CVD death risk and in the risk of nonfatal heart 

attacks and strokes. Further, we assume that consumption behavior today affects CVD health only in 

the future. To motivate this assumption, we refer to studies in ex-smokers suggesting that their risk of 

heart attacks declines to those of never smokers between two and ten years after quitting smoking 

[29,30]. Similarly, the risk of heart attacks to new smokers does not rise instantaneously. In Eq. (3), 

we consider this lag effect, τ (in years), expressing the time until changes in MeHg and PUFA intake 

have an impact on the risk of heart attacks. Since the length of this lag is inherently uncertain, we 

allow τ to randomly vary over the cohort and discount the monetized effects at a rate of ρ = 3%. 

Changes either in CVD death risk, ΔDG, or in the risk of nonfatal CVD incidents, ΔHG, are 

predicted using a relative risk model: 

ΔDG = DG·[ω·(1 – exp(–·µ·ΔMH) – (1 – exp(–ζ· ΔP)] and 

ΔHG = HG· ω· [(1 – exp(–· (1 – µ)·ΔMH) – (1 – exp(–ξ· ΔP)], (4) 

where DG and HG are the current numbers of fatal and nonfatal heart attacks in individuals of gender 

G, aged 40 years and older (Rice et al. [16] emphasize that current heart attack risk reflects an 

unobservable baseline combined with the impact of current MeHg exposure levels); µ represents the 

fraction of heart attacks that are fatal; , ζ, and ξ represent the hair mercury to heart attack relationship 

(fractional change in risk per μg Hg/g hair) and the PUFA to fatal (ζ) and nonfatal (ξ) heart attack 

relationship (fractional change in risk per mg PUFA), respectively; ΔMH and ΔP denote changes in the 

hair mercury concentration and the PUFA intake as studied in a specific consumption scenario. We 

include a causality parameter, ω, reflecting the limited evidence on a causal association between hair 

mercury level and total heart attack risk [16] and between PUFA intake and nonfatal heart attacks [3]. 

Specification of relationships. In Table 2, we provide probabilistic characterizations of the 

parameters that go into the health effects valuation model. Due to the limited space, we do not give a 

full justification for the characterization of every parameter but focus on some important features of 

the model. The reader is referred to [16] for a detailed account of the assumptions underlying the 

MeHg effects modeling and to [31] for a discussion of the PUFA effects modeling. 

The probabilistic characterizations of the MeHg intake to blood parameter,  (μg MeHg/L blood 

per μg MeHg/day) and the blood to hair mercury parameter, λ (μg Hg/g hair per μg MeHg/L blood), 

are aggregate population parameters reflecting changes in the equilibrium hair and blood mercury 

concentrations that would result from changes in the daily MeHg intake. These parameters have been 

extensively analyzed in toxicokinetic studies and are therefore known with relative certainty. 
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The hair mercury to IQ parameter, γ (IQ points per μg MeHg/g maternal hair), reflects changes 

in IQ points in children (as measured by a battery of neurodevelopment tests) that would result from a 

unit change in maternal hair mercury concentrations during pregnancy. One important point with the 

available dose–response functions [6,7] is that they are likely confounded with the beneficial effects of 

the fatty acids in fish. Therefore, Rice et al. [15] propose to adjust the values found in the literature by 

multiplying the central estimates (γ = 0.18 in [5] and γ = 0.20 in [6]) by a factor of 1.5 to offset the 

likely downward bias from inadequate confounder control. Support for the size of this adjustment is 

provided by Budtz-Jørgensen et al. [32], who used structural equation modeling to quantify 

confounding effects of fish intake on the size of effects of MeHg. 

There is less, albeit some, uncertainty about the size of the PUFA to IQ parameter, ι (IQ points 

per 100 mg DHA maternal intake/day). A recent meta-analysis [5] of eight randomized controlled 

trials on cognitive development in children who had received PUFA supplementation suggests that 

one specific n3-fatty acid, docosahexaenoic acid (DHA), has significant beneficial impact on 

neurodevelopment, and that daily intake of 100 mg DHA is expected to increase IQ by 0.13 points. 

The IQ to earnings parameter, η (Percentage change in $ per IQ point), seeks to express the 

monetary benefit of a permanent one point IQ increase in a typical child. We draw on values proposed 

by Heckman et al. [33] to estimate the impact of a marginal change in IQ on lifetime earnings L. 

To date, scientific evidence on a causal relationship between MeHg exposure and fatal 

cardiovascular risks is mixed. Rice et al. [15] reviewed four epidemiological studies that control for 

confounding effects of PUFA on the risk of heart attacks. They concluded that the strength of the 

alleged association found in two of the four studies is modest and that the design of these studies does 

not permit strong evidence on the causality between MeHg exposure and CVD risk. They propose a 

plausibility parameter, ω, to quantify the belief of a causal relationship between increased MeHg 

exposure and the risk of heart attacks. Based on their assessment of the epidemiological evidence they 

assign a subjective probability of 1/3 that the epidemiological associations are causal (i.e., ω = 1) and 

2/3 that they are not (i.e., ω = 0). Since a new study [9] supports the notion that increased MeHg 

exposure promotes CVD risk, we assign a subjective probability of 1/2 to the event that the 

epidemiological associations are causal. 

Hair mercury to heart attack risk parameter,  (fractional increase in risk per μg Hg/g hair), 

reflects the relative reduction in the risk of heart attacks. The parameter is based on an epidemiologic 

study [34] in which confounding effects of fish consumption (i.e. PUFA intake) were limited. Since 

this study associated MeHg with increases in the risk of both fatal and nonfatal heart attacks, we adjust 

 by the heart attack mortality rate, μ (ratio of fatal to all heart attacks). In contrast, studies of the 

preventive effects of PUFAs on cardiovascular health have focused on CVD death [3,19] and nonfatal 

incidents [2,18]. Recognizing this, we define two separate parameters, the PUFA to fatal heart attack 

risk parameter, ζ (fractional decrease in fatal risk per mg PUFA intake/day), and the PUFA to nonfatal 
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heart attack risk parameter, ξ (fractional decrease in fatal risk per mg PUFA intake/day), for which we 

assume that a maximal risk reduction of 25% can be obtained by consuming 250 mg PUFA/day [2].  

The lag effect in risk reduction or increase, τ (in years), is inherently uncertain because the 

mode of action for MeHg-associated heart attacks is not well-understood. We follow Rice et al. [15] 

and take studies in ex-smokers as a surrogate measure, which report the heart attack risk to decline to 

levels of never smokers between 2 and 10 years after quitting smoking. 

Assumptions on benefit transfer variables. Kochi et al. [35] provide a recent meta-analysis using 

a Bayes pooling method to combine 197 VSL estimates from 40 selected studies. Their estimated 

composite distribution of Bayes adjusted VSL has a mean of $5.4 million and a standard deviation of 

$2.4 million. We approximate this distribution by a normal distribution truncated at zero. The value of 

nonfatal heart attacks is taken from EPA’s clean air assessment [28], which quantifies the cost-of-

illness to be in a range of $90,000 to $170,000 per of a nonfatal heart attack avoided. The valuation of 

(permanent) changes in IQ is based on an estimate of $2.45 million for undiscounted lifetime earnings 

[36]. Assuming a working lifetime of 45 years and a constant discounting rate of ρ = 3%, we pegged 

the net present value of lifetime earnings L at $0.73 million. Further details of the distributional 

assumptions on the benefit transfer variables are given in Table 2. 

Simulation. The simulation is based on a routine written in R (and is available upon request). 

Each simulation comprises 10,000 random draws and is repeated 500 times. Sensitivity analyses are 

based on Pearson’s rank correlation measure, which allows identifying model uncertainties and on 

variations in selected input parameters to derive upper and lower bounds on our main results. 

 

Results 

We present the simulated distribution of the per capita health effects (in $/person) due to changes in 

fish consumption in Table 3, assuming that 25% of the population do not eat fish at all [21]. Under the 

perfect compliance scenario (column 2), the mean present per capita value of these health effects is 

only $0.22/person ($68 million across the population). The simulated distribution is weighted by 

observed consumption behavior from the NHANES survey [21] and suggests that a good part (63%) 

of female consumers between 16 and 45 years are already consuming fish in good compliance with the 

mercury advisory. Thus, in the simulation they do not change their consumption behavior. (We note 

that, since we use NHANES data from 2007-08, the advisory likely had an effect on consumption 

behavior and cannot be used to estimate the health economic value of the advisory per se).  

In accordance with the NHANES data, 37% of the consumers are simulated to change their 

intake of fish so that they comply with the advisory. Some 34% of the consumers would benefit from a 

reduction in the amount of fish they currently eat or from turning away from certain high mercury fish. 

Since some high mercury fish are also rich in PUFAs, there are also a small number of simulated 

consumers (3%) who might risk a net harm to their unborn child when seeking to comply with the 

advisory. 
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In columns 3-5 of Table 3, we provide simulated distribution for the undesirable side effects 

scenario assuming that reductions in fish consumption by non-target individuals are in the order of 

5%, 10%, and 20%. The results confirm that net losses in public health due to an overreaction to the 

mercury advisory by non-target individuals may be large. We estimate that across the population the 

expected loss of such an over-compliance may sum up to $2,986 - $12,048 million, depending on how 

much fish consumption is reduced. The distribution of health effects across the simulated cohort 

suggests that 7-9% of the consumers would obtain a net health benefit from reducing their intake of 

fish. The vast majority of consumers, however, would be harmed by altering their consumption 

behavior as this would increase the relative risk to suffer a heart attack in the given year by 0.77% on 

average. In other words, one would expect some 2,900 more CVD deaths across the U.S. population.  

Sensitivity analysis. Table 4 displays Pearson’s rank correlations (R) between each independent 

variable and the monetized neurodevelopmental health effects (column 2) and the total health effects 

(column 3-5). Notably, we find that the model is robust with respect to the uncertainty in the 

toxicokinetic input parameters and in the benefit transfer values (R < 0.01). This is clearly different 

from the model presented in Rice et al. [16], wherein the authors assume an exogenous, uniform drop 

in MeHg intake.  

Once one allows for endogenous changes in MeHg and PUFA intake, as we do by using 

NHANES consumption data, individual consumption behavior becomes the most important driver of 

health effects. In scenario (2), we assumed a drop in fish consumption expressed on a percentage basis. 

So the more fish a consumer used to eat, the larger was her reduction in MeHg and in PUFAs after 

taking notice of the advisory. This explains the large negative correlation between the average amount 

of fish eaten per day, Q, and the total monetized health effects (R < –0.47). (Note that in scenario (1), 

we do not assume a percentage change in fish consumption and thus this correlation is much weaker). 

As required, total health effects are sensitive to reductions in PUFAs (R < –0.55) and MeHg (R > 

0.15). The signs of these correlation coefficients state that the larger the reduction in MeHg intake, 

ΔM, the smaller will be the monetized net health loss; vice versa, the larger the reduction in PUFA 

intake, ΔP, the larger will be the monetized net health loss. 

  

Discussion 

The analysis presented above perfectly illustrates the risk-risk tradeoffs that consumers inevitably face 

in many food decisions. It is difficult, if not impossible, to eliminate the risks of contamination via 

food without increasing other health risks that may be even more harmful. Our estimates of the health 

effects resulting from different (over-)reactions to the USFDA mercury advisory encompass a broad 

range of individual outcomes depending on which and how much fish people eat. We have shown that 

reductions in fish consumption would cause net health losses to the largest part of the studied 

population.  
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The net loss results from the inclusion of cardiovascular effects of MeHg exposure and PUFA 

intake since, in line with earlier research on fish consumption [18,19], we find that the societal value 

of the expected effects on cardiovascular health are likely to dwarf those associated with 

neurodevelopmental health. Excluding these effects, our estimates suggest a small but positive net 

effect on neurodevelopmental health. The largest uncertainty in our estimates is due to the variability 

in fish consumption, and the necessary impact this variability has on the individual intake of MeHg 

and PUFA if one assumes a percentage reduction in consumption by non-target consumers.  

While over-compliance does not seem to be an obvious reaction, a recent study by Shimshack 

and Ward [13] suggests that exactly this happened in response to the USFDA mercury advisory issued 

in 2001. The recognition that a well-intended consumer information campaign may have bad outcomes 

on public health is of large policy relevance. Indeed, John Q. Public faces a large variety of fish 

consumption advice from different sources expressing diverse concerns over toxicological, nutritional, 

economic, and ecological aspects and it is unclear how he evaluates this information in consumption 

decisions. We conclude that, given the potentially large unintended health effects, it is all the more 

important to carefully craft advisories in order to inform consumers about potential health risks 

without urging them into an avoidance behavior that is ultimately damaging. 
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[Table 1] MeHg and PUFA concentrations in common fish species. 
Fish 
 

Market share  
(in %) 

FDA advisory group 
 

Mean MeHg  
(in μg/g) 

MeHg distributional assumptions a

 
MeHg data source 
 

Mean PUFA  
(in g/100g) 

PUFA distributional assumptions a

 
PUFA data source 
 

Anchovies 0.50 Low 0.043 Approximated (α = 0.229, κ = 0.188) [23] 1.45 Fitted (α = 6.245, κ = 0.250) [25] 
Bass 0.61 Medium 0.219 Fitted (α = 1.379, κ = 0.215) [22] 0.60 Approximated (α = 4.654, κ = 0.128) [24] 
Bluefish 0.09 Medium 0.337 Fitted (α = 7.207, κ = 0.047) [22] 0.77 Approximated (α = 6.023, κ = 0.128) [24] 
Butterfish 0.10 Low 0.058 Approximated (α = 0.309, κ = 0.188) [23] 0.59 Approximated (α = 4.615, κ = 0.128) [24] 
Catfish 4.80 Low 0.049 Approximated (α = 0.261, κ = 0.188) [22] 0.22 Approximated (α = 1.713, κ = 0.128) [24] 
Clams 1.70 Low 0.017 Approximated (α = 0. 091, κ = 0.188) [22] 0.11 Approximated (α = 0. 837, κ = 0.128) [24] 
Cod 4.71 Medium 0.095 Approximated (α = 0. 506, κ = 0.188) [22] 0.28 Fitted (α = 9.426, κ = 0.029) [25] 
Crab 4.70 Low 0.062 Fitted (α = 0.587, κ = 0.106) [22] 0.31 Approximated (α = 2.425, κ = 0.128) [24] 
Crawfish 0.60 Low 0.033 Approximated (α = 0.176, κ = 0.188) [22] 0.17 Approximated (α = 1.330, κ = 0.128) [24] 
Croaker, Atlantic and Pacific 0.30 Medium 0.180 Approximated (α = 0.959, κ = 0.188) [22] 0.22 Approximated (α = 1.721, κ = 0.128) [24] 
Flatfish 3.60 Low 0.045 Approximated (α = 0.240, κ = 0.188) [22] 0.25 Fitted (α = 1.962, κ = 0.132) [25] 
Grouper 0.17 Medium 0.465 Approximated (α = 2.477, κ = 0.188) [22] 0.25 Approximated (α = 1.956, κ = 0.128) [24] 
Haddock and Hake 2.47 Low 0.031 Approximated (α = 0.165, κ = 0.188) [22] 0.13 Approximated (α = 1.017, κ = 0.128) [24] 
Halibut 0.90 Medium 0.252 Approximated (α = 1.342, κ = 0.188) [22] 0.19 Approximated (α = 1.518, κ = 0.128) [24] 
Herring 2.50 Low 0.044 Approximated (α = 0.234, κ = 0.188) [23] 1.61 Fitted (α = 6.245, κ = 0.250) [25] 
Lobster 2.11 Medium 0.273 Approximated (α = 1.451, κ = 0.188) [22] 0.27 Approximated (α = 2.112, κ = 0.128) [24] 
Mackerel, King 0.05 High 0.730 Approximated (α = 3.888, κ = 0.188) [23] 0.31 Approximated (α = 2.448, κ = 0.128) [24] 
Mackerel, Atlantic 0.20 Low 0.050 Approximated (α = 0.266, κ = 0.188) [23] 2.30 Approximated (α = 17.992, κ = 0.128) [24] 
Mackerel, Chub 0.00 Low 0.088 Approximated (α = 0.469, κ = 0.188) [23] 1.44 Approximated (α = 11.265, κ = 0.128) [24] 
Mackerel, Spanish 0.05 Medium 0.347 Approximated (α = 1.848, κ = 0.188) [23] 1.34 Approximated (α = 10.482, κ = 0.128) [24] 
Monkfish 1.65 Medium 0.180 Approximated (α = 0.959, κ = 0.188) [23] 0.61 Approximated (α = 4.772, κ = 0.128) [24] 
Mullet 0.20 Low 0.046 Approximated (α = 0.245, κ = 0.188) [23] 0.33 Approximated (α = 2.581, κ = 0.128) [24] 
Oysters and Mussels 0.90 Low 0.013 Approximated (α = 0.069, κ = 0.188) [22] 0.46 Approximated (α = 3.598, κ = 0.128) [24] 
Perch, freshwater 0.04 Medium 0.140 Approximated (α = 0.746, κ = 0.188) [22] 0.25 Approximated (α = 1.979, κ = 0.128) [24] 
Pike 0.10 Low 0.31 Approximated (α = 1.651, κ = 0.188) [22] 0.10 Approximated (α = 0.814, κ = 0.128) [24] 
Pollock 11.05 Low 0.041 Fitted (α = 0.506, κ = 0.087) [22] 0.42 Approximated (α = 3.293, κ = 0.128) [24] 
Redfish 0.49 Low 0.010 Approximated (α = 0.053, κ = 0.188) [22] 0.21 Approximated (α = 1.643, κ = 0.128) [24] 
Roughy 0.20 Medium 0.554 Approximated (α = 2.951, κ = 0.188) [22] 0.02 Approximated (α = 0.149, κ = 0.128) [24] 
Sablefish 0.25 Medium 0.220 Approximated (α = 1.172, κ = 0.188) [23] 1.40 Approximated (α = 10.913, κ = 0.128) [24] 
Salmon 8.24 Low 0.019 Fitted (α = 0.676, κ = 0.028) [22] 1.35 Fitted (α = 4.734, κ = 0.285) [25] 
Sardine 1.20 Low 0.016 Approximated (α = 0.085, κ = 0.188) [22] 0.98 Approximated (α = 7.666, κ = 0.128) [24] 
Scallop 0.80 Low 0.050 Approximated (α = 0.266, κ = 0.188) [23] 0.10 Approximated (α = 0.806, κ = 0.128) [24] 
Shad 0.06 Low 0.065 Approximated (α = 0.346, κ = 0.188) [23] 2.47 Fitted (α = 6.245, κ = 0.250) [25] 
Shark 0.13 High 0.988 Fitted (α = 2.451, κ = 0.403) [22] 0.84 Approximated (α = 6.594, κ = 0.128) [24] 
Shrimp 15.14 Low 0.012 Approximated (α = 0.064, κ = 0.188) [22] 0.06 Approximated (α = 0.477, κ = 0.128) [24] 
Snapper 0.50 Medium 0.189 Approximated (α = 1.007, κ = 0.188) [22] 0.31 Approximated (α = 2.433, κ = 0.128) [24] 
Squid 1.03 Low 0.070 Approximated (α = 0.373, κ = 0.188) [23] 0.49 Approximated (α = 3.817, κ = 0.128) [24] 
Swordfish 0.42 High 0.976 Fitted (α = 3.610, κ = 0.271) [22] 0.75 Approximated (α = 5.898, κ = 0.128) [24] 
Tilapia 1.87 Low 0.010 Approximated (α = 0.053, κ = 0.188) [22] 0.09 Approximated (α = 0.712, κ = 0.128) [24] 
Tilefish, Gulf of Mexico 0.01 High 1.450 Approximated (α = 7.723, κ = 0.188) [23] 0.43 Approximated (α = 3.364, κ = 0.128) [24] 
Tilefish, Atlantic 0.03 Low 0.144 Approximated (α = 0.767, κ = 0.188) [22] 0.43 Approximated (α = 3.364, κ = 0.128) [24] 
Trout, freshwater 0.69 Low 0.072 Approximated (α = 0. 383, κ = 0.188) [22] 0.73 Approximated (α = 5.710, κ = 0.128) [24] 
Tuna, light canned 13.35 Low 0.118 Fitted (α = 1.611, κ = 0.073) [22] 0.20 Approximated (α = 1.565, κ = 0.128) [24] 
Tuna, albacore canned 5.29 Medium 0.353 Fitted (α = 5.782, κ = 0.061) [22] 0.55 Approximated (α = 4.302, κ = 0.128) [24] 
Tuna (fresh/frozen) 1.79 Medium 0.383 Fitted (α = 1.170, κ = 0.300) [22] 0.51 Approximated (α = 3.990, κ = 0.128) [24] 
Weakfish (seatrout) 0.06 Medium 0.256 Approximated (α = 1.363, κ = 0.188) [22] 0.37 Approximated (α = 2.910, κ = 0.128) [24] 
Whitefish 0.22 Low 0.069 Approximated (α = 0.367, κ = 0.188) [22] 1.26 Approximated (α = 9.841, κ = 0.128) [24] 
Whiting 0.41 Low 0.010 Approximated (α = 0.053, κ = 0.188) [22] 0.22 Approximated (α = 1.752, κ = 0.128) [24] 
a α = shape parameter, κ = scale parameter of the Gamma distribution. 
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[Table 2] Parameters used in the health effects valuation model.  
Symbol Definition Units Distributional specification Central tendency Variability a Source 

 IQ to earnings parameter Percentage change in $ per IQ point Triangular distributed Mode = 0.08 Min = 0.6, Max = 1.2 [33] 

 Blood to hair mercury parameter μg Hg/g hair per μg MeHg/L blood Lognormal distributed Median = 0.21 GSD = 1.85 [16] 

 Hair mercury to IQ parameter IQ points per μg MeHg/g maternal hair Lognormal distributed Median = 0.3 GSD = 3 [16] 

 MeHg intake to blood parameter μg MeHg/L blood per μg MeHg/day Normal distributed Mean = 0.6 SD = 0.09 [16] 

ι PUFA to IQ parameter IQ points per 100 mg DHA maternal intake/day Normal distributed Mean = 0.0013 SD = 0.00025 [5] 

θ Average fraction of DHA on PUFA in fish Percent Discrete value 0.617 - [24] 

ξ PUFA to nonfatal heart attack risk parameter Fractional decrease in fatal risk per mg PUFA intake/day Triangular distributed Mode = 0.00115 Min = 0.00099, Max = 0.00137 [2] 

ζ PUFA to fatal heart attack risk parameter Fractional decrease in fatal risk per mg PUFA intake/day Triangular distributed Mode = 0.00102 Min = 0.0006, Max = 0.0012 [19] 

 Hair mercury to heart attack risk parameter Fractional increase in risk per μg Hg/g hair Triangular distributed Mode = 0.066 Min = 0, Max = 0.17 [16] 

μ Heart attack mortality rate Ratio of fatal to all heart attacks Discrete value 0.339  [37] 

τ Lag effect in risk reduction or increase Years Uniformly distributed Mean = 6 Min = 2, Max = 10 [16] 

ω Plausibility of CVD causality parameter Dimensionless Bernoulli distributed Mean = 0.5 SD = 0.5 [16] 

ρ Discount rate Percent Discrete value 0.03  [16] 

B Births in the U.S. in year 2009 Number per year Discrete value 4,131,019 - [38] 

DG Number of fatal heart attacks within  
100,000 individuals of gender G 

Number per year Discrete value 225 in females and 
320 in males 

- [37] 

HG Number of nonfatal heart attacks within  
100,000 individuals of gender G 

Number per year Discrete value 665 in females and 
945 in males 

- [37] 

L Discounted lifetime earnings $ per average lifetime Discrete value 879,266 (in 2009$) - [36] 

M MeHg intake per day μg/day  Simulated value Mean = 1.58 SD = 2.61 [Table 1] 

NG Population older than 40 years Number Discrete value 73,858,958 females and  
66,082,669 males 

 [39] 

Q Fish intake per day g/day Triangular distributed, weighted by 
NHANES consumption choices 

Mean under Scenario (1) = 14.50 
Mean under Scenario (2) = 16.24 

SD = 18.11 
SD = 21.59 

[21,26] 

P PUFA intake per day mg/day Simulated value Mean = 59.76 SD = 95.25 [Table 1] 

VHA Value of avoided heart attack Million $ per nonfatal heart attack avoided Triangular distributed Mode = 0.12 Min = 0.09, Max =0.17 [28] 
 

VSL Value of statistical life Million $ per fatal heart attack avoided Triangular distributed Mode = 5.5 Min = 1, Max = 10 [35] 

a SD = standard deviation; GSD geometric standard deviation. 
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[Table 3] Simulated distribution of per capita health value (in $/person) due to changes in fish consumption, 
assuming that in accordance with the NHANES survey data [21] 25% of the population do not eat fish at all. 
Percentiles Scenario (1), perfect 

compliance with advisory 
Scenario (2), reduction in 
fish consumption by 5% 

Scenario (2), reduction in 
fish consumption by 10% 

Scenario (2), reduction in 
fish consumption by 20% 

5% 0.00 -40.06  -79.72 -158.23  

25% 0.00 -11.39 -22.65  -45.07 

50% 0.00 -4.11 -8.21 -16.42 

75% 0.01 -0.11  -2.25 -4.57 

90% 0.05 -0.03  -0.10  -0.28 

95% 0.17 1.18 1.76  2.68 

99% 10.14  13.86  20.25  33.51 

Mean 0.22 -9.73 -19.62  -39.24 

Share of beneficiaries 34% 9% 8% 7% 

 

[Table 4] Rank correlation analysis. 

Parameters  Scenario (1), perfect 
compliance 

Scenario (2), reduction 
in consumption by 5% 

Scenario (2), reduction 
in consumption by 10% 

Scenario (2), reduction 
in consumption by 20% 

 IQ to earnings parameter <0.01 <0.01 <0.01 <0.01 

 Blood to hair mercury parameter <0.01 <0.01 <0.01 <0.01 

 Hair mercury to IQ parameter <0.01 <0.01 <0.01 <0.01 

 MeHg intake to blood parameter <0.01 <0.01 <0.01 <0.01 

ι PUFA to IQ parameter <0.01 <0.01 <0.01 <0.01 

ζ PUFA to fatal heart attack risk 
parameter 

- <0.01 <0.01 <0.01 

ξ PUFA to nonfatal heart attack risk 
parameter 

- <0.01 <0.01 <0.01 

 Hair mercury to heart attack risk 
parameter 

- <0.01 <0.01 <0.01 

τ Lag effect in risk reduction - <0.01 <0.01 <0.01 

ω Plausibility of CVD causality 
parameter 

- <0.01 <0.01 <0.01 

VHA Value of avoided heart attack - <0.01 <0.01 <0.01 

VSL Value of statistical life - <0.01 <0.01 <0.01 

ΔM Changes in MeHg intake/day 0.150  0.282  0.288  0.290  

ΔP Changes in PUFA intake/day -0.046  -0.553  -0.565  -0.571  

Q Fish intake/day -0.018 -0.475  -0.486  -0.490  
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