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A Better Approach to Resolving Variable Selection Uncertainty in Meta Analysis for 
Benefits Transfer 

 
Alan Randall and Ding-Rong Chen 

The University of Sydney, and 
The Ohio State University 

 
Abstract.  Because original high-quality non-market valuation studies can be expensive, 
perhaps prohibitively so, benefits transfer (BT) approaches are often used for valuing, e.g., 
the outputs of multifunctional agriculture.  Here we focus on the use of BT functions, a 
preferred method, and address an under-appreciated problem – variable selection uncertainty 
– and demonstrate a conceptually superior method of resolving it. 

We show that the standard method of value-function BT, using the full estimated model, 
may generate BT values that are too sensitive to insignificant variables, whereas models 
reduced by backward elimination of insignificant variables pay no attention to insignificant 
variables that may in fact have some influence on values.  Rather than searching for the best 
single model for BT, Bayesian model averaging (BMA) is attentive to all of the variables that 
are a priori relevant, but uses posterior model probabilities to give systematically lower 
weight to less significant variables.   

We estimate a full value model for wetlands in the US, and then calculate BT values from 
the full model, a reduced model, and by BMA.  Variable selection uncertainty is exemplified 
by regional variables for wetland location.  Predicted values from the full model are quite 
sensitive to region; reduced models pay no attention to regional variables; and the BMA 
predictions are attentive to region but give it relatively low weight.  However, the suite of 
insignificant RHS variables, taken together, have non-trivial influence on BT values.  BMA 
predicted values, like values from reduced models, have much narrower confidence intervals 
than values calculated from the full model. 
 

 
Introduction 
 
The problem of variable selection for benefits transfer 
A common motivation for meta analysis is to generalize from a set of original studies in 
order to generate more reliable predictions of the value of a dependent variable.  Benefits 
transfer (BT) is value prediction addressed to an explicit purpose – it uses an estimated meta 
function to predict the value of amenities produced by an actual or proposed site 
characterized by a suite of site and project descriptors.    

Meta analytic equations of resource and amenity values often have many (say, more than 
20) independent variables.  At the outset, the set of potential RHS variables confronting 
analysts is quite large because BT-oriented clients are anxious to have parameter estimates 
for a rather complete set of descriptors in order to get BT values reflecting the particulars of 
policy sites; and an additional suite of variables is required to control for differences in 
methods and execution among the original valuation studies that form the data set for meta 
analysis.  

Meta analysts have their own motivations for specifying models with relatively large sets 
of independent variables. Theoretical considerations provide relatively little guidance for 



selecting among the large set of variables that plausibly might be related to value, and data 
deficiencies often force valuation researchers to use imperfect proxies for the variables 
suggested by theory, leaving meta analysts with relatively weak priors as to which of the 
observed variables will turn out to be important for predicting value.  

Examples from recent wetlands valuation meta analyses include Borisova-Kidder (2006), 
who used 30 independent variables (including identifiers for valuation methods and regions 
within the US); Brander et al. (2006), who had 37 independent variables (including 
identifiers for valuation methods and countries); while Brouwer et al. (1999) analyzing only 
CV studies used 34 independent variables (including a substantial suite of identifiers for 
details in CV execution); and Woodward and Wui (2001) had 22 independent variables 
(including identifiers for valuation methods but not for regions within the US).  Clearly, a list 
of all the unique variables potentially relevant to meta analysis of wetlands values would be 
longer than any of the above lists. 

It is not uncommon that when the full model, i.e. Y = f(X), where X represents the vector 
of observed independent variables thought to be useful in predicting value, is estimated 
relatively few of the many independent variables are significant. Typically, researchers find 
that fewer than one-half of the independent variables are significant.  Even that level of 
responsiveness to independent variables may be misleadingly high.  Pursuit of significance 
and goodness of fit has led some investigators to use a long list of dummy variables (and, in 
some cases, interactions among dummy variables) with the inevitable result that just a few 
observations support parameter estimates for these variables, so we cannot be confident that 
the results are not influenced unduly by idiosyncrasies in a few studies.   

BT values for policy sites are calculated from an estimated meta value function by 
inserting policy site values for the independent variables into the equation.  Clearly, 
calculated values may be sensitive to the variable selection strategy used in meta analysis.  If 
the full model (with 20 or more independent variables, many of them insignificant) is used, 
calculated BT values may be quite sensitive to insignificant variables that are ipso facto 
related only loosely to value.  Reduced models (such as might be produced by backward 
elimination of insignificant variables) pay no attention to variables that fall below the 
threshold for significance but may nevertheless have some impact on true BT values.  This 
would produce BT values strictly insensitive to some variables that make a difference to 
value, and disappoint clients seeking BT values tailor-made for the policy site. 
 
Variable selection uncertainty 
Variable selection uncertainty is one kind of model uncertainty.  Suppose that X =(X1, …, Xk) 
is a set of k observed independent variables such that Y may depend on any or all members of 
X.  Variable selection uncertainty arises when it is unclear a priori which if any model Y = 
f(Xi), where Xi is a subset of X, will provide the best predictions of Y (whatever we mean by 
best predictions).  The goal of estimating BT values highlights the urgency of resolving the 
issue of variable selection uncertainty.  

The variable selection problem is usually posed as selecting the “best” predictor subset Xi 
for Y.  The BT values dilemma (should we use values that overweight insignificant variables, 
or should such variables be given no weight at all in calculating BT values?) suggests that 
there may often be no single model Y = f(Xi) that is ideal in the sense of making the most 
effective use of the information in the data set. 



Bayesian approaches to variable selection uncertainty allow us to formulate a more 
appropriate objective – rather than to find the best predictor subset of X, the objective is to 
make the most effective use of posterior information in prediction (Clyde and George 2003).  
It seems intuitive that an effective method of predicting the value of Y would be attentive to 
all of the variables that are a priori relevant, but would give systematically lower weight to 
those that are less significant.  

Bayesian model averaging (BMA) can consider all possible models Y = f(Xi), where Xi is 
a subset of X, using the estimated parameter values of each model weighted by the posterior 
probability that the model is the true model.  Because the number of unique models, 2k, 
grows exponentially with k, a representative sample of the possible models may be 
considered in the case where k is large.  Insignificant variables have non-zero but relatively 
smaller influence on the predicted value of Y, because they appear in models whose posterior 
probability is low. 

BMA is a priori a preferable alternative to model selection (i.e. to selecting a single 
“best” model) because theory suggests that it provides better average predictive performance 
than any single model (Hoeting et al. 1999).  In meta analysis, BMA is finding increasing use 
as a solution to variable selection uncertainty.  Moeltner and colleagues have introduced 
Bayesian methods to meta analysis for BT.  Moeltner et al. (2007) and Moeltner and 
Woodward (2009) used Bayesian methods to overcome small sample problems.  Moeltner 
and Woodward also apply BMA to address model uncertainty ad hoc, using posterior model 
probabilities to decide whether specific variables should be included in the final model or 
excluded.  Yet, to our knowledge, there has been no published application of BMA to 
systematically address variable selection uncertainty in meta analysis for BT in a way that is 
attentive to all variables specified and to their posterior probabilities. 

We demonstrate the use of BMA to address variable selection uncertainty, and present 
estimation results and BT value calculations showing that BMA narrows the confidence 
intervals on BT values and reduces but does not eliminate the influence of insignificant 
variables on calculated BT values. 

 
Bayesian Model Averaging 
 
General principles 
BMA was first proposed in 1978 by Leamer, who pointed out that the information for 
estimating regression coefficients might be diluted if there is uncertainty about the model, 
because part of the information in the data is used to specify the model. To avoid this 
problem, BMA, rather than selecting a single model and generating a single point estimate, 
bases its inference on several or even all possible models by taking the average of the 
parameter of interest obtained from each model weighted by its posterior model probability. 
In this manner, less information is sacrificed to refine the model. 

In the case of k  independent variables in X, there are kR 2  possible models, M = (M1, 
…, Mr), each taking the form Y = f(Xi) where Xi is a subset of X.  The posterior distribution 
of Y can be expressed as  
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where w denotes the observed data, ),|( wMYp r  is the posterior distribution of Y under 



model rM , and )|( wMp r  denotes the posterior probability that rM  is the true model given 
the data. The posterior model probability of model rM  can be expressed as 
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where 
  dYMYpMYwpMwp rrr )|(),|()|(  
is the marginal likelihood of model rM , and ),|( rMYwp  and )|( rMYp  are the likelihood 
and the prior for Y under model rM .  
 
BMA inference for wetland values 
We begin with a full model for meta analysis of wetlands values in the US.  Earlier versions 
of this model were reported in Borisova-Kidder (2006), Chen (2010), and Randall et al. 
(2008).  The full model was estimated by OLS using data from 72 observations and a log-
linear specification, and while goodness of fit was respectable only 4 of 23 independent 
variables were significant (Tables 1 and 2).   Backward elimination of insignificant variables 
increased adjusted-R2 but would allow only 4 site and project descriptors to influence 
calculated BT values.  Intuition suggests that the full model may accord too much influence 
to insignificant variables in calculated BT values, but the reduced model may err by using 
none of the information for variables that are statistically insignificant.  So, we implemented 
BMA, hypothesizing that it would yield predicted BT preferred to those from the above 
models. 

Like classical approaches, BMA can provide point estimates and confidence intervals for 
the quantities of interest, and can therefore support hypothesis testing.  However, unlike 
classical approaches, inferences from BMA can account for the concerns of variable 
selection uncertainty. Since the quantity of interest in this study focuses on the estimated 
model parameters, the following value derivations are centered on these quantities. 

A Bayesian approach to hypothesis testing considers the posterior probability that the 
model parameter, say 1 , is not equal to zero. This posterior probability can be interpreted as 
the probability that a particular parameter is part of the true model. It is the sum of the 
posterior model probabilities of the models that include the corresponding variable 1X , i.e. 
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The point estimate of 1 , can be derived through the following equation: 
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This is a weighted average of model-specific point estimates, where r

1


is the posterior mean 
of 1  under model rM , whose weight is )|( wMp r . If the variable 1X  is not in model rM , 
then r

1


 is set to zero. 
 



The posterior standard deviation of 1  can be derived by taking the square root of the 
following equation: 
 
   })|()|())(),|{(var()|( 2

1
2

111 wEwMpMwwVar r
r

k  .   (5) 
 
Model Description 
Basic Framework.  Since there are kR 2  models in the model space M = (M1, …, Mr), each 
model under consideration is of the form   rrN XY , where N  denotes the number 
of observations, N  is a 1N  vector of ones, rX  is a rkN   matrix containing some (or all) 
columns of X , and  is a N-vector of errors, which is assumed to be ),0( 1

NN IhN  . 
The Prior.  The computational demand of BMA when the vector X is relatively large is an 
important concern.  Using a Normal-Gamma natural conjugate prior greatly reduces the 
computational time for implementing BMA, since these types of priors lead to analytical 
posteriors that do not require posterior simulations.  Because   and h  are common 
parameters to all models, we use the following standard non-informative priors for these two 

parameters: 1)( p , and
h

hp
1)(  . 

We follow the suggestion of Fernandez et al. (2001) and Koop and Potter (2004) to 
standardize explanatory variables by subtracting their means. As a result, the intercept for 
each model can be interpreted as measuring the mean of w.  
The natural conjugate Normal-Gamma prior then implies that the prior for   is
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rrr VhNhp  .  For the choice of

r
 , we follow standard BMA practice by 

centering the distribution of   on zero.  With
rkr

0 , the null hypothesis is that the 
independent variables have no effects on wetland values. 
For the choice of rV , we use a benchmark prior called a g - prior , introduced by Zellner 
(1986), which takes the form 1' )(  rrrr XXgV .  This prior is commonly used in the 
literature since it only requires researchers to elicit the scalar prior hyper-parameter rg .  
The Posterior and Marginal Likelihood.  Using the natural conjugate Normal-Gamma prior, 
the posterior for r  follows a multivariate t distribution with mean 
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With this marginal likelihood, the posterior model probability can be calculated from the 
equation (2). 

Since we do not favor any model a priori, equal prior model probability is assigned to 
each model. As a result, )( rMp and )( lMp  will be canceled out in equation (2).  We follow 
the suggestions of Fernandez et al. (2001) with the choice of value for rg  in the following 
form 
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Markov Chain Monte Carlo Model Composition.  Since the number of models ( )2kR 
under consideration might be quite large, it may be impossible for researchers to evaluate the 
posterior mean or model probability for every possible model.  In this study, we apply a 
commonly-used algorithm, the Markov Chain Monte Carlo Model Composition (MC3), 
initially developed by Madigan and York (1995), to carry out BMA.  The MC3 algorithm 
generates a candidate model from regions of the model space in the neighborhood of the 
current draw.  In our application a candidate model *M is generated from a set of models 
including the current model, )1( sM , all models with one explanatory variable deleted from 
the current model, and all models with one explanatory variable added to the current model. 

The acceptance probability has the form: 







 1,

)()|(
)()|(min )1()1(

**

ss MpMwp

MpMwp .   

If the candidate model is not accepted, this chain will remain at the current model )1( sM . 
Again, since we do not favor any model a priori, )( *Mp  and )( )1( sMp  will be canceled out 
in the above equation.  

 
Comparing Results: the Full Model, the Reduced Model, and BMA 
 
Predictive performance: BT values 
BT scenarios were specified for freshwater (scenarios 1 and 1a, Tables 3 and 4) and saltwater 
marshes (scenarios 2 and 2a), with Income, RecFish, ComFish, Bird, and Publish set at their 
median values, Acres at 10,000, Share at .125, the remaining wetlands services at .5, and the 
estimation method at CVM.  Scenarios 1a and 2a specify a wetland in region 2, whereas in 
scenarios 1 and 2 the wetland is in the default region 4.  

Note first that backward elimination of insignificant variables and BMA both generate 
BT value predictions with substantially narrower intervals than the full model (Table 4).  
Now, consider the variable R2 (= 1 if the study site is in region 2).  R2 does not approach 
significance in the full model (p = .54), and does not appear in the reduced model (Table 2).  
Median BT values for typical wetlands calculated from the full model are $300/acre/year for 
a freshwater marsh and $81 for a saltwater marsh in region 4 (the default), but $796 and $214 
respectively for wetlands in region 2.  This seems a rather large response to a variable that is 
quite insignificant and, if the full model is used in BT, would suggest that wetlands 
conservation projects in region 2 are typically more than 2½ times more valuable per acre 
than those in region 4.  Alternatively, BT values calculated from the reduced model make no 
distinction between wetlands in region 2 and region 4 (or any of the other regions).  The 



decision as to which model to use in BT clearly is highly consequential, yet standard BT 
methods call upon analysts and their clients to make such decisions without clear guidance.   

The BT value predictions using BMA suggest a much smaller influence of R2 than the 
full model.  Yet the BMA process that accords R2 and the other RHS variables weights 
reflecting their posterior probabilities has some more substantial effects on BT values.  As 
the difference between median BT values for scenarios 1 and 1a, and 2 and 2a, shrinks, value 
attributed to S1 rises considerably, and the median BT values for saltwater marsh rise in both 
regions but moreso in the default region.  It is clear that the 18 variables other than the 4 
significant ones and R2 collectively provide information that has non-trivial influence on 
calculated BT values. 

 
 
Conclusions 
 
Theory suggests that, given variable selection uncertainty, BMA is a priori a preferable 
alternative to model selection (i.e. to selecting a single “best” model) because it provides 
better average predictive performance than any single model (Hoeting et al. 1999).  Here, we 
argue that variable selection uncertainty is a serious, if unappreciated, problem in meta 
analysis for benefits transfer, and we demonstrate that BMA generates predicted BT values 
that reduce but do not eliminate the influence of insignificant variables.  The precision of BT 
value predictions, as indicated by confidence intervals, is similar for BMA and backward 
elimination of insignificant variables, and both provide much more precise value predictions 
than the full model.  Collectively, the set of insignificant variables may have, as intuition 
suggests they often should, non-trivial influence on predicted BT values.  We conclude that 
Bayesian Model Averaging provides a superior method of resolving variable selection 
uncertainty in meta analysis for benefits transfer. 
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Table 1.  Variables in Full Model 

 
 

Variable Description 
 
Dependent variable 
LNVALUE Logarithm of value per acre of wetland, U.S. year 2003 dollars 
INTERCEPT  
Socio-economic variables 
INCOME Annual household income, U.S. 
  
Wetland size 
ACRES No. of wetland acres (,000) valued 
SHARE Share of wetland acres in the area by FIPS codes as reported by the 

NRI 1997 data 
Wetland types 
FRESHWATER 
MARSH 

1 if a freshwater marsh, 0 if not 

SALTWATER 
MARSH 

1 if a saltwater marsh, 0 if not 

SWAMP 1 if a swamp, 0 if not 
PRAIRIE POTHOLE 1 if a prairie pothole, 0 if not 
 
Wetland functions 
WATER SUPPLY 1 if water supply augmented, 0 if not 
QUALITY 1 if water quality improvement, 0 if not 
FLOOD 1 if flood reduction, 0 if not 
RECFISH 1 if recreational fisheries improved, 0 if not 
COMFISH 1 if commercial fisheries improved, 0 if not 
BIRD 1 if bird/wildlife-related recreation, 0 if not 
AMENITY 1 if amenities augmented, 0 if not 
HABITAT 
 

1 if habitat is augmented, 0 if not 

Methodological variables 
CVM 1 if study used Contingent Valuation Method, 0 if not 
HP 1 if study used Hedonic Pricing Method, 0 if not 
TCM 1 if study used Travel Cost Method, 0 if not 
RC 1 if study used Replacement Cost Method, 0 if not 
PFMPNFI 1 if study used Production Function or Market Prices or Net Factor 

Income Method, 0 if not 
EA 1 if study used Energy Analysis Method, 0 if not 
PUBLISH 1 is study is a journal article, 0 if not 
Regions 
R1 1 if study conducted in Northern crescent or Northern great plains, 

0 if not 
R2 1 if study conducted in Fruitful rim or Southern seaboard, 0 if not 
R3 1 if study conducted in Heartland or Mississippi portal, 0 if not 
R4 1 if study conducted in Prairie gateway=1 or Eastern uplands, 0 if 

not 



 
Table 2. Parameter estimates 
 

  

 FULL (OLS) Backward 
Elimination

Bayesian Model Averaging 

 Coeffic- 
ient 

Std 
Error 

Coeffic
- 
ient 

Std 
Error 

Mean 
)|( D  

Std Error
)|( D  )|0(

Pr
D

 

Intercept 0.890 (2.37) 0.836 (1.55)    
Income 0.145** (0.06) 0.134*** (0.03) 0.1067 (0.0462) 0.9122 

Acres -1.589E-
7 

(2.68E-
7)   -6.22E-

09 
(6.04E-
08) 0.0509 

Share -4.824 (4.07)   -0.1249 (0.8482) 0.0584 
Freshwatermars
h -1.653 (1.12) -1.444* (0.87) -0.0464 (0.5857) 0.1436 

Saltwatermarsh -2.969** (1.33) -
3.220*** (0.94) -1.4275 (1.1689) 0.6887 

Prairiepothole -4.430*** (1.56) -
4.045*** (1.04) -2.4768 (1.2475) 0.8810 

Watersupply 0.821 (1.01)   0.0033 (0.1726) 0.0476 
Quality 1.106 (0.80)   1.6851 (0.8489) 0.8706 
Flood 0.195 (0.71)   0.0207 (0.1724) 0.0535 
RecFish 0.852 (0.65)   0.0581 (0.2397) 0.0915 
ComFish 0.596 (0.82)   0.0111 (0.1674) 0.0504 
Bird -0.335 (0.74)   0.0069 (0.1274) 0.0479 
Amenity -0.792 (1.11)   -0.0154 (0.1847) 0.0509 
Habitat 0.516 (0.78)   0.0477 (0.2451) 0.0750 
Publish -0.209 (0.97)   0.0013 (0.1315) 0.0461 
EA 5.985*** (1.86) 6.685*** (1.34) 6.3377 (1.4921) 0.9960 
PFMPNFI -1.446 (1.04)   -0.5250 (0.8853) 0.3121 
CVM -0.242 (0.91)   0.0325 (0.2120) 0.0626 

HP 0.213 (1.79)   9.77E-
04 (0.2619) 0.0444 

TCM -0.274 (1.35)   -0.0084 (0.2314) 0.0450 
R1 0.564 (1.79)   0.0076 (0.1497) 0.0488 
R2 0.977 (1.61)   -0.0076 (0.1912) 0.0514 
R3 1.232 (1.56)   -0.0118 (0.2066) 0.0523 
N 72 72    
Num. of Var. 23 5    
R2 (Adj-R2) 0.5920 (0.3965) 0.551 (0.502)    



Table 3. Scenarios for Benefits Transfer 
 

 
 
Table 4. Calculated BT Values 

 

Variables ↓\Scenarios  1 2 1a 2a 
Intercept 1 1 1 1 
Income 43 43 43 43 
Acres 10000 10000 10000 10000 
Share 0.125 0.125 0.125 0.125 
Freshwatermarsh 1 0 1 0 
Saltwatermarsh 0 1 0 1 
Prairiepothole 0 0 0 0 
Watersupply 0.5 0.5 0.5 0.5 
Quality 0.5 0.5 0.5 0.5 
Flood 0.5 0.5 0.5 0.5 
RecFish 0.319 0.319 0.319 0.319 
ComFish 0.278 0.278 0.278 0.278 
Bird 0.38 0.38 0.38 0.38 
Amenity 0.5 0.5 0.5 0.5 
Habitat 0.5 0.5 0.5 0.5 
Publish 0.694 0.694 0.694 0.694 

       EA 0 0 0 0 
PFMPNFI 0 0 0 0 
CVM 1 1 1 1 
HP 0 0 0 0 
TCM 0 0 0 0 
R1 0 0 0 0 
R2 0 0 1 1 
R3 0 0 0 0 

Estimation 
Method Scenario 

Median
 

90% CI 
Lower 

90% CI 
Upper 

Width of 
CI 

      Full model S1 299.891 28.750 3369.504 3340.754 
 S1a 796.296 157.299 3903.496 3746.196 
 S2 80.480 5.396 1200.661 1195.265 
 S2a 213.697 32.830 1351.405 1318.574 
Backward  S1 732.400 457.299 1174.946 717.648 
Elimination S1a - - - - 
 S2 100.342 45.318 220.843 175.525 
 S2a - - - - 
BMA S1 678.775 405.915 1133.263 727.348 
 S1a 676.838 399.021 1157.026 758.005 
 S2 239.861 129.375 462.843 333.468 
 S2a 236.494 126.500 460.986 334.486
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