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1 Introduction

Since its introduction by Aigner et al. (1977), stochastic frontier (SF) estimation has been extensively used to
estimate technical efficiency in applied economic research.! Both cross-sectional and panel data are used for
this purpose. Estimates of technical efficiency measures in these models often depend on model specification,
distributional assumptions, temporal behavior of inefficiency, etc. Given the interest of these efficiency
measures in policy discussions, there is a need to examine the robustness of such results in both cross-
sectional and panel data models.

In cross-sectional modeling specific distributions on inefficiency and noise terms are assumed in order
to estimate the frontier function. The distributional assumptions are necessary in separating inefficiency from
noise (Jondrow et al. 1982). The Jondrow et al. estimator of inefficiency is not consistent in cross-sectional
models. The advantage of panel data is that, if inefficiency is time invariant, one can estimate inefficiency
consistently without distributional assumptions (Schmidt and Sickles 1984). However, the assumption that
inefficiency is time-invariant is quite strong, although the model is relatively simple to estimate if inefficiency
is specified as fixed parameters instead of as a random variable (Pitt and Lee 1981; Kumbhakar 1987; Battese
and Coelli 1988). The other extreme is to assume that both inefficiency and noise terms are independently and
identically distributed (iid). This assumption makes the panel nature of the data irrelevant. There are also
models that fall between these extremes.

Among panel data models, that are our main focus in this study, the inefficiency specification used by
Battese and Coelli (1995) is most frequently used in empirical studies. Their model allows inefficiency to
depend on some exogenous variables so that one can investigate how exogenous factors influence
inefficiency. Although this model is designed for cross-sectional data, it can readily be used for panel models.
The panel data model due to Battese and Coelli (1992) is somewhat restrictive because it only allows
inefficiency to change over time exponentially.? Furthermore, these models mix firm effects with inefficiency.
Two other models, viz., the ‘true-fixed” and ‘true-random’ effects frontier models for panel data (Greene
2005a, 2005b) have become popular in recent years. These models separate firm effects (fixed or random)
from inefficiency, where inefficiency can either be iid or can be a function of exogenous variables. Although
there are many other specifications, empirical researchers mostly seem to use either the Battese and Coelli or
the Greene models, apparently often without fully considering the assumptions behind these models. So the
guestions are: (i) Why are these particular models preferred? (ii) How do they compare with others that are
seldom applied or even discussed?

The goal in this study is neither to give an exhaustive review of SF models for panel data, nor to
recommend a particular model. Rather we have selected some alternative panel models that address
inefficiency with or without heteroskedasticity and have applied these to the same dataset to illustrate the
extent to which results from such studies are model dependent. Some of these models can also be used to
analyze cross-sectional data.

In a standard panel data model, the focus is mostly on controlling firm effects (heterogeneity due to
unobserved time-invariant factors). This notion is adapted from the earlier panel data models (Pitt and Lee
1981; Schmidt and Sickles 1984; Kumbhakar 1987) in which inefficiency is treated as time-invariant. The
only innovation in the efficiency models was to make these firm effects one-sided so as to give them an
inefficiency interpretation. Models were developed to treat these firm effects as fixed as well as random.
Several models have been developed based on the assumption that all the time-invariant (fixed or random)
effect is (persistent) inefficiency (e.g. Schmidt and Sickles 1984; Pitt and Lee 1981). This is in contrast to the
‘true’ random or fixed effect models by Greene (2005a, 2005b) in which firm-specific effects are not parts of
inefficiency. The models proposed by Kumbhakar (1991) and Kumbhakar and Heshmati (1995) are in
between. These models treat firm effects as persistent inefficiency and include another component to capture
time-varying technical inefficiency. Since none of these assumptions outlined above may be wholly
satisfactory, we introduce a new model that may overcome some of the limitations of earlier approaches. In
this model we decompose the time-invariant firm effect as a firm effect and a persistent technical inefficiency
effect.

It is clear from the above discussion that to get meaningful results from SF panel data models one

! Reviews of models used and recent applications are given in, e.g., Kumbhakar and Lovell (2000), Coelli et al. (2005),
Kumbhakar (2006) and Greene (2008).

2 Wang and Ho (2011) generalized the Battese-Coelli formulation in which the temporal pattern of inefficiency is made
firm-specific by specifying it as a function of covariates that can change both temporally and cross-sectionally.
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should consider several aspects carefully. The results obtained are likely to depend on the modeling approach
taken and on the way inefficiency is interpreted. Applying several different models to the same data set to
expose differences in results, as we do herein, is likely to provide deeper insights into the implications of
choosing different models.

The rest of the article is organized as follows. We first outline the panel data models applied in the
empirical applications. Then, we discuss the Norwegian grain farm data that are used in the models, followed
by a presentation and discussion of the different model results. Finally, some concluding comments are
provided.

2 Survey of the panel data models: A partial view

Our goal here is not to investigate all existing panel data models, since we know, a priori, that different
models give different results. So we have selected six panel data models, and investigated the results from
these when applied to the same data set. The first three of the selected models include heteroskedasticity in the
inefficiency/noise term. The last three models include heterogeneity in the intercept, which may or may not be
part of inefficiency. These last three models also account for time-varying inefficiency. These six models are
briefly summarized in Table 1.

Table 1 Some main characteristics of the six panel data models investigated

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

General firm effect No No Fixed Random No Random
Technical inefficiency

Persistent No No No No Yes Yes

Residual No No No No Yes Yes

Overall technical

inefficiency

Mean Time -inv.? Time -inv. Time-inv. Zerotrunc.? Zero trunc. Zero trunc.

Variance Homo. Hetero. Hetero. Hetero. Homo. Homo.
Symmetric error term

Variance Homo. Hetero.? Hetero. Homo. Homo. Homo.

Notes: » Time-inv. mean inefficiency models include determinants of inefficiency in the mean function.
2 Zero truncation models assume inefficiency distribution to be half-normal.
% Hetero. (Homo.) refers to models in which variances are functions of covariates that are both firm-specific and
time-varying (constant).

Model 1
Here we consider generalization of the first generation panel data models (Pitt and Lee 1981; Schmidt and
Sickles 1984; Kumbhakar 1987; Battese and Coelli 1988), which are of the form:

YVie =a+ f(xi; B) + vy —wy 1)

where y;; is the log of output (revenue) for firm i at time t; a is a common intercept; f(x;:; B) is the
production technology; x;: is the vector of inputs (in logs); B is the associated vector of technology
parameters to be estimated; v;; is a random two-sided noise term (exogenous production shocks) that can
increase or decrease output (ceteris paribus); and u; = 0 is the non-negative one-sided inefficiency term. The
parameters of the model are estimated by the maximum likelihood (ML) method using the following
distributional assumptions:
u; ~N*(0,0%) or N*(u,0?), 2
vie ~ N(0,07) ®)
The estimated parameters are then used to obtain firm-specific estimates of technical inefficiency in
(1) using the Jondrow et al. (1982) technique.

If the u; are fixed parameters (as in Schmidt and Sickles 1984), then the u; term can be combined
with the common intercept, i.e., o = +U, so that all the «; parameters can be identified, for example, from



A

the coefficients of the firm dummies. Inefficiency u; can then be estimated from U

=max{&}-a; =0
where ¢, is the fixed firm effect in the standard panel data model. This makes the best firm (highest intercept)

fully efficient and thus inefficiency for other firms is relative to the best firm. The advantage of this approach
is that it is not necessary to make any distributional assumptions about the inefficiency term. The disadvantage
is that we cannot use any time-invariant covariates to explain inefficiency.

If u; is assumed to be a random variable (Pitt and Lee 1981; Kumbhakar 1987; Battese and Coelli
1988) that is distributed as either half- or truncated normal, as in (2), the parameters of the model can be
estimated by the ML method. It can be shown (Kumbhakar 1987) that the conditional distribution of u; | g, is

truncated normal where g, =(g,,...&;) andeg, =v, —u,. The mean and/or mode of u; | can then be used to

obtain firm-specific estimates of inefficiency. These estimates are consistent when T — o (Kumbhakar 1987).
To make this model comparable with several other models that are used in this paper, we consider a

generalization, viz.
g ~ N*(uy, 0%) = N* (8, + 2,8, 02), (4)

vie ~ N(0,02) ©)

In this specification inefficiency is explained by a vector of time-invariant covariates z; (or the means
of time varying covariates for each firm), and & is the vector of parameters associated with these covariates.
Using these covariates lets one examine the marginal effect of these variables on inefficiency. If some of these
are policy variables, implications can be drawn about the effect of changing the policy on the measure of
inefficiency. If all the &-parameters are zero, then the model reduces to the one considered by Pitt and Lee
(1981), Schmidt and Sickles (1984), Kumbhakar (1987), and Battese and Coelli (1988). Model 1 in this study
refers to the specification in (1), (4) and (5).

Model 2

Model 1 (based on the specification in either (1), (2) and (3) or (1), (4) and (5)) is based on the assumptions
that the two-sided error term v;, and the one-sided error term u; are homoscedastic, i.e., that both ¢ and o2
are constants. However, there may be no reason to assume that this is so in reality. Ignoring heteroskedasticity
could lead to inconsistent parameter estimates. After a detailed discussion of the issues Kumbhakar and Lovell
(2000, chapter 3.4) concluded that:

e Ignoring heteroskedasticity of the symmetric error term v;; gives consistent estimates of the frontier
function parameters (). Heteroskedasticity refers to models in which variances are functions of
covariates that are both firm-specific and time-varying, except that the intercept (o) is downward
biased. Estimates of technical efficiency will also be biased.

e Ignoring heteroskedasticity of the one-sided technical inefficiency error component u; causes biased
estimates of both the parameters of the frontier function and the estimates of technical efficiency.

The other problem in Model 1 is that inefficiency is time-invariant, which is quite restrictive. Model 2
is an extension of Model 1 that allows for heteroskedasticity in both the one-sided technical inefficiency error
component and in the symmetric noise term. This model is frequently termed the doubly heteroskedastic
model in the literature. It is specified as:

Yie = a+ [ B) + vig — e (6)
Ujp ~ N+(li' Uizt) =N* (.U: exp(wuo + Z;L,itwu)) (7)
vie ~N(0,02,,) =N (0, exp(wyo + Z{,,itw,,)) (8)

Although both the Kumbhakar and the Battese-Coelli models are based on assumptions that u and v
are homoskedastic (cf. (4) and (5) above), such assumptions are not necessary. The model in (6)-(8)
generalizes the models proposed by Kumbhakar and by Battese-Coelli by making both u and v
heteroskedastic. In the variance function w,,, is a constant term, the z,, ;, vector includes exogenous variables
associated with variability in the technical inefficiency function, and w,, is the corresponding coefficient
vector. Similarly, w, is the constant term and the vector z,, ;; includes exogenous variables (that can be time-
varying) associated with variability in the noise term, and w, is the corresponding coefficient vector.
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Parameterizing Uf,it as done here to model production variability within a stochastic production function
framework, is an alternative to well-known ‘production risk’ specification of Just and Pope (1978).

It is also possible to use (6)-(8) and change (7) to u; ~ N*(0,63) = N* (O, exp(wyo + z;,itwu))

(see Caudill and Ford 1993; Caudill et al. 1995; Hadri 1999). Another option is to consider a further
generalization in which both the mean and variance of u are functions of z variables (Wang 2002), i.e.,

e ~ N* (s o) = N* (8o + 248, exp(avyo + Zhiey)) (7a)

Wang demonstrated that parameterizing both the mean and variance of the one-sided technical
inefficiency error component allows non-monotonic efficiency effects, which can be useful for understanding
the relationships between the inefficiency and its exogenous determinants. The models of Huang and Liu
(1994) and Battese and Coelli (1995), in which variances are assumed to be constant, are special cases of the
Wang (2002) model. Given all these generalizations, there is no reason for using the Battese-Coelli model
without scrutinizing it carefully, viz., testing it against more general specifications. In other words, many
alternative specifications are possible. In the analysis reported below we used the specification in (6), (7a) and
(8) as Model 2.

Model 3

Both Model 1 and various versions of Model 2 account for the panel data structure by including time as an
exogenous variable in the model components. In Model 3, which is an extension of the model by Kumbhakar
and Wang (2005), we accommaodate the panel nature of the data by introducing firm-specific intercepts, i.e.,

Vie = a; + f(Xie; B) + vy — Uyt 9)

U = Gy (10)
Gy = exp(y t) (11)
u; ~N*(ug, 0f) =N* (50 + 2,8, exp(wyo + z;,iwu)) (12)
vie ~ N(0,02,,) =N (0, exp(wyo + z;'itwv)) (13)

The above equations describe Model 3 used in the analysis below. Compared to Models 1 and 2,
Model 3 exploits the panel structure of the data better, since the intercept term «; in equation (9) controls for
unobserved heterogeneity or firm-specific fixed effects. Note that, in this specification, firm effects («;
whether fixed or random) are not regarded as part of inefficiency. In other words, this model can separate
technical inefficiency (time-varying) from time-invariant firm effects simply by assuming (without any
explanation) that firm effects do not include inefficiency.

Note that in specifying inefficiency as u;; = G.u; in (10) we are making the assumption that it can be
represented as a product of G — a deterministic function of time, and u; — a non-negative random variable.
This is one way of exploiting the panel feature of the data without introducing additive firm effects.

Kumbhakar (1991) formulated G, = (1+exp(bt+b,t?))™"so that G, can be monotonically increasing

(decreasing) or concave (convex) depending on the signs and magnitudes of b, and b,. Battese and Coelli
(1992) simplified the formulation by assuming G; = exp(—y(t — T)). Their specification allows inefficiency
to increase or decrease exponentially depending on the sign of y. Thus the Kumbhakar (1991) model is
slightly more general because it allows more flexibility in the temporal behavior of inefficiency. Feng and

Serletis (2009) extended the Battese-Coelli formulation by specifying G, :exp(—y1 t-T)—p,(t —T)Z).

Wang and Ho (2010) further generalized the model by introducing covariates in the G function that are both
firm- and time-specific. Our Model 3 constitutes (9)-(13). Note that the parameters and firm effects in this
model are identified through distributional assumptions.

Model 4

Greene (2005a, 2005b) proposed two models, which he called ‘true’ fixed-effects frontier model and ‘true’
random-effects frontier model. The purpose of these models is to disentangle firm-heterogeneity or firm
effects from technical efficiency. His ‘true’ random effect frontier model, which we label Model 4, is
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specified as:

Vie = (@+w;) + f(xie; B) + vie — Uy (14)
uy ~N*(0,03) =N* (0, exp(wyo + z;,itwu)) (15)
vy ~ N(0,02) (16)
w; ~ with mean 0 and constant variance a7

The main difference between Models 3 and 4 is the way inefficiency is modelled. In Kumbhakar and
Wang (2005) inefficiency is first specified as the product of G,, which is usually a function of time, and u;.
The latter is a truncated normal variable the mean and variance of which depend on the vector of firm-specific
variables. These variables cannot be time-varying because u; is time-invariant. In contrast, inefficiency in
Model 4 is not a product of G, and u; and therefore the mean and variance of u;; can depend on variables that
are not necessarily time-invariant. Naturally the likelihood functions of these two models are different.
Kumbhakar and Wang (2005) treated «; as fixed while Greene (2005a, 2005b) treated it as both random and
fixed.* Because of its complexity the Greene model is estimated by the Maximum Simulated Likelihood
method.

Model 5

In Model 4 the firm effects are not regarded as part of inefficiency. This is in contrast to Model 1 in which
firm effects are regarded as inefficiency. Whether firm effects (fixed or random) are parts of inefficiency or
not depends on how these effects are interpreted. However, hardly any economic rationale is provided either
in favor of against treating firm effects as inefficiency. To avoid the criticism that inefficiency is time-
invariant, Kumbhakar and Heshmati (1995) proposed a model in which technical inefficiency is assumed to
have a persistent firm-specific (time-invariant) component and a time-varying residual component. Thus, in
their model firm effects are treated as persistent inefficiency. Kumbhakar and Heshmati argued that
identifying the magnitude of persistent inefficiency may be important, at least in panel data with a short time
span, because it reflects the effects of inputs such as management that vary between firms but not over time.
Thus, unless there are changes in something that affects the management style of individual firms (for
example, a change in firm ownership or a change in the operating environment, such a change in government
regulations, taxes or subsidies), it is very unlikely that the persistent inefficiency component will change. On
the other hand, the residual component of inefficiency might change over time. It is possible to explain the
persistent component by making it a function of covariates that are time-invariant (for example a manager's
innate ability and skills). Similarly, the residual component can be explained by factors such as experience
that might vary over time and across firms. It is likely that a part of inefficiency is firm effects (effects of
omitted/unobserved time-invariant factors). However, as argued by Kumbhakar and Heshmati (1995), the
distinction between the persistent and residual components of inefficiency is important because they have
different policy implications. Thus our Model 5 is the Kumbhakar-Heshmati model that is specified as:

Vie = @ + f(xXie; B) + vie =1 — Uyt (18)

where v;; IS noise; n; = 0 represents persistent technical inefficiency; u;; = 0 represent time-varying
inefficiency; and n; + u;. is overall technical inefficiency. The error components are assumed to be
independent of each other and also independent of x;;. For estimation purposes we rewrite (18) as

Vie = o+ f(xie; B) + vie —uje — 1y (19)

where ag = ag — E(;) — E(uie); uge = wie — E(uye); and m; = n; — E(my).

The model can be estimated in three steps. In step 1 we estimate equation (19) via a standard random
effect regression model for panel data. In step 2, the persistent technical efficiency is estimated. In particular,
from step 1 we obtain the firm-specific estimates of the n; component. Persistent technical efficiency can then

® The “true’ fixed-effect frontier models by Greene (2005a, 2005b) include a potential incidental parameters problem.
Wang and Ho (2010) proposed an alternative estimation model that is immune to the incidental parameters problem. A
fixed-effect panel stochastic frontier model is estimated by applying first-difference and/or within transformation
methods.



be estimated from
fi; = max(n;)—n; (20)

Finally, the persistent technical efficiency measure (PTE) is obtained from exp (—7;). In step 3 the
residual technical efficiency is estimated. For this we go back to step 1 and obtain the residuals (i.e., y;; —
f(xie; B) + m; = ag + vy — u;). By assuming that v;, is iid N(0,02), and u;, is iid N*(0,02), we can
simply maximize the log-likelihood function for the following standard normal-half normal SF model for
pooled data

Tit = o+ Vir — Uyt (21)

where 1, = yir — f (xit; B) + n;. In practice we use the estimated values of g and n; to define ;.. That is,
sampling variability associated with B and n; is ignored. Using the standard frontier model on (21) we get
estimates of a,, 2 and o2. The Jondrow et al. (1982) result can then be used to estimate residual technical
inefficiency, ;;, conditional on the estimated residuals, (v;; — u;;). We can use these ;; to calculate time-
varying residual technical inefficiency defined as RTE = exp(—1i;), and then find overall technical
efficiency defined as OTE = PTE = RTE.

Model 6

Unlike Model 4, Model 5 does not take into account any fixed or random effects associated with unobserved
factors that are not related to inefficiency. Model 6 is a version of Model 5, modified and extended to include
random firm effects. The presence of such effects can be justified, for example, by making an argument that
there are unobserved time-invariants inputs that are not inefficiency. In agriculture one such might be land
quality. Our Model 6 is specified as:

Vie = g+ f(xi; B) + i +vig — 1 — Uyt (22)

where y; are random firm effects that capture unobserved time-invariant inputs. This model can be rewritten
as

Vie =g+ f(xi; B) + a; + & (23)

where af; =g — E(Th) - E(uit); a; =U;—n; + E(T]l), and Eit = Vit — Uit + E(uit). With  this
specification a; and ¢;; have zero mean and constant variance. This model can be estimated in three steps.
Since equation (23) is the familiar panel data model, in step 1 the standard random effect panel regression is
used to estimate B. This procedure also gives predicted values of a; and ¢;,, denoted by &; and &;,. In step 2,
the time-varying technical inefficiency, u;,, is estimated. Let

& = € + (&ir — €ir) = vie — e + E(uy) + (& — &)
= E(uge) + [vie + (Gir — €i0)] — uye (24)

By assuming v;, is iid N (0, 2), and u;, is iid N*(0,52) and ignoring the (&;; — &;;) term that has zero mean,
we can estimate equation (24) using the standard SF technique. This procedure gives estimates of the time-
varying residual technical inefficiency components, u;;, and time-varying residual technical inefficiency i;;
which can be used to estimate residual technical efficiency, RTE = exp (—;;). In step 3 we estimate 7;,
following a similar procedure as in step 2. For this we write:

@ =a;+ (@ —a)=p—n+EMm) + (@ —a)
=EMm) + [p + (@ —a)] —n (25)

By ignoring the (&; — a;) term that has a zero mean, and assuming ; is iid N(0,02), n; is iid N*(0,07); we
can estimate equation (25) using the standard pooled normal-half normal SF model to obtain estimates of the
persistent technical inefficiency components, n;, and persistent technical inefficiency measure, PTE =
exp (—7;). Overall technical efficiency (OTE) is then obtained from OTE = PTE * RTE.

Compared to Model 5, this model includes two additional features. First, it includes random firm
effects. Second, it includes and separates persistent technical inefficiency from random firm effects.
Identification of these components comes from distributional assumptions on various error components.

It is also possible to extend Models 6 (in step 2 and 3) to include non-zero mean of persistent and
time-varying inefficiency and also to account for heteroskedasticity in either or both. These extensions are left
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for the future. Also, the finite sample behaviour of estimators of persistent and residual inefficiency is left for
the future.

3 Data

The data source is the Norwegian Farm Accountancy Survey. This is an unbalanced set of farm-level panel
data, collected by the Norwegian Agricultural Economics Research Institute (NILF). It includes farm
production and economic data collected annually from about 1000 farms, divided between different regions,
farm size classes, and types of farms.

The data set used in the analysis is an unbalanced panel with 687 observations on 533 grain farms
from 2004 to 2008. We included farms in the lowlands of Eastern Norway, Jeren, and Mid-Norway. Within
each of these three regions the growing conditions are reasonably similar, and these are the main grain
producing regions of Norway.

Grain farms usually produce several types of grains (wheat, barley, oats etc.), and, by the
classification system applied, have few (if any) farm activities besides grains. The total output, y;, is
aggregated and measured as the farm revenue (exclusive of coupled and environmental subsidies) in
Norwegian kroner (2008 NOK) per year, obtained by deflating the annual farm revenues to 2008 revenues
using the consumer price index (CPI).

The production function f (x;; B) in Models 1 and 6 is specified with the following input variables:
x4 is labor hours used on the farm, measured as total number of hours worked, including management, family
and hired workers; x, is productive farmland in hectares; x5 is variable farm inputs, measured by variable
costs, deflated by the CPI to 2008 NOK prices; x, is farm fixed and capital costs, also deflated by the CPI to
2008 NOK prices; and t (1, ...,5) is a time-trend. The fixed and capital costs include incurred expenditure on
fixed costs items plus depreciation and required return on farm capital tied up in machinery, buildings and
livestock.

The z-variables in this study consist of the following: z; is income share from off-farm work,
measured as the farmer’s net income off the farm as a proportion of the farmer’s total net income on and off
the farm within a year; z, is share of income from coupled (output related) subsidies, measured as coupled
subsidies received as a proportion of the total farm net income within a year; zz is environmental payments
share, measured as the farm environmental payments received as a proportion of the total farm net income
within a year; z, is entrepreneurial orientation index; zs is experience, measured as number of years as a
farmer; z, is a dummy variable of one if the farmer has only primary education (i.e. no secondary or higher
education); and z; is a dummy variable of one if the farmer has secondary education (i.e. high school, but no
higher education). Descriptive statistics of the variables used in the study are reported in Table 2.

Table 2 Descriptive statistic (N = 687)

Variable Label Mean Std.dev Min Max
Production function variables
V1 Farm revenue (2008 NOK) 1085411 948950 80610 9386916
X1 Labor (hours) 2579 1480 74 15200
Xy Farmland (hectare) 35.3 195 0.5 129.4
X3 Variable farm inputs (2008 NOK) 480793 509090 21397 3383073
X4 Fixed farm input and capital costs (2008 NOK) 415583 262028 40238 2231058
t Year (1=2004, 5=2008) 3.1 1.4 2 5
Inefficiency determinant variables and heteroskedasticity variables in the inefficiency and error comp. function
Z1, Zy1s Zy1 Farm-specific off-farm income share 0.57 0.23 0.08 0.94
Z2, Zyzs Zy2 Farm-specific coupled subsidy income share 0.20 0.09 0.01 0.41
Z3, Zy3, Zy3  Farm-specific environmental subsidy income share 0.04 0.03 0 0.16
Z4, Zya, Zys  ENtrepreneurial orientation index 2.85 1.19 1 5.58
Z5, Zys: Zys Farmer experience, years 18.98 9.41 2 39
Zey Zye, Zve  Primary education, dummy 0.29 0.42 0 1
Z7, Zy7, Zy7;  Secondary education, dummy 0.45 0.50 0 1

We choose a translog specification of the f(x;;; B) function in our empirical analysis in Models 1 to 6
because of its flexibility (Christensen et al. 1973).

We used log values for the input variables in the translog production function. Prior to taking log the
x-variables were scaled (divided by their geometric means). Consequently, the first-order coefficients in the
model can be interpreted as elasticities of output evaluated at the means of the data.
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4 Results and interpretations
4.1. Technical efficiency

Fig. 1 presents the kernel density distribution of the technical efficiency estimates for Models 1 to 6 (overall
technical efficiency for Models 5 and 6), and the mean, first quartiles and third quartiles scores per year for
the same models. The various models clearly produce different empirical distributions, in some instances
markedly so.
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Fig. 1 Technical efficiency distributions of sample farms (left part of the figure) and the mean, first and third
quartile values (middle, bottom and top lines) of technical efficiency of sample farms (right part of the figure)
for Models 1 to 6

The mean technical efficiency of Model 4 (0.91) is the highest, while it is smallest (0.64) for Model 5.
The spread of the efficiency scores can be seen from Fig. 1, where spread is illustrated by the inter-quartile
ranges. Model 2 has the widest spread of efficiency scores, slightly wider than Model 3, while Model 4 has an
appreciably narrower spread than the other models. The figures show that, despite the difference in spreads,
the time-series patterns for the different models are quite similar.

The mean efficiency in Model 1 and Model 2 (which allow both u and v to be heteroskedastic) are
almost similar. However, the maximum and especially the minimum efficiency scores are more extreme when
allowance is made for heteroskedasticity.

In Model 3, the combined effect of accounting for heteroskedasticity and firm-specific random effect
resulted in a reduction in mean technical efficiency (to 0.73), with a spread about the same as for Model 2.
These results are largely consistent with earlier empirical findings. Hadri et al. (2003a, 2003b), in their studies
of cereal farms in UK, found that correcting for heteroskedasticity had a significant effect on the spread of the
measure of technical efficiency. Caudill et al. (1995) found a dramatic decrease in the technical efficiency
measures from inclusion of heteroskedasticity in their study of bank cost data. It appears that inclusion of a
random effect (in Model 3, compared to Model 2) has also contributed to reduced estimates of technical
efficiency. Yet such an effect seems counter-intuitive, since the random effect component should pick up
some of the technical efficiency effect found in models without a random effect. Evidently, it is hard to form
firm conclusions about the interaction between the firm-specific random effect, the mean efficiency function,
the heteroskedasticity in the efficiency function and the heteroskedasticity in the symmetric error component.

Instead of focusing on heteroskedasticity, Models 4, 5 and 6 provide ways to account for
heterogeneity between firms and to specify and eventually decompose the technical efficiency component.
The results of decomposition of technical efficiency into persistent technical efficiency and time-varying
technical efficiency for Model 5 and Model 6 are plotted in Fig. 2.

One problem with Model 5 is that all time-invariant noise is measured as persistent technical
inefficiency. It seems plausible that the persistent technical inefficiency part in Model 5 is the main reason for
the low overall technical efficiency estimates. In other words, some potential firm effects may have been
captured in the inefficiency measures, as the distributions in the upper part of Fig. 2 appear to confirm. The
mean persistent technical efficiency score in Model 5 is 0.71 while the mean residual technical efficiency
score is 0.89. As shown in the lower part of Fig. 2 for Model 6, the spread of efficiency is significantly higher
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for the persistent component than for the residual component. These results suggest that the persistent
technical inefficiency is a larger problem than residual technical inefficiency in Norwegian grain farming.
Kumbhakar and Heshmati (1995) also found a larger persistent technical efficiency than residual technical
efficiency in their analysis of dairy farms in Sweden for the period 1976 to 1988. A high degree of persistent
technical efficiency could be a problem in the long-run. For example, in Norwegian agriculture there has been
a high level of support in many decades. The high level of support may have caused some persistent
inefficiency. If there is a wish to reduce the governmental support level, and still keep the living standard in
the long run, focus should be on measures to reduce persistent technical inefficiency. For example, it may help
to consider measures that encourage long-term structural adjustment toward fewer larger farms or switches to
other production activities.

Results from the model by Schmidt and Sickles (1984) using exactly the same data gave the same
technical efficiency estimates as the persistent technical efficiency estimates from Model 5.
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Fig. 2 Distributions of persistent technical efficiency (to left) and residual technical efficiency (to right)
distributions for Model 5 and Model 6

In Model 4, the ‘true’ random effects frontier model, the firm effects are not considered to be
inefficiency, leading to high efficiency scores and low dispersion (Fig. 1). Greene (2005a, 2005b) also found
in a study of the U.S. banking industry that the ‘true’ random effects results had higher and less dispersed
technical efficiency scores than results for other models considered.

Neither the assumption that all time-persistent noise is inefficiency (Model 5) nor that no firm-specific
effects are inefficiency (Model 4) might be true. Model 6 overcomes these problems by decomposing the
time-persistent noise into a firm effect and a persistent technical inefficiency effect. The results are efficiency
scores between the scores for Model 4 and Model 5 (Fig. 1). The mean overall efficiency score for Model 6 is
0.78, and the score spread is between that of Model 4 (low spread) and Model 5 (high spread) (Fig. 1).
Compared to Model 5, Model 6 has a higher persistent technical efficiency score (0.87) with a less dispersed
distribution (Fig. 2).

As the above results illustrate, the efficiency scores are, as expected, sensitive to model specification.
How then are the technical efficiency ranking of farms affected by different model specifications used? In
Table 3 pairwise rank-order correlations for Models 1 to 6 (overall technical efficiency for Model 5 and 6)
illustrate the differences between the models in technical efficiency ranking of the sample farms.

Table 3 Kendall's rank-order correlation between of technical efficiency estimates for Model 1 to Model 6.
For Model 5 and Model 6 overall technical efficiency (OTE) is calculated

Model 1 Model 2 Model 3 Model 4 Model 5 OTE
Model 2 0.79
Model 3 0.73 0.69
Model 4 0.73 0.59 0.58
Model 5 OTE 0.52 0.38 0.49 0.68
Model 6 OTE 0.54 0.38 0.45 0.73 0.88

The patterns of results between Model 1 and Model 2 and between Model 5 and Model 6 seem to be
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the most consistent, i.e., these model comparisons have the most consistent rankings. The correlations in
Table 3 confirm this observation. Both Models 1 and 6 have quite similar technical efficiency assessments to
those for Model 4. On the other hand, the results for Models 2 and 3 are quite different and these two models
also show quite inconsistent patterns and rankings of results relative to the other models investigated.

Further, the efficiency assessments of residual technical efficiency for Model 5 and Model 6 are
perfectly positively correlated, while the results based on persistent and residual technical efficiency are to a
large extent independent or random, with a rank-order correlation of 0.14 (not reported in a table in this
version of the paper).

4.2. Elasticities, returns to scale, technical change and efficiency determinants

For all models the estimated output elasticities with respect to labor, land, variable farm inputs and fixed farm
input/capital all differed from zero at the 1% significance level (5% significance level for fixed farm
input/capital in Model 3). The elasticities for labor, land and variable farm inputs were larger than 0.23 for all
models. Estimates of technological change were statistically significant and positive for all models at 1.7% to
2.7% per year. The scale elasticity was highest for Models 5 and 6 (at 1.21 on average) and lowest for Model
2 (1.04 on average) and Model 4 (1.08 on average). The estimated scale elasticity was not significantly (at
10% level) different from 1 only for Model 2. All models showed a weak decreasing time trend in scale
elasticity, and the spread of elasticity estimate was highest for Models 3, 5 and 6. All these results in this
paragraph are not reported in any table or figure in this version of the paper. To further save space, the effect
of the different determinants of efficiency scores are dropped in this version of the paper (but available from
the authors upon request).

5 Concluding comments

Panel data frontier model estimation has been widely used to estimate technical efficiency. Yet the technical
efficiency measures may be distorted by specification error. This study has demonstrated that allowing for
heteroskedasticity in the error terms can lead to appreciably different technical efficiency estimates and can
also change the ranking of farms based on efficiency scores. Further, it may not be valid to assume either that
all time-persistent noise is inefficiency, or that no firm-specific effects are inefficiency. Our results suggest
that models structured to capture inefficiency that is time-invariant (and mixes with firm effects) may lead to
very low efficiency estimates, while models in which firm effects are not considered to be part of inefficiency
may give high efficiency scores. It seems that the ‘true’ measure of efficiency may be somewhere between
these extremes and we have presented a new model which might be said to come closer to capturing this ‘true’
efficiency. This new model also decomposes the overall technical inefficiency into a persistent component and
a residual component. For the Norwegian grain farms included in the study, the persistent component of
inefficiency was much larger than the residual inefficiency component, implying that policy measures that
could reduce persistent inefficiency should be prioritized. Unless persistent inefficiency is reduced, farmers
might not be able to survive in the long run, especially if competitors are more efficient.

The variability of the results from the different models clearly demonstrates the difficulty in
‘correctly’ measuring efficiencies. No model can be held to be ‘correct’, and the efficiencies will always be a
kind of unobserved or modeled effect. For the future, model choice in empirical research should not be based
on ‘standard practice’, but on a reasoned choice. A good understanding of the institutional and production
environments of the industry under study, and of the data applied, are crucial in deciding which estimator
should be utilized.
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