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1. Introduction 

 The Intergovernmental Panel on Climate Change (IPCC) predicts an average global 

temperature increase by nearly 3 °C and potentially increased frequency of extreme weather 

events, sea level rise, and changed precipitation patterns (IPCC, 2007). Given the vulnerability 

of the agricultural sector to variations in weather conditions, it will be one of the most 

vulnerable sectors to climate change and production will be substantially affected in most parts 

of the world. However, impacts vary upon regions and crops (Parry et al., 2004). Against this 

background, the main objective of this study is to simulate economic impacts of climate change 

on European agricultural markets at the member state, aggregated EU as well as global level 

under consideration of the uncertainty inherent in climate impact assessments.  

Based on the predicted productivity changes from the joint application of a dynamic vegetation 

model (Müller et al., 2009), economic impacts of climate change are modelled with the 

European Simulation Model (ESIM
1
) (Banse, Grethe and Nolte, 2005).  

In order to account for uncertainty, the mean value and standard deviation of five different 

ESIM outcomes which are based on five individual climate- and crop model results, is analyzed 

in order to account for uncertainty from a wide range of future climate assumptions. A closely 

connected purpose of this study is to consider climate change induced adaptation of farmers to 

changes in the relative profitability of crops.  

Chapter 2 briefly describes the major methods of economic climate change assessments on 

agricultural markets, and further introduces into the major sources of inherent uncertainty. The 

following chapter describes the market and vegetation model used for this study and the 

methodological approach is described in chapter 4. Underlying scenario assumptions are given 

in Chapter 5 before results are interpreted in Chapter 6. Finally, conclusions are drawn in the 

last chapter. 

2. Modelling Climate Change Impacts and Sources of Uncertainty 

2.1 Methods of estimating economic effects of climate change 

Over the past two decades, a variety of methods and modelling techniques have been developed 

to measure the impact of climate change on agriculture. Such studies focus either on the 

explicit productivity impacts of changing climatic conditions on crops and their growing 

conditions (Liu et al. 2007; Bondeau et al. 2007; Siebert and Döll 2008), while economically 

oriented studies instead analyze agricultural market reactions to climate change based on 

simple crop response mechanisms only. Past literature distinguishes primarily three prominent 

methods which have been developed to analyze the impact of climate change on agricultural 

production and its economic impacts: the Ricardian approach (Mendelsohn et al., 1994), the 

Agro-Ecological Zones approach (AEZ) (Fischer et al., 2005), and crop simulation models 

(Parry et al. 2004;   Adams et al. 1990). The Ricardian approach directly links climate change 

to farm income, whereas the crop model and AEZ approach link productivity outcomes to 

economic models and can thus also be called indirect methods. The method used for this paper 

is also based on that indirect approach since crop model results are linked to an agricultural 

market model.  

2.2 Sources of uncertainty in climate impact studies 

Due to the IPCC, one of its major functions is to assess the state of our understanding and to 

judge the confidence with which we can make projections of climate change and its impacts. 

                                                           
1
 ESIM is a partial equilibrium model which depicts the agricultural sector of the EU in substantial detail and the 

rest of the world in a highly aggregated form. 



However, past and future climate change estimates, projections of future greenhouse gas 

(GHG) emissions and their effects are subject to various uncertainties (Wanner et al., 2006). 

This uncertainty is increasing from emission paths to climate change, from climate change to 

possible impacts and finally to formulating adequate adaptation and mitigation measures and 

policies (Iglesias et al., 2009). The following section briefly describes their major sources. 

2.2.1 Emission scenarios 

The SRES emission scenarios are not only driving forces for climate models, but their 

underlying assumptions about socio-economic developments also serve as inputs for crop and 

market models (e.g. CO2 concentration or economic development, respectively). There is huge 

uncertainty adjacent to future emissions as well as to the potential development of their 

underlying driving forces (Iglesias et al., 2009). The socio economic development under 

different SRES emission scenarios plays a major role in future CO2 concentrations, but also in 

the capabilities of a society to be able to adapt to changing climatic conditions which in turn 

influence the overall climate change impacts. On the other hand, future CO2 concentration, 

which extend is also much debated also influence plant photosynthesis and water use (Olesen et 

al., 2007).  

2.2.2 Climate models 

The outputs generated by General Circulation Models (GCMs) such as temperature, 

precipitation and radiation, are the most crucial climate variables in modeling impacts on crops 

and natural vegetation. However, the horizontal spatial scales of GCMs are often considerably 

bigger than scales of crop- or vegetation models (Easterling et al. 2001; Olesen et al., 2007). To 

account for variability in their outcomes, one common approach to represent uncertainty 

stemming from climate models is to implement output from different GCMs as input for crop 

models (Müller et al., 2009; Parry et al., 2004, Reilly et al., 2003; Fischer et al., 2001; 

Rosenzweig and Iglesias 2006).  

2.2.3 Crop models 

The outputs generated by General Circulation Models (GCMs) such as temperature, 

precipitation and radiation, are the most crucial climate variables in modeling impacts on crops 

and natural vegetation. Besides the above mentioned uncertainty in future emission pathways 

uncertainty in projected climate change may arise from uncertainty in modeled response to 

future emissions and uncertainty due to missing or misinterpreted physical processes in GCMs 

(Cubasch et al., 2001). To account for variability in GCM outcomes, one common approach is 

to implement outputs from different GCMs as input for crop models (Müller et al., 2009; Parry 

et al., 2004, Reilly et al., 2003; Fischer et al., 2001; Rosenzweig and Iglesias 2006).  

2.2.4 Market models 

Many factors also contribute to the uncertainty of market model results. Equilibrium models are 

generally aggregated to such a degree, that some important relationships might be neglected. 

Further data inputs sometimes lack quality, are missing, or parameters such as supply and 

demand elasticities are poorly estimated. Results depend highly of data inputs and can vary 

greatly among chosen scenarios and model specification. 

 

The briefly described sources of uncertainty and variability in climate impact modeling show 

the importance of implementing sensitivity analysis to climate impact studies. In this study, one 

approach of dealing with uncertainty is using productivity change outputs from the global 

vegetation model LPJmL (Bondeau et al., 2007) which are based on five individual GCM 

projections and the two emission scenario families A1B and B1.  

 



3. ESIM and LPJmL – Description of the Models 

3.1 General overview 

ESIM is a comparative static, net trade, partial equilibrium model of the European agricultural 

sector (Banse, Grethe and Nolte, 2005). The version of the model used for this study has the 

base period 2005 and includes 27 EU Members, Turkey and the US. All other countries are 

aggregated in one region, the so-called rest of the world (ROW). ESIM covers 15 major crops, 

6 animal products, 14 processed products and a range of other products such as pasture and 

voluntary set aside.  

LPJmL is a process-based global vegetation model for natural and agricultural vegetation 

which has been developed as an intermediate complex model that can potentially be used for a 

broad range of applications. It represents land-atmosphere coupling and explicitly includes 

major processes of vegetation dynamics. Vegetation in grid cells is described in terms of nine 

different plant functional types (PFTs) and 11 crop functional types (CFTs). Each CFT 

represents a group of crop and crop varieties and is parameterized using one representative 

crop
2
. PFTs are differentiated by physiological, morphological, phenological, and bioclimatic 

as well as fire-response attributes. It also includes explicit representation of vegetation 

structure, dynamics, competition among PFT populations, and soil biogeochemistry (Sitch et 

al., 2003; Smith et al., 1997)
3
. They include effects of climate change and CO2 fertilization on 

yields of major crops globally at a spatial resolution of 0.5°x0.5°. Yield simulations are based 

on process-based implementations of gross primary production, growth- and maintenance 

respiration, water-stress, and biomass allocation, dynamically computing the most suitable crop 

variety and growing period in each grid cell as described in more detail by Bondeau et al. 

(2007) and Waha et al. (submitted). 

3.2 Methodological approach to depict climate change effects in ESIM 

Climate change induced impacts on crop productivity are shocks on the supply-side. In ESIM, 

such effects are introduced as changes in average national yields. Supply of crops in the EU is 

defined as area multiplied by yield, whereby yield and area functions are specified separately. 

Yield is dependent on own price, the price index of non-agricultural inputs and a productivity 

shifter. The latter reflects rates of technical progress as well as climate change induced 

productivity changes. The degree to which productivity will potentially decline or increase is 

provided by the Potsdam Institute for Climate Impact Research derived from the global 

vegetation model LPJml (Bondeau et al., 2007, Müller et al., 2009). 

The vegetation model LPJmL delivered yield changes for the period 1996-2005 to 2046-2055 

based on climate data from five GCMs: CCSM3 (Collins et al., 2006), ECHAM5 (Jungclaus et 

al., 2006), ECHO-G (Min et al., 2005), GFDL (Delworth et al., 2006), and HadCM3 (Cox et 

al., 1999), and the respective CO2-concentrations
4
. Based on the percentage yield changes from 

the vegetation model, an annual growth rate was derived and added to the technical progress 

shifter “trend” in the log linear yield function of ESIM. Further, based on the assumption, that 

farmers allocate their acreage to crops according to their relative profitability based on input 

and output prices and yields, the area allocation function in ESIM was adjusted by a yield 
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 Temperate cereals (wheat), tropical cereals (millet), temperate roots (sugar beet), tropical roots (cassava), pulses 

(field pea), rice, maize, groundnut, sunflower, soybean, rapeseed. 
3
 For a detailed description of the model see Sitch et al. (2003), Prentice et al. (1992) and Bondeau et al. (2007) 

4
 With increasing CO2: 532ppm in 2050 in A1B, 488ppm in 2050 in B1 without increasing CO2: constant CO2 

concentration 370ppm. 



Table 1: Change of supply and standard deviation in % by 2050 vs. baseline 

scenario "no CC" for the aggregated EU 
Source: own compilation 

shifters to the power of the elasticities of area allocation with respect to own and cross yield 

shifters which are corrected for yield driven cost changes
5
.   

4. Dealing with Uncertainty in ESIM 

For this paper, the following method was applied to account for uncertainty. Five individual 

GCM- LPJmL outcomes served as basis for adjusting the yield function of ESIM. Further, the 

two SRES emission scenarios A1B and B1 were considered, which serves the purpose to a) 

account for different CO2 concentrations and b) take into account two potential socio-economic 

developments by adjusting the macro drivers, such as population and income growth in ESIM 

accordingly. This results in 20
6
 scenario results, of which the mean and standard deviation have 

been generated for each SRES scenario in order to account for uncertainty. 

 

5. Scenarios 

For this paper, the underlying assumption of socio-economic developments from the A1B and 

B1 scenarios are used. The macro data in ESIM such as population and income growth are 

adjusted accordingly. The projection horizon is 45 years until the year 2050. For each of the 

SRES scenarios two scenarios were specified for this paper: one takes the CO2-fertilization 

effect into account and one does not (further referred to as “with CO2” and “without CO2” 

scenario, respectively. The base technological progress shifter rates of the yield functions are 

equal for both baseline scenarios. The overall trend of world market prices under the baseline is 

calibrated to meet projections published by IFPRI for 2050 (Nelson et al., 2009). Demand 

shifters in the aggregated non-European countries (NEU) are calibrated to approximate IFPRI 

price projections. Biofuel consumption is calibrated to maintain a share of 10% in total 

transportation fuels in the European Union (EU). For the aggregated world (WO), the 

consumption share is calibrated to 4% in 2050
7
. 

6. Scenario Results 

6.1 Crop supply changes for the EU, non European regions and the world 

As a first step the 

mean and the 

standard deviation in 

percent are derived 

from the five 

individual GCM-

LPJmL results of 

each emission 

scenario run. Mean 

values were than 

compared to the 

baseline scenario 

without climate 

change, and the 

coefficients of 

variation (CV) as 

                                                           
5 For a detailed description of deriving those elasticities see Moeller and Grethe (2010). 
6
 Climate input from five GCMs and the two SRES scenarios A1B and B1 are used. CO2 concentrations were kept constant 

("without CO2") or increased over time, allowing for CO2 fertilization (“with CO2”), resulting in 20 scenarios. 
7
 Assumption about consumption of transport fuels in 2050 are from the World Energy Outlook 

2008, as cited in Fischer (2009). 



Table 2: Change of supply and standard deviation in % by 2050 vs. baseline scenario 

“no CC” for the aggregated non European regions 
Source: own compilation 

standard deviation in percentage change of the mean value, is depicted. Table 1 to 3 show 

supply differences and CVs by 2050 for selected crops for the EU, non European regions 

(NEU) and the world (WO). Under the A1B "with CO2" scenario in EU supply increases for 

most crops range between 3% for potato and 21% for the category other grains (Othgrain). 

Only for sugar and soy, supply declines can be observed for EU (1% and 2% respectively). The 

comparatively high CVs of 8% for corn and rapeseed, and 14% for soybean and sunflower 

seed, indicates that the five GCM-LPJmL outputs disagree more for those crops as compared to 

e.g. potato (2%) and sugar (1%). The CVs are particularly high for the A1B and B1 "without 

CO2" scenario ranging from 1% for potato to as much as 24% for soybean. Within EU, the 

only supply decline is estimated for sunflower seed with 13%. Increases for other crops in 

contrast range between 1% (potato) and 26% (soybean) (Table 1). By contrast, in NEU supply 

declines are between 6% for rye, 4% for barley and 1% for potatoes as compared to the 

baseline 

scenario. Also 

in NEU, CVs 

are highest for 

corn (8% under 

A1B “with 

CO2"), and for 

sunflower seed 

(14% under 

A1B "with 

CO2"). 

Sunflower seed 

is also the 

category with 

the highest 

supply 

increases for 

both, the A1B and B1 "with CO2" scenario as compared to the baseline scenario (30% and 

29%, respectively). In contrast, declines are most pronounced for barley (13%), rye (14%) and 

sunflower seed (15%) for the A1B "without CO2" scenario (Table 2). The aggregated global 

supply effects under A1B and B1 "with CO2" scenarios are all positive by as much as 27% for 

sunflower seed and 1% for corn. Only exception is a marginal change for the crops wheat and 

potatoes. 

 

 

 

 

 

 

 

 Table 3: Change of supply and standard deviation in % by 2050 vs. baseline scenario 

"no CC" for the aggregated world 
Source: own compilation 



 

Declines on a global level for the A1B "without CO2" scenario are as high as 15% for 

sunflower seed. Marginal changes are estimated for potato, rapeseed (A1B) and corn (B1). The 

CVs are similar to the once in NEU with sunflower seed and sugar being the most amplified 

(Table 3). 

Aggregated crop supply indices in Table 1 to 3 indicate that the variance is most pronounced 

for the A1B “without CO2” scenario, with a CV of 4% for the EU and 3% for NEU. 

6.2 Comparing coefficient of variation between individual GCM-LPJmL outputs 

 Taking a closer look to the results by 

country level, the strong regional 

differences of yield results projections 

between the five GCMs can be 

observed. In Portugal, for example, 

wheat yields are projected to decline in 

two out of five GCMs. Results for the 

CCSM3, ECHAM5 and HadCM3 

model, however, indicate a yield 

increase of 11%, 2% and 3%, 

respectively. This offsets the projected 

declines of the ECHO_G and GFDL 

model (both about 2%), and results in a 

change in the multi-GCM mean of 2%. 

These different projections highlight the 

source of uncertainty from different 

climate predictions and underline the 

necessity to consider several potential 

climate developments. 

In a second step, it is exemplarily analyzed for the emission scenario A1B “with CO2”, to what 

extent the variance of the climate change shifters in the crop yield function in ESIM between 

the five individual GCM-LPJmL results is transmitted in the variation of crop supply. 

Therefore, the CVs of the five individual GCM-LPJmL crop supply results is compared to the 

CVs of the individual shifter rates of all crops of all countries and regions depicted in ESIM. 

Comparing the values of the CVs between the shifter rates and the supply changes shows that 

the variance between the shifter rates is more pronounced than that of the crop supply results. 

46% of the shifter rates„CVs are above 5%. By contrast, only 39% of the crop supplies‟ CVs 

are greater than 5 %. By subtracting the values of the crop supply CVs from values of the 

shifter rates‟ CVs shows that 56% are equal or smaller than that of the shifter rates. This 

indicates that the impact of input shifters is smoothed by various equilibrium processes in the 

model, which is within expectations.  

Taking a closer look at a more aggregate level, such as the aggregated crop supply index for 

each European country, the CVs between the five individual GCM-LPJmL results is less 

pronounced. This is because many effects at the level of individual crops are compensated by 

opposite effects for other crops, resulting in lower variability in the aggregate. The last row in 

Figure 1 illustrates the CVs of aggregated crop supply indices for the EU. The European 

average is about 6%, whereas by contrast on country level, the highest CVs are estimated for 

Cyprus, Denmark and Hungary with around 10% to 11%.  In Cyprus, the high deviation from 

Figure1: Standard deviation of crop supply index in % by 

2050 vs. baseline scenario "no CC" for European countries 
Source: own compilation 



the mean stems from the high variance of supply results for the categories barley and other 

grains (around 30%).  In Denmark the relatively high standard deviation of the crop supply 

indices originate from the high variance between the model results for the categories wheat, 

barley and other grains. By contrast, in Hungary, the CV of 11% results from the crop 

categories corn and soy, which both show a standard deviation of 22% between the individual 

model results. 

 

6.3 Change in supply and crop price indices 

The climate change induced supply 

changes will also have effects on global 

food prices, and therefore, the aggregated 

crop supply and price changes, based on 

mean values of the five individual GCM-

LPJmL results for all emission scenarios, 

as compared to the reference scenario 

without climate change were analyzed. In 

order to present aggregated regional and 

global effects, Figure 2 shows crop supply 

and price index changes for the EU, NEU 

and the WO, for both SRES and CO2 

concentration-scenarios compared to the 

baseline scenario “no climate change” (no 

CC). Crop supply indices are positive in 

the A1B and B1 "with CO2" for all 

regions. For the EU, crop supply changes 

are positive for all scenarios showing a more pronounced supply increase for both “with CO2” 

scenarios (12% for A1B and 11% for B1, respectively). The aggregated global crop supply 

increase in WO of about 3% and 4% for the “with CO2” scenario, results in a price decline of 

18% and 16%. For the “without CO2” scenarios, in NEU, however, the estimates for the 

scenarios are negative with a relative production decline of 4% and 2% under A1B and B1. 

This results in an aggregated relative global supply decline of 3% and 1% respectively. 

Production declines on world markets lead to a price increase of 28% and 16% under the A1B 

and B1 scenario, respectively. The relatively large price increase/decline compared to the small 

supply changes can be explained by the relatively low demand and supply elasticities 

incorporated in the model. Because of the increasing income level, it is assumed that demand 

elasticities are about 50% below the level assumed for simulations until 2020
8
. Here, for 

example, the own price elasticities of demand in the aggregated ROW are 0.077 for wheat and 

0.028 for sunflower oil. Under the A1B scenario aggregated crop supply is higher in EU as 

compared to the B1 scenario. Especially countries in higher latitudes experience crop 

productivity increases. In contrast, for the aggregated global crop supply productivity is higher 

under the B1 scenario. 

7. Concluding Remarks 

In this paper we examine potential effects of climate change on European agricultural markets 

based on scenario simulation up to the year 2050 based on inputs from five individual GCMs.  

The variability in development of crop supply mainly results from the underlying simulated 

crop yield changes from LPJmL. Effects of changing temperature and precipitation patterns as 

                                                           
8
 2020 is the original projection period of ESIM.  

Figure 2: Supply and price indices by 2050 vs. baseline 

scenario "no CC" 
Source: own compilation 



well as rising CO2 concentrations on crop growth are considered in a process-based way. The 

main plant responses to elevated CO2 concentrations implemented in the model are an increase 

in the rate of photosynthesis and an increase in the water use efficiency (Farquar et al. 1990). 

C4 plants (e.g. maize, millet) are less influenced by rising CO2 concentrations like C3 (e.g. 

wheat, rice, sunflower) plants (Tubiello et al., 2002). We showed that results from different 

GCMs can vary substantially for some crops and regions. Those variances, however, are mostly 

smoothed on aggregate levels. The shifter rate variability which is reflecting climate change 

impacts in the market model, are of greater variance as compared to the resulting crop supply 

outcomes. This indicates that the impact of input shifters is smoothed by various equilibrium 

processes in the model, which is within expectations.  
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