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1 Introduction 

Projections of future productivity growth rates are an essential input for many tasks 
(Ludena et al., 2007). For example, they have important implications for the supply-
side response to the growing global food demands. Yet solid projections of regional 
and global productivity growth have proven elusive. This is due, in no small part, to 
the difficulty of measuring historical total factor productivity growth (TFP). 
Despite this long tradition of applied research on global agricultural productivity 
patterns, the stock of results provides a very mixed picture of long-run trends and 
displays considerable variation across countries, regions and studies (Evenson and 
Fuglie, 2009; Fulginiti and Perin, 1999). There is no clear consensus on such 
important issues as whether global agricultural TFP growth has been slowing or 
accelerating, or the magnitude of agricultural TFP growth in Sub-Saharan Africa in 
recent decades. Headey et al. (2010), summarize the current state of the art by 
saying that ”Agricultural productivity and its determinants are clearly important 
but have not always been well measured or well understood”.   
Why is there so little consensus after 70 years of research on global agricultural 
productivity? Table 1, which provides an overview of a representative list of studies 
from the last two decades on global TFP growth, highlights some of the key 
potential sources of variability in results.  
Data sources and study periods are the first candidates for concern. Most of studies 
used FAOSTAT annual data (FAO, 2010) on agricultural outputs and inputs since 
1961. This dataset is perhaps the best available for producing internationally 
comparable agricultural productivity estimate, and its development is considered to 
be one of the driving forces behind the expansion of empirical literature on global 
TFP growth over the last two decades (Coelli and Rao, 2005). Still, there are some 
acknowledged deficiencies in the data, specifically for measuring TFP growth rates. 
This has lead researchers to augment the core FAO data with additional information 
(‘FAO plus’ in the Table 1) in an attempt to account, for example, for quality 
differences in input data (e.g. Wiebe at al., 2000; Graig et al., 1997; Evenson and 
Fuglie, 2009) or for appropriate measures of the agricultural capital stock (von 
Cramon-Taubadel et al., 2009). Hence, differences in the data, combined with 
differences in the study periods considered most likely explain some of the 
variability in results. 
A second source of variability stems from the empirical modeling and estimation 
techniques employed. According to Fulginiti and Perin (1999), ”…Consistent 
average rates mask substantial inconsistencies from country to country. …. These 
comparisons do not inspire much confidence that the parametric and 
nonparametric approaches are measuring the same phenomenon”. In a recent 
paper, Headey at al. (2010) estimate global TFP growth using SFA and DEA 
approaches and contrast the resulting estimates. Without reference to formal tests, 
the authors prefer the SFA results. These results, however, contradict common 
belief/expectations among agricultural economists. For example, the average annual 
TFP growth in the Sub-Saharan Africa region is found to be greater than 2% using 
the SFA approach. This is higher than many experts who are familiar with African 
agriculture expect. von Cramon-Taubadel et al. (2009) contrast TFP growth 
estimates using DEA and robust partial frontier (m-order) approaches. They reach 
conclusions that are similar to those of Fulginiti and Perin (1999); despite some 
consistency in the results there are large discrepancies for Sub-Saharan Africa as 
well as North Africa and the Middle East regions. A further example is provided by 



Fuglie (2008) and Evenson and Fuglie (2009) who employ an Index numbers 
approach to measure agricultural TFP. Contrary to the past empirical evidence of a 
general slowdown in global productivity growth, their results suggest that global 
agricultural TFP has accelerated since 1980.  

Table 1 Studies on international agricultural productivity growth 

Study Estimation method Countries Study 
period 

Model: # 
outputs - # 
inputs 

data source 

Fulginiti and Perrin (1993) CD 18 LDC 1961-85 1 - 5  FAO plus 
Fulginiti and Perrin (1997) DEA 18 LDC 1961-85 1 - 5 FAO plus 
Craig et al. (1997) Part. Productivity 

measures 
98 1961-90 - FAO plus 

Lusigi and Thirtle (1997) DEA 47 Af. 1961-91 1  - 5 FAO, 
WATIVIEW 

Fulginiti and Perrin (1998) DEA&CD 18 LDC 1961-85 1 – 5 FAO plus 
Arnade (1998) DEA 70 1961-93   
Fulginiti and Perrin (1999) DEA&CD 18 LDC 1961-85 1 – 5 FAO plus 
Martin and Mitra (1999) Translog 50 1967-92 1 – 3 World Bank 
Wiebe et al (2000) Part. Productivity 

measures 
110 1967-97 1 - 5 FAO plus 

Chavas (2001) DEA 12 1960-94   
Ball et al. (2001) Fisher (EKS) 10 DC 1973-93  Eurostat plus 
Suhariyanto et al (2001) DEA 65 As./Af. 1961-96   
Suhariyanto and Thirtle (2001) sequential DEA 18 Asia 1965-96 1 – 5 WATIVIEW, 

FAO 
Trueblood and Coggins (2003) DEA 115 1961-91 1 – 5 FAO 
Nin et al. (2003) sequential DEA 20LDC 1961-94 2 -  6 FAO 
Bravo-Ortega and Lederman (2004) Translog 77 1961-00 1 – 5 FAO 
Coelli and Rao (2005) DEA 93 1980-00 2 – 6 FAO 
Ludena et al. (2007) directional DEA 116 1961-01 3 - 9  FAO plus 
Fuglie (2008) Solow-type growth 

accounting method 
171 1961-06 2 – 5 FAO plus 

von Cramon-Taubadel et al. (2009) DEA and m-order 111 1970-07 1 - 4; 2 - 6 FAO plus 
Evenson and Fuglie (2009) Solow-type growth 

accounting method 
156 1970-05 2- 5  FAO plus 

Headeyet al. (2010) DEA and SFA 88 1970-01 2 - 5 FAO plus 

Source: own presentation and Coelli and Rao (2005) 

Further potential sources of variability in TFP estimates that have been 
acknowledged in recent papers (e.g. Headey et al., 2010; von Cramon et al., 2009) 
include: i) the dimensionality of DEA models; ii) measurement errors in the data; 
iii) contraction of the frontier in DEA models; iv) unrealistic implicit input value 
shares in DEA models; v) outliers; vi) production function forms; vii) aggregation; 
and viii) the imputation of output and input value shares in the Index numbers 
approach. 
The objective of this study is to make a contribution to finding common ground 
among different estimates of global TFP growth. We apply a wide range of 
estimation methods to a consistent and comprehensive dataset. The dataset and 
modeling methods account for past deficiencies and critiques. Estimation methods 
include the most recent advances in efficiency and productivity analysis (e.g. the 
robust partial frontiers developed by Cazals et al., 2002) as well as conventional 
methods (DEA, FDH, SFA, Index numbers). 
In the last part of the paper we study the patterns of productivity growth estimates. 
To this end, we test whether the agricultural productivity growth is accelerating or 
decelerating using the range of estimates produced according to different methods 
as outlined above.  
 



2 Methodology and Data 

2.1 Discussion of the output and input data 

The dataset of the study contains 184 countries and the time frame begins in 1975 
and extends to 2007. For output, FAO publishes data on production of crops and 
livestock and aggregates these into a production index using a common set of 
commodity prices based on the 1999–2001 period.  
For inputs, we mainly use FAOSTAT database. Inputs are divided into six 
categories. Farm labor is the total economically active population (males and 
females) in agriculture. Fertilizer is the amount of major inorganic nutrients applied 
to agricultural land annually, measured as metric tons of N, P2O5, and K2O 
equivalents. The rest four are the categories of the agricultural capital stock (ACS). 
Comprehensive data of the ACS in the study is based on physical inventories 
contained in the FAOSTAT database which are available for essentially all 
countries over several decades, but which only cover a relatively narrow set of fixed 
assets in farming. They are i) land (arable land, permanent crops, irrigation land), ii) 
livestock (cattle, buffaloes, sheep, goats, pigs, horses, camels, mules and donkeys, 
poultry), iii) machinery (tractors, harvesters milking machines, hand tools), iv) 
structures (for animals, for poultry).  
To convert physical inventories into asset values, we use the 1995 unit asset prices 
that were compiled by the FAO (2002). These were drawn from a number of 
sources such as country investment project reports prepared by and for FAO, 
FAOSTAT data on purchase prices of means of production such as tractors, and 
unit trade values. For details on these unit prices and other aspects of the estimation, 
the reader is referred to FAO (2001a) and von Cramon et al. (2009). Using constant 
prices to arrive at ACS costs allows us to overcome some notorious deficiencies in 
the data. For example accounting for a quality of the land turned out to be an 
important ingredient for measuring international TFP growth rates (e.g. Fugli, 2008; 
Craig et al, 1997). Another issue is omission of horsepower of tractors as the input 
variable (e.g. see Coelli and Rao, 2005). In these two cases the unit land and 
machinery prices will reflect the quality and power differences in corresponding 
ACS categories.  

2.2 Discussion of the methods for TFP growth measurement 

Total Factor Productivity (TFP) is defined as the ratio of total output to total inputs. 
The direct way to calculate the changes of TFP over the time is to use the index 
number approach. In a multi-output and multi-input setting it might be calculated, 
for instance, via a conventional Divisia index, defined as 

(1) 
K M

k m
k m

k mk m

dx dy
TFP s r

x y
    

Here, ks  denotes the cost share of input kx , and mr denotes the revenue share of 

output my . The key challenge of this method is to collect a representative cost and 

revenue shares for most countries. If fixed revenue and cost shares are used over a 
long period, this could potentially lead to the ‘index number bias’. Using this 
method Evenson and Fuglie (2009) and Fuglie (2008) with region-wise fixed 
revenue and cost shares, contrary to the past empirical evidence  of a general 
slowdown in global productivity growth, find that global agricultural TFP has 



accelerated since 1980. In our application we collect significantly disaggregated and 
country- and time-specific data on cost shares for the countries in LAC, Asia and 
Africa regions as in Avila and Evenson (2010). For the rest countries we use region-
wise cost shares (Method 2: Divisia index w/var. shares) as in Evenson and Fuglie 
(2009). For comparison we also generate Divisia TFP growth index using region-
wise fixed factor shares (Method 1: Divisia index w/const. shares).   
Malmquist TFP index is the alternative measure of TFP growth. It is, perhaps, the 
most frequently used method over the last two decades and it is defined via the 
output distance functions (e.g., see Färe et a., 1994). The main advantage of the 
Malmquist index is that it does not require the data on input and output prices. It’s 
another important property for our application is that under the constant returns to 
scale technology the Malmquist index simplifies to a Tornquist-type index (Caves 
et. al, 1982), which is comparable to the Divisia index in eq. (1) with non-constant 
output and input cost shares.  
The distance functions in Malmquist TFP index are defined relative to the reference 
technology frontier that requires an appropriate methodology to estimate/construct. 
There are two approaches to deal with it, namely non-parametric and parametric. 
DEA is probably the most often used method in the family of non-parametric 
methods. The main advantages of DEA are well documented in the literature and 
require no further detailed discussion (see e.g. Daraio and Simar, 2007; Coelli et al, 
2005). However, the disadvantages of the ‘conventional’ DEA (Method 3: 
Conventional DEA) certainly need a brief discussion at least for two reasons. 
Ignoring them affects the resulting frontier estimate and makes the resulting TFP 
growth estimates unreliable. The disadvantages of the conventional DEA gave rise 
to completely new methods or modified versions of DEA (they are discussed 
below) that are also used in TFP growth analysis and lead to variability of resulting 
TFP growth estimates.  
The resulting optimal weights or ‘shadow prices’ of inputs and outputs in the 
equivalent dual formulation of the distance function (e.g., see Kuosmanen et al, 
2004) and consequently implicit cost and revenue shares, might significantly differ 
from prior knowledge or conventional views, this might question the reliability of 
the resulting TFP growth estimates. For instance, Coelli and Rao (2005) report a 
zero mean shadow value share for land for USA and Mexico. Conventional way to 
overcome this is to impose the bounds on the value shares, leading to so-called 
‘restricted’ DEA (Method 5: Restrictive DEA). As in the Divisia index case above, 
we introduce country- and time-specific bounds on cost shares for the countries in 
LAC, Asia and Africa regions as in Avila and Evenson (2010). For the rest 
countries we use region-wise cost shares as in Evenson and Fuglie (2009).  
Nin et al. (2003) raises the next problem. He points out that DEA-based TFP growth 
results often show contractions of the frontier over long period of time, which might 
look questionable in light of the technology adoption and diffusion expectations.  
Nin et al. (2003) propose to use a ‘cumulative/sequential technology’ DEA (Method 
4: Sequantial DEA) approach that precludes the possibility of the technology 
recession. This modified DEA approach makes use of all the input-output data on 
all countries available for all time points up to the period of estimation. Method 6 
(Sequential & Restrictive DEA) in our toolkit combines the advantages of the two 
methods described above.  
The main limitations of the conventional and the three modified DEA methods 
being acknowledged in the literature are the curse of dimensionality and sensitivity 
to outliers (Daraio and Simar, 2007; p.48). As we estimate a relatively high 



dimensional model, these problems are potentially acute in our application. For 
instance, before the breakdown of the Soviet Block (Soviet Union, Yugoslavia SFR, 
and Czechoslovakia) in the early 90s, we could consider estimating DEA model 
with 2 outputs and 6 inputs on 163 observations. Since the DEA estimator 

converges at rate of 2/( 1)n mn   , it is not difficult to show that this nonparametric 
estimator is roughly equivalent to that of a corresponding fully parametric model 
estimated with only 10 observations (see details in Daraio and Simar, 2007; p.153).  
Clearly, estimating such a model makes resulting frontier and distance function 
estimates (and thus TFP growth) unreliable. To overcome this problem we 
aggregate some of the inputs to decrease the dimensionality of the DEA models to 2 
outputs and 3 inputs.  
As an alternative, partial or so-called robust frontiers can be estimated based on the 
order-m expected maximum output frontier (Method 7: Order-m) and order-α 
(Method 8: Order-alpha) quantile-type frontier (Daraio and Simar, 2007; p.65). The 
main idea of the order-m method is to estimate a frontier which does not envelop all 
the data points. The idea behind order-α method is to determine the frontier by 
fixing fist the probability (1- α) of observing points above this order-α frontier. 

These partial frontiers have nice statistical properties ( n consistency and 
asymptotic normality), so they do not suffer from the curse of dimensionality 
problem shared by DEA models. Also the order-α frontiers are more robust to 
extremes that the order-m (Daraio and Simar, 2007; p.74). TFP growth rates we 
estimate as in Wheelock and Wilson (2003) and Wheelock and Wilson (2009).   
The basic drawback of all the above non-parametric methods discussed above is 
that they do not allow for noise. This might be a very important restriction in the 
context of country-level data. Although FAOSTAT database is perhaps the best 
available for producing internationally comparable agricultural productivity 
estimate, still it is widely maintained that it might be strongly flawed in some cases 
especially for developing countries (e.g. see a short discussion in Headey et al., 
2010). The family of SFA (parametric) models allows for the noise in the data. 
Using flexible form of the production function (e.g. translog) the SFA, however, is 
limited by strong assumptions on the error and inefficiency terms. In our application 
we estimate the heteroscedactic ‘Error Components Frontier’ model of Battese and 
Coelli (1992) on a pooled dataset. The translog stochastic distance function is 
constructed as in Brümmer et al (2002) and we compare two approaches to model 
the technical change. In the first case we model it as a ‘standard time trend’ model 
(Method 9: SFA w/trend) with a constant technical change rate. Alternatively, we 
replace the time trend component with a ‘general index of technical change’. This 
specification mimics in a sense a nonparametric approach above since incorporating 
the time dummies allows us to construct a time specific frontier (Method 10: SFA 
w/general index of tech. change). The technical change is much less restricted in 
this case. For the details of the time trend versus general index technical change 
models refer to Baltagi and Griffin (1988).  Parameters of the distance functions in 
the parametric and non-parametric models are restricted to the CRS case.   

3 Results and Discussion 

To begin with we applied a semi-automatic methodology proposed by Simar (2003) 
to detect the most extreme observations. Overall, we identified and dropped from 



the sample only three outlying observations. They are Romania (in 1977) and 
Thailand (in 1982 and 1985).  
Table 2 Summary statistics, 1975-2007 
 mean Std min max
Output1: livestock, 1000 I$ 2840894.44 9134554.23 592.00 120801200.00
Output2: crop, 1000 I$ 4823642.54 17143304.61 32.00 265647000.00
Input1: land, 1000 I$ 12566.47 40765.50 0.25 362324.11
Input2: livestock, 1000 I$ 5608.71 15038.29 0.23 146593.24
Input3: machinery, 1000 I$ 3717.77 15081.28 0.13 185666.99
Input4: structures, 1000 I$ 1111.48 4719.63 0.12 75665.88
Input5: fertilizers, 1000 t 829914.72 3382786.69 3.00 65104026.00
Input6: labor, 1000 7101.09 40001.27 1.00 499018.00
Source: own presentation 
  
Table 3 TFP growth in different regions of the world according to different 
specifications and estimation techniques (average annual rate of TFP growth in %) 
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Divisia 
Index: const 

shares 
p = 2, q = 3 

1.92 
(4) 

1.1 
(13) 

2.2 
(2) 

1.3 
(11) 

1.9 
(5) 

2.37 
(1) 

1.73 
(8) 

1.7 
(9) 

1.18 
(12) 

1.45 
(10) 

2 
(3) 

1.85 
(7) 

1.85 
(6) 1.9 

Divisia 
Index: var. 

shares 
p = 2, q = 3 

1.72 
(7) 

1.38 
(10) 

2.28 
(2) 

1.3 
(12) 

1.63 
(9) 

2.7 
(1) 

2.03 
(3) 

1.7 
(8) 

1.11 
(13) 

1.34 
(11) 

2 
(4) 

1.8 
(6) 

1.87 
(5) 1.98 

Conv. DEA 
p = 2, q = 3 

1.88 
(7) 

3.1 
(1) 

1.43 
(11) 

2.41 
(5) 

0.13 
(13) 

2.24 
(6) 

1.86 
(8) 

2.54 
(4) 

1.44 
(10) 

2.64 
(2) 

2.54 
(3) 

0.95 
(12) 

1.8 
(9) 2.29 

Seq. DEA 
p = 2, q = 3 

1.63 
(10) 

2.4 
(4) 

2.25 
(6) 

2.76 
(1) 

0.43 
(13) 

2.39 
(5) 

1.97 
(7) 

2.55 
(2) 

1.2 
(11) 

1.91 
(8) 

2.53 
(3) 

1.18 
(12) 

1.89 
(9) 2.34 

Restr. DEA 
p = 2, q = 3 

1.79 
(9) 

1.84 
(8) 

2.33 
(2) 

1.87 
(7) 

0.76 
(12) 

2.27 
(3) 

2.07 
(4) 

1.96 
(5) 

1.69 
(10) 

1.95 
(6) 

2.53 
(1) 

0.53 
(13) 

1.66 
(11) 2.09 

Seq. Restr. 
DEA 

p = 2, q = 3 
1.81 
(7) 

1.77 
(8) 

2.19 
(2) 

1.91 
(5) 

0.94 
(12) 

1.97 
(3) 

1.85 
(6) 

1.96 
(4) 

1.61 
(9) 

1.49 
(10) 

2.31 
(1) 

0.56 
(13) 

1.48 
(11) 1.97 

Order-m 
p = 2, q = 6 

2.9 
(3) 

2.05 
(9) 

2.19 
(8) 

2.48 
(6) 

1.45 
(12) 

3.02 
(2) 

1.54 
(10) 

3.27 
(1) 

2.52 
(4) 

2.48 
(7) 

2.5 
(5) 

1.38 
(13) 

1.47 
(11) 2.66 

Order-alpha 
p = 2, q = 6 

2.34 
(4) 

2.3 
(6) 

1.81 
(10) 

2.78 
(3) 

1.13 
(13) 

3.09 
(2) 

1.31 
(12) 

3.39 
(1) 

2.21 
(7) 

2.33 
(5) 

2.1 
(9) 

1.61 
(11) 

2.14 
(8) 2.65 

SFA: trend 
p = 2, q = 6 

1.05 
(3) 

0.17 
(12) 

0.96 
(5) 

0.95 
(6) 

-
0.32 
(13) 

1.84 
(1) 

0.67 
(9) 

0.61 
(10) 

0.95 
(7) 

0.97 
(4) 

0.8 
(8) 

0.51 
(11) 

1.1 
(2) 1.04 

SFA: 
gen.tc.ind 

p = 2, q = 6 
0.84 
(10) 

3.33 
(4) 

3.19 
(5) 

1.64 
(8) 

-
0.31 
(13) 

3.57 
(1) 

3.5 
(2) 

1.11 
(9) 

0.35 
(12) 

0.39 
(11) 

3.44 
(3) 

2.96 
(6) 

2.61 
(7) 2.63 

Source: Authors’ estimates 
Notes: ranks in brackets; SSA, dvg (Sub-Sahara Africa, developing), SSA, dvd (Sub-Sahara Africa, 
developed), N.America (North America), North Asia, dvd (North Asia developed), R. Asia (Rest of 
Asia), W.Europe (Western Europe), CEEC (Central and Eastern European Countries),  FSU 
(Former Soviet Union 12 countries), M.East&N.Africa (Middle East and North Africa ), LAC (Latin 
America and Caribbean) 
 
Table 3 compares the regional aggregates (using output weights) of TFP growth 
estimates from different models (for the same input-output data and the same 184 



countries, see Table 2 for summary statistics1). In general the global average TFP 
growth varies from 1.9% (Divisia index with const shares) to above 2.6% (partial 
frontiers and SFA with general index of technical change). The ranking of the 
regions across the methods does not reveal a consistent pattern. For instance, the 
SSA (devg) region lags far behind according to the Index numbers and SFA with 
trend approaches, i.e. 13th and 12th (out of 13) in the lists with 1.1% and 0.17% of 
average annual TFP growth respectively. However, it ranks high according to the 
conventional DEA model and SFA with general index of technical change model, 
i.e. 1st and 4th with 3.1% and 3.33% of average annual TFP growth respectively. 
The only region that ranks consistently across parametric and non-parametric 
models is North Asia (devd). It is in the end of the list with even negative average 
TFP growth in SFA models (about -0.3%), and it is also in the end across 
nonparametric models (12th or 13th). China in most of the cases is on top of the list 
with 1.84-3.57% average annual TFP growth. 
Rank-correlation (spearman) statistics of the individual (country- and year-specific) 
TFP growth rates in the Table 4 confirms the lack of association in the patterns of 
TFP growth estimates across the methods. In most of cases the individual results 
from different estimation methods show no statistically significant correlation.   
 
Table 4 Rank-correlation (spearman) statistics of the individual disaggregated TFP 
growth indexes 

Specification 
Divisia 
Index: 
const 

Divisia 
Index 

 

Conv. 
DEA 

 

Seq. 
DEA 

 

Restr. 
DEA 

 

Seq. 
Restr. 
DEA 

 

Order-
m 
 

Order-
alpha 

 

SFA: 
trend 

SFA: 
gen.tc.ind 

Divisia Index: 
const shares *** 0.03 0.03 0.03 0.02 0.01 0.00 0.01 -0.01 0.00

Divisia Index 0.03 *** 0.03 0.04 0.02 0.02 0.02 0.01 0.00 -0.01
Conv. DEA 0.07 0.04 *** 0.03 0.04 0.02 0.02 0.01 0.02 0.00
Seq. DEA 0.07 0.02 0.05 *** 0.03 0.04 0.01 0.01 0.01 0.01

Restr. DEA 0.28 0.12 0.02 0.08 *** 0.02 0.02 0.01 0.02 0.00
Seq. Restr. DEA 0.35 0.31 0.30 0.02 0.19 *** 0.03 0.02 0.00 0.03

Order-m 0.99 0.32 0.23 0.36 0.11 0.10 *** 0.03 0.01 0.00
Order-alpha 0.72 0.60 0.34 0.60 0.69 0.17 0.06 *** 0.03 0.02
SFA: trend 0.53 0.79 0.29 0.51 0.13 0.95 0.43 0.04 *** 0.04

SFA: gen.tc.ind 0.93 0.51 0.89 0.62 0.78 0.07 0.79 0.16 0.01 *** 
Source: Authors’ estimates 
Notes: upper diagonal part contains correlation coefficients; lower diagonal contains corresponding 
p-values 
 
Figure 1 gives a hint to the answer whether tfp growth is accelerating or 
decelerating. Similar to the discussion above, the cumulative regional TFP growth 
patterns are very heterogeneous and complex. They vary from one method to 
another and from one region to another. For instance, the cumulative TFP growth 
patterns for the North Asia (devd) region demonstrate negative as well as positive 
trend. However, overall it looks like the time series of cumulative TFP growth are 
trending linearly upward, except for China and FSU where the trend looks 
nonlinear.   

                                                 
1 Table with groupings and countries involved in the analysis is available from the authors upon 

request 



 
Figure 1 Cumulative TFP growth rates resulting from different methods, 1975-
2007 

 

Source: Authors’ estimates; Notes: ranks in brackets; SSA, dvg (Sub-Sahara Africa, developing), 
SSA, dvd (Sub-Sahara Africa, developed), N.America (North America), North Asia, dvd (North Asia 
developed), R. Asia (Rest of Asia), W.Europe (Western Europe), CEEC (Central and Eastern 
European Countries),  FSU (Former Soviet Union 12 countries), M.East&N.Africa (Middle East and 
North Africa ), , LAC (Latin America and Caribbean) 
 
To give a more specific answer to this, for each method we test how the 
distributions of TFP growth estimates evolve over the time. For this we use 
Kolmogorov-Smirnov (K-S) test on the equality of distributions. For each method 
we perform year-wise comparisons of TFP indexes and tested which of the two 
compared distributions is stochastically greater (acceleration of TFP growth) or 
smaller (deceleration of TFP growth) at 5% significant level. For each method we 
performed 480 comparisons and looked at whether we have similar patterns of 



“significance shots” for each particular year across the methods. A careful look at 
these demonstrates a quite incidental/random (w/o a pattern) and sparse (not many 
methods) character of ‘significance shots’2. Based on this we can conclude that 
there has been no significant change (i.e. no acceleration and deceleration) in the 
international agricultural TFP growth patterns. As we already observed it early in 
the Figure 1, the cumulative international TFP growth is trending linearly upwards.               

Conclusions 

Despite a long tradition of applied research on global agricultural productivity 
patterns, the stock of results provides a very mixed picture of long-run trends and 
displays considerable variation across countries, regions and studies. Moreover, 
there is no clear consensus on such important issues as whether global agricultural 
TFP growth has been slowing or accelerating, or the magnitude of agricultural TFP 
growth in Sub-Saharan Africa in recent decades. 
In this paper we make a contribution to finding a common ground among the global 
TFP growth patterns resulting from different estimation techniques. We apply a 
wide range of estimation methods to a consistent and comprehensive panel of 
countries over 1975 to 2007. The core of the dataset is the FAO dataset on 
agriculture, adjusted for some notorious deficiencies and critiques. Estimation 
methods include the most recent advances in efficiency and productivity analysis as 
well as the conventional methods. 
The results demonstrate that there are large variations in TFP growth rates across 
the regions and methods. The global average TFP growth varies from 1.9% to 
above 2.6% over 1975 to 2007. The ranking of the regions across the methods does 
not reveal a consistent pattern. Rank-correlation statistics of the individual country-
wise TFP growth rates confirms the lack of association in the patterns of TFP 
growth estimates across the methods.  
Looking at the region-wise cumulative patters of TFP growth and by comparing 
statistically country-and year-wise distributions of the individual TFP growth rates 
resulting from different methods we could not infer about a consistent patterns of 
acceleration or deceleration of the global TFP growth rates among the methods.      
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