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Spatial Pricing and the Location of

Processors in Agricultural Markets

Abstract

Spatially dispersed production and processing, endemic for most agricultural or re-
newable resource markets, causes oligopsonistic competition. The possibility and use
of spatial price discrimination in these markets is well documented. It is also well
known that the location of processors relative to competitors crucially affects the in-
tensity of competition. However, insights regarding the relation between spatial price
discrimination and the spatial differentiation of firms are barely present because the
simultaneous investigation of these issues is often intractable analytically. We use com-
putational economics to study these problems under a general theoretical framework.
For instance, we show whether and under which conditions firms choose to differenti-
ate their locations and/or price strategies. Results are consistent with observations in
agricultural markets.

Keywords: spatial price competition, spatial differentiation, price discrimination, com-
putational economics

1. Introduction

Non-negligible transport costs and spatially distributed production are important at-
tributes of most agricultural commodities or renewable resources (e.g., forest, oilseeds
or - with increasing importance - raw materials for bio-energy) and can cause oligop-
sonistic competition (Faminow and Benson, 1990; Löfgren, 1986). For instance, the
location of new ethanol plants in the U.S. is an example of contemporary interest.
New plants emerge in central locations as well as peripheral regions (Figure 1). While
most plants are concentrated in regions with intensive corn production, entrants in
these regions need to compete with established plants which cause input (corn) prices
to increase in tendency (McNew and Griffith, 2005). Entrants in less intensified pro-
duction regions (e.g., along the U.S. east cost) avoid this kind of price competition but
may face higher procurement costs. Abstracting from different production densities
and using homogeneous space instead, the only variable of interest are transport costs.
Hence, the problem can be reduced to the trade-off between minimizing transport costs
by central locations and relaxing price competition by peripheral locations (Beckmann
and Thisse, 1986).
Location theory provides the framework to address these kinds of research questions.

However, spatial competition for a homogeneous input is not necessarily characterized
by the processors’ locations solely. Instead, local market power enables spatial price
discrimination to be used, and processors may choose among a variety of spatial price
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Figure 1. Location of ethanol plants in the U.S.

strategies which differ by the consideration of transport costs within the local price at
the place of production (Löfgren, 1986).
Most models in spatial economics analyze either the firm’s location or its price

policy while the other is considered exogenous. However, a key variable that influences
firms’ decisions regarding the spatial price policy is the competitiveness of a market
measured by the transport costs and distance to competitors (hereafter inter-firm
distance) relative to the product’s value (Thisse and Vives, 1988; Espinosa, 1992;
Zhang and Sexton, 2001). The inter-firm distance, in turn, depends on, e.g., the
number of firms in the region (Economides, 1993; Brenner, 2005) and/or the dimension
of space (Tabuchi, 1994; Irmen and Thisse, 1998; Ansari et al., 1998).
To tackle the interdependencies of spatial pricing and location, i.e., between spatial

price discrimination and spatial differentiation, we use a general theoretical model
where competition is considered as interplay of the processors’ locations and their
spatial price policies. The latter are defined as linear price distance functions, i.e.,
the local price consists of the price at the processor’s location (mill price) and the
degree of freight absorption (spatial price discrimination). In this way, we represent a
continuum of spatial price policies available to the firm including the three commonly
studied strategies of spatial competition: free on board (FOB), uniform delivered
(UD), and optimal discriminatory (OD) pricing.1

1 Under UD pricing producers receive the same price irrespective of their location relative to the
processor, while local prices differ exactly by transport costs in the case of FOB (or mill) pricing.
Depending on the form of supply functions OD pricing involves partial freight absorption, i.e.,
local prices differ by an amount less than the actual transport costs.
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Because we analyze a two-dimensional framework of multi-firm competition, ana-
lytical solutions cannot be obtained. Therefore, we take advantage of recent develop-
ments in the field of computational economics and use a simulation technique that is
able to investigate spatial competition as a non-cooperative static game under relaxed
competition. Particularly, we use an agent-based model for a spatial input market
and identify the processors’ decision (regarding location and price policy) by genetic
algorithm learning (GA) of equilibrium strategies.
Among other characteristics, this model is able to incorporate multi-firm competi-

tion, two-dimensionality of the geographical region, as well as alternative elasticities of
supply for the agricultural input. The investigation of an input market considering all
these features and their combinations are extensions to existing literature. Hence, the
method allows accounting for critical model assumptions, both in terms of their effect
on the outcome and analytically tractability of the model. Instead of specifying the
model to a particular market to explain certain observations, we conduct simulation
experiments to analyze the impact of model parameters on equilibrium conditions.
Consequently, the present paper can be understood as a first explorative approach
towards understanding the interdependencies between location and pricing.

2. Theoretical Background

Let P denote the set of processors and S the set of suppliers (farmers) such that
P = {p| p = 1, 2, . . . , i} and S = {s| s = 1, 2, . . . , j}. Each of them occupies a location
L = (x, y) in two-dimensional space, with x ∈ X =

{
x ∈ Ò

∣∣∣ 0 ≤ x ≤ xmax}, y ∈ Y ={
y ∈ Ò

∣∣∣ 0 ≤ y ≤ ymax}, and xmax and ymax being the exogenous size of the region. The
maximum distance between two locations is dmax = 1 and other distances are scaled
accordingly, i.e., dLL′ ∈ [0, 1], with dLL′ =

√
(xL − xL′)2 + (yL − yL′)2/

√
x2
max + y2

max.
While D = (dsp)j×i is the distance matrix between suppliers and processors, the mar-
ket’s (average) inter-firm distance is:2

d = 1
i

(∑
i

[∑
p

dpp′

i− 1

])
∀p and p 6= p′. (1)

Processors are free to choose their location Lp = (xp, yp), but suppliers are distributed
in the region according to a density function τ(L) = 1, i.e., there is exactly one supplier
of the input at each point. The transport rate δ is constant. Transport costs between
p and s are δdsp. The local price wp(dsp) of firm p at point s is defined as a linear price
distance function (Smithies, 1941a):

wp(dsp) = mp − αpδdsp. (2)

While α = [0, 1] is a constant portion of the transport costs δdsp, mp is the mill price
at the processor’s location (wp(0) = mp). FOB pricing is characterized by α = 1;
there is no spatial price discrimination because local price differences reflect exactly
the transport costs between different locations (Phlips, 1983). Conversely, if α = 0,

2 The formulation can be used for continuous and discrete space. In the simulation model, as used
below, space is discrete in form of a grid of cells. There, the distance between two locations (two
cells) is determined by the shortest distance from one cell’s center to the other.
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the processor uses UD pricing, i.e., there is an identical price over the market area of p.
We denote F = (m,α) as the firm’s spatial price strategy. We assume that suppliers
are price takers and aim for the highest price. For any location L = (x, y), the local
price w(L) is:

w(L) = max

0,mp − αpδ

√√√√(x− xp)2 + (y − yp)2

x2
max + y2

max

 ∀ p ∈ P. (3)

The input producer’s supply function is:

qs = q(w) = w(L)ε with ε ≥ 0. (4)

For the moment, we suppose ε = 1 but vary this assumption later. Because the
supplier’s location is fixed, the local profit of an individual processor depends on its
location Lp, i.e., the distance to the supplier’s location dsp and its price policy Fp. We
denote γp as p’s strategy, with γ ∈ Γ and Γ = (F,L) = (m,α, x, y). The local profit
depending on the distance to p can be written as:

Πp(s) = (ϕ− w(dsp)− tdsp)qs, (5)

where ϕ is the net price of the finished good sold by the processor.3 The processor
only purchases the input from locations that yield positive local profits, i.e., ϕ −
w(dsp) − δdsp ≥ 0. Furthermore, the local price wp(dsp) has to be nonnegative, i.e.,
mp − αpδdsp ≥ 0 . Hence, there is a marginal location at distance Rp subject to p’s
price strategy Fp:

R(Fp) = min

mp

αpδ


α>0

,
ϕ−mp

(1− αp)δ


α<1

 . (6)

All suppliers inside the market radius Rp based on Lp can contribute a positive amount
to p’s profit. We define this set of potential suppliers as:

Cp = {c ∈ S| dcp ≤ Rp}. (7)

Whether c will deliver to p, also depends on the prices of the competitor at Lc. Con-
sequently, the set of actual suppliers Kp is a subset of Cp, with:

Kp = {k ∈ Cp|wp(dkp) ≥ w(dkp′)} ∀ p′ ∈ P, p 6= p′. (8)

Additionally, it is:

Kp ⊆ Cp ⊆ S,

Kp ∩K ′p = ∅ ∀ p, p′ ∈ P, p 6= p′, and

K ⊆ S with K =
i∑

p=1
Kp.

(9)

3 Using (2) to substitute for w(·) in (5) and differentiation with respect to m and α yields the
optimal strategy of the monopsony: OD pricing with F = (0.5, 0.5). However, OD pricing is
mostly not optimal under non-cooperative competition.
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As a result, we get p’s profit by introducing (2) and (4) into (5) as sum over Kp:

Πp(γp,γp′) =
∑
k

[ϕ−mp − (1− α)δdkp](mp − αδdkp), (10)

where γp′ is a vector of the competitors’ strategies.

3. Simulation Model

To analyze this system, i.e., to maximize (10) for each processor subject to its strategy
and the strategies of competitors, we use an agent-based model (ABM). The two
types of economic actors considered in the model are processors and suppliers of an
homogeneous agricultural raw product and their respective objective functions are (10)
and (4). Suppliers are price taker, but processors exhibit (local) market power. The
optimization rule (4) of input producers is to select the highest price at the own location
and set quantity accordingly, and it can easily be implemented by a computer program.
The decision rule of every processor is more complex. The processor’s payoff depends
on the competitors’ strategies according to (10). In this respect, it is well known that
payoffs are discontinuous in the competitor’s strategy and pure strategy equilibria fail
to exist, e.g., if firms locate too close to each other and use FOB pricing (D’Aspremont
et al., 1979) or in the case of competition under UD pricing (Beckmann, 1973; Kats
and Thisse, 1989). Moreover, the two-dimensional and multi-player framework causes
first order conditions of (10) to be polynomials of high degrees and analytical (closed
form) solutions do not exist.4 Therefore, to identify (close to) equilibrium strategies in
our general theoretical framework necessitates a powerful and flexible numerical tool.
We apply genetic algorithms (GA), which repeatedly have proven to be successful in
identifying equilibrium strategies in complex games.5
A GA is a stochastic heuristic search method to find optimal or close-to-optimal

solutions in large decision or strategy spaces (Mitchell, 1996; Goldberg, 1989). In
analogy to the biological evolution, the principle of GA is based on the survival of the
fittest (Dawid, 1999). During optimization, GA allows for the creation of new, poten-
tially superior solutions, which makes GA efficient and robust, i.e., it minimizes both
the dependency on the initial conditions and makes GA optimization less vulnerable
for local optima lock-in. While GAs have successfully been used over a broad range
of disciplines (Foster, 2001), economic applications to identify equilibria in games in
general and strategic market situations in specific include Axelrod (1987), Arifovic
(1994), Price (1997), Vallée and Başar (1999), Balmann and Happe (2001), and Alem-
dar and Sirakaya (2003). A more detailed description of the GA and an illustration of
its abilities and precision are given by means of a simple spatial competition example
4 For instance, Tabuchi (1994) uses a conversion of the uniform distribution of consumers in two-

dimensional space to a non-uniform distribution in one-dimensional space, which is not possible
for more than two firms. A similar difficulty regarding the number of firms affects the analysis
of Brenner (2005). As a result, he uses numerical methods to analyze the location of more
than three firms in one-dimensional space. Osborne and Pitchik (1987), who characterize mixed
strategy equilibria in the original Hotelling game, as well as Ansari et al. (1998), who extend the
Hotelling model to two- or multi-dimensional space, also use numerical methods.

5 To validate the simulation model in a spatial competition framework, we also used results derived
from theoretical models that include Norman (1981); Kats (1995); Hinloopen and van Marrewĳk
(1999); Zhang and Sexton (2001). The simulation was able to recapitulate these results with
high precision.
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in the supplementary material to this paper.6 In the next section, experiments for dif-
ferent spatial competition scenarios are presented. Thereby, the agent-based approach
provides an instrument to grasp the spatial dimension of a market and the interaction
among spatially differentiated players within it. Space is represented by a grid of cells
and locations are accessible by x-y coordinates. In order to exclude border effects, it
is feasible to wrap the space by constructing a torus or to analyze the influences of
border effects by using the simple, quadratic plane. In either case, the normalization
dmax = 1 is maintained. Each cell can be occupied by a number of agents but only
by one producer exactly. This represents the discrete form of the density function
τ(L) = 1.
Because the GA simulation is based on a stochastic process, we get a distribution

for each of the decision variables. Therefore, we separately present a simulation’s
outcome by density plots of location and price policy. In this way, we can easily link
the respective two decision parameters: the location in space via a x-y plot and the
price strategy parameters by am-α plot. The price policy parameters are discrete with
increments of 10−3 to 10−2. Due to the introduced suppliers’ distribution function and
considerations with respect to processing time, the region, whether or not modeled
as torus, is discrete in space such that X = Y = {0, 1, ..., 20}. Consequently, there
are 400 equidistant points and each of these points is occupied by one farmer. The
processors, however, can locate at any of those 400 points. Within the density plots,
the frequency of variable combinations (either location or price policy) is illustrated
by color. The lighter a point within the x-y or m-α plane, the more frequent the
parameter combination was observed as the outcome of the game. Although partly
caused by the stochastic nature of the algorithm, we may interpret the variability of
the results as evidence whether or not pure-strategy equilibria in location, price policy
or both exists. However, it is not the objective of the paper to characterize equilibria
whether or not in pure or mixed strategies. Instead, we doubt that this is feasible in
all presented cases.

4. Simulation Experiments and Results

The outcome of spatial competition models is very sensitive with respect to the under-
lying assumptions. The objective of the following simulation experiments is to analyze
some of the critical assumptions (both in terms of the outcome and tractability of the
models) in order to extend the understanding of spatial competition. Particularly, we
are interested in the relation between location and spatial price discrimination subject
to transport costs (δ), the number of processors (i), the nature of space, and the price
elasticity of supply functions for the input suppliers. The first two points directly
influence the degree of spatial competition but, as we will see, in a surprisingly dif-
ferent manner. Note that we set the product price ϕ = 1 via normalization. Hence,
normalized transport costs t = δ/ϕ is a relative measure of market competitiveness
(Zhang and Sexton, 2001; Mérel and Sexton, 2010). For instance, t = 0 yields the
classical Bertrand price competition, while sufficiently high transport costs may lead
to spatially separated monopsonies if processors do not choose to locate at the same
place. Hence, the markets competitiveness decreases with the importance of space td

6 This and other examples as well as a more detailed documentation of the simulation model can
be provided by the corresponding author upon request.
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Table 1. Specifications of the simulation experiments. Unlisted parameters
are set according to Section 2.

Simulations
Parameter Duopsony Oligopsony Unbounded Space Inelastic supply

i 2 3, . . . , 6 2, . . . , 6 2, . . . , 6
j 400 400 400 400
ϕ 1.0 1.0 1.0 1.0
t 0.0, . . . , 4.0 2.0 2.0 2.0

xmax, ymax 20 20 20 20
e 1.0 1.0 1.0 0.0

space plane plane torus plane
NoG 6250 3750 3750 3750
i = number of processors, j = number of suppliers, t = normalized transport rate, ϕ = price of
the processed good, xmax, ymax = size of region, e = price elasticity of supply, NoG = number
of analyzed games.

because t, which is exogenous, increases and/or because processors decide to locate
more distant from each other.
In the next sections, simulations are conducted for several selected values of t and

i. In contrast, the supply function and the nature of space are analyzed in two states
only. Regarding the latter, we compare a finite two-dimensional plane and a finite
space without borders, i.e., a torus. Furthermore, we estimate the effects of the supply
elasticity by two special cases: unit-elastic supply (ε = 1) and unit-supply (ε = 0).
Table 1 summarizes the specification of the simulations.

4.1. Duopsony

In the first experiments, we investigate processors’ decisions regarding the location and
the spatial price policy in duopsony depending on the degree of competition. Figure
2 shows the outcome of the simulations for selected values of transport costs.
The first row of density plots in Figure 2 represents the location of the two process-

ing firms. The lighter the color of a cell the more frequent the location was chosen
during the simulation. The frequency is scaled, i.e., a white colored cell indicates
the maximum while a black one corresponds to zero. Accordingly, the second row
highlights the frequency of the strategy parameter combinations.
From the left to the right, transport costs (importance of space) increase(s), i.e.,

competition decreases. If t = 0, we observe a diffuse location distribution. Conversely,
we notice two location equilibria for high transport costs (e.g., t = 4.0). In the
first case, the distance between firms does not matter, while the latter case is the
two-dimensional version of the "touching equilibrium" case as studied in Economides
(1984) or Hinloopen and van Marrewĳk (1999). Instead of location at the quartiles,
as in the one-dimensional touching equilibrium, processors locate at the center of the
opposite region’s quadrants to act as locally separated monopsonists, i.e., if firm A
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Figure 2. Location (above) and pricing (below) of the duopsony for selected
values of t. Narrow distributions are highlighted by arrows, as in the case
of t = 0.0 where m ≈ 1, while α is uniformly distributed over [0,1].

locates in lower left, B locates in upper right, or if A locates in upper left, B locates in
lower right. In either case, the market radii of both firms touch at the market center.
Between the two limit cases of t = 0 (perfect competition) and t ≥ 4 (local monop-

sony), spatial differentiation increases with increasing importance of space (decreasing
market competitiveness). While firms locate at the center of the market if competition
is fierce (see the second plot in the first row of Figure 2, t = 1), the distance between
both firms increases once transport costs become more important. Additionally, we
observe a relation between the the second part of the firms’ strategy, the spatial price
policy, and the intensity of spatial competition. This is shown in the second row of
Figure 2. Again, the first plot represents t = 0. In this case, α does not influence local
prices and is not essential for profit maximization. The observed uniform distribution
of α at the right edge of the figure (marked by the arrows in t = 0) is caused by the
random initialization of the decision variables within the simulations. As expected,
the optimal strategy corresponds to Bertrand competition with m = ϕ = 1.
If t > 0 but is sufficiently low, e.g., t = 1, high mill prices accompanied with

high α values (low price discrimination) are observed, i.e., processors use close to
FOB pricing. With increasing transport costs and spatial differentiation, we observe
increasing spatial price discrimination but decreasing mill prices. If t ≥ 4, both firms
can operate as local monopsonists given the respective choice of location and use the
profit maximizing OD price regime with F = (m,α) = (0.5, 0.5).

4.2. Oligopsony

The transport costs, measured by t, are one important parameter influencing com-
petition in spatial markets. In the previous section, lower values for t increase the
competitive pressure on processors because the relation between the importance of
space td and the value of the finished good (which was set to one) decreases. In this
section, we discuss the case of increasing competition due to an increasing number of
processors i. More firms diminish the (average) inter-firm distance and appear like
a reduction of t. However, the number of competitors crucially affects the market
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Figure 3. Location (top) and pricing (bottom) of the oligopsony. The case
of two to six firms. The first row illustrates the firms’ locations, while the
second row highlights the frequency of the price strategy parameters.

structure such that some firms may face competition in more than one direction while
others do not.
Simulations are conducted for three to six firms. In each scenario, t = 2 to high-

light the pure influence of i. Figure 3 shows the outcomes for the location-price-policy
game. The case of two firms is pictured to compare the duopsony with the oligopsony
outcomes. Again, the upper row provides information where the firms locate. Ob-
viously, independent of i, the square seems to be the general location pattern. Yet,
depending on i, firms locate at the angles, on the (middle of) edges, or even close to
the market center. These cases are discussed below. The robustness of the general
location pattern, however, is not surprising because the market region is modeled as
square. This is particularly intuitive in the case of four firms.
In the case of i = 3, the simulation data reveal that the locations of the three firms

coincide with corners of a triangle as depicted yellow in the location plot. By the
rotation of this triangle, we obtain four typical location equilibria in total. Thereby,
two firms locate at neighboring angles of the general location pattern. We denote
these locations as La. The third firm locates midpoint on the opposite segment of
the general location pattern and we denote this location Le. Considering the firm’s
price policy, depicted in the lower row of Figure 3, we find that a firm located at Le
uses a price strategy Fe = (me, αe) which consists of m-α combinations from the first
quadrant (upper left) of the price strategy plot. These strategies are characterized
by both high m and α. Conversely, the lower right quadrant’s policies feature higher
price discrimination (lower α values) and correspondingly lower mill prices. These
strategies, which we denote Fa, are employed by firms located at La. These results
are remarkable because they illustrate the relation between pricing and location as
well as make the potential of agent-based modeling apparent. We observe not only
heterogeneity in location but also differentiated price strategies.
The scenarios with four and five firms show a high variability but no clear differen-

tiation of price strategies. While strategies for i = 4 are mostly located in the fourth
quadrant (high price discrimination), the m-a combinations are spread over the first
and fourth quadrant for i = 5. If we plot the corresponding α values of the latter
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case pursuant to the coordinates, we notice that locations in the center of the square
pattern are linked to high price discrimination (low α-values). Centrally located firms
face fierce competition in each direction, while peripherally located firms have more
local market power. These results are in line with Economides (1984) or Brenner
(2005). The authors observe a U-shaped price structure in the FOB pricing oligopoly
with a linear market, i.e., FOB mill prices are high at the market’s edge and decrease
with decreasing distance to the market’s center. However, our results highlight market
power of peripheral firms by lower price discrimination.
Although of less magnitude, we also observe differentiation of price strategies for

i = 6. Frequency peaks are in the first and fourth quadrant of the price policy plot
of Figure 3. Thereby, four firms occupy the angles of the square, i.e, the general
location pattern, and two firms are oppositely located at the margin. The latter face
competition in two directions and use the strategies of the fourth quadrant.

4.3. Unbounded Space

Most of the one-dimensional models of location or product differentiation are based
on Hotelling’s finite line market with boundaries (Economides, 1993; Ansari et al.,
1998; Brenner, 2005). This is an intuitive assumption because there is almost always
a minimum and maximum of a quality or some kind of market border. However, bor-
der effects may not only cause analytical difficulties but may also lead to qualitative
different model predictions. For instance, Salop (1979) and Kats (1995) investigate a
circular market framework. While Salop (1979) assumes symmetric location equilib-
ria, Kats (1995) proofs their existence. Under a two-dimensional framework, we use
a torus where (x, y) = ({0, 1, . . . , xmax}, {0, 1, . . . , ymax}) and locations with the coor-
dinates (x, 0) and (0, y) are direct neighbors of (x, ymax) and (xmax, y), respectively.
Even though this construct is a strong abstraction, particularly with respect to spatial
markets, it facilitates the analysis of spatial competition when firms always have a
neighbor in each direction.
Figure 4 shows the outcome for the finite market without boundaries. Note that the

location of one firm is fixed at (x, y) = (0, ymax) to make the location pattern visible.7
In the case of two firms, we observe maximum differentiation and OD pricing. While
the location is robust over t, the price strategy is caused by t = 2. The maximum
distance in the market is dmax = 1.8 Firms can act as locally separated monopsonies
if dt ≥ 2 because it must hold that 4R∗ ≥ dmax, and R∗ is the monopsonistic market
radius given by a price policy F = (1/2, 1/2) and (6). We note that there is a significant
difference between this case and the outcome of t = 2 in Figure 2. In the bounded
market, the maximum distance is between two opposing corners. Accordingly, if the
firms locate inside the market d < dmax, and to have td = 2 requires, e.g., location at
the quartiles of a diagonal and t = 4. Consequently, we can compare the case of t = 2
in this section with the outcome of t = 4 of Figure 2.

7 If we consider the torus (or a circular market), instead of the actual location the distance between
the firms is crucial. As a result, if there is one location equilibrium, there is an infinite number of
location equilibria because the addition of the same vector to each of the firms’ locations yields
another location equilibrium.

8 Note that the maximum distance in the market under the torus is, e.g., between the market
center and a corner.
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Figure 4. Location and pricing of the oligopsony in unbounded space
(torus). In the location figures: cells at the upper edge are direct neighbors
of cells at the lower edge. The same is true for the left and right edge. The
location of one firm is fixed at the upper left corner with (x, y) = (0, ymax). In
cases of multiple location equilibria, typical constellations are exemplified.

The next three figures (i = 3, . . . , 5) show increasing competition given a constant
transport rate but an increasing number of competitors. The distribution of the loca-
tion parameters highlight the firms’ attempt to locate equidistantly.9 We can identify
multiple location equilibria in almost all figures. The location of the firms is illustrated
by geometrical forms as highlighted yellow in the particular scenarios but also by the
rotation or shift of these forms. If i = 5, the firms’ locations are on two parallel straight
lines. Note that the upper left and lower right corner represent one location (the same
firm). The algorithm is not able to find a stable location pattern if i > 5. Considering
the price strategies, we identify increasing spatial price discrimination with increasing
competition. In contrast to bounded space, price strategies that are characterized by
high α values are not observed.
The identification of increasing price discrimination with increasing competition is

in sharp contrast to the results in the previous section. This clearly highlights how
the construction of space influences the model’s outcome. The implications regarding
the spatial analysis as well as the investigation of product differentiation cannot be
neglected. In this regard, the present study is a generalization of Economides (1993)
or Brenner (2005) who attribute border effects significant impact on results in the
case of one-dimensional space under FOB pricing. Conversely, in almost all models of
spatial price competition, addressing the question regarding the optimal price policy
under competition, a line market is assumed where two firms are located at the end
points (Kats and Thisse, 1989; Espinosa, 1992; Zhang and Sexton, 2001). While this
structure is consistent with circular markets as studied by Salop (1979) or Kats (1995),
the presence of some kind of border or limit might be an intuitive feature of spatial
markets as well as markets of differentiated products. Nevertheless, both types of
space might be appropriate for different questions and particular for different markets,

9 Slight deviations from equidistant locations are caused by the discrete nature of the space. To
relocate, a firm has to increment either its x or y variable at least by one.
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but one has to be aware that one or the other structure significantly influences the
prediction of the model.

4.4. Perfectly Inelastic Supply

If supply is elastic, producers can mitigate a potentially negative effect of higher lo-
cal input prices on a firm’s profit by rising local supply. This supply effect is not
present under perfectly inelastic supply functions, which significantly alters the re-
sults. If we consider unit-supply within the simulation model where the producer’s
reservation price is zero, we identify a typical location pattern in form of a square but
less distinctive relative to previous experiments. We can also observe that prices (price
discrimination) increase (decreases) in tendency with increasing competition, i.e., with
an increasing number of competitors. Beside these observations, however, we are not
able to identify location equilibria in this setting. Additionally, price strategies are
distributed over a wide range of m-α combinations. Both results are not surprising. If
supply is perfectly inelastic, it is well known that equilibria in pure strategies do not
exist (D’Aspremont et al., 1979). However, the observation of a wide variety of price
and location strategies also supports the conclusion that price discrimination crucially
depends on spatial differentiation, i.e., the relative location of competitors.

5. Summary and Discussion

The main findings of the simulations are summarized by Table 2. For instance, we
observe increasing (decreasing) spatial price discrimination (α-values) with increasing
normalized transport costs under duopsony as well as an increasing number of com-
petitors under oligopsony. However, the competitiveness of the market differs in both
cases, i.e., it increases with i but decreases with t.
For comparable assumptions, our results are supported by existing theoretical in-

vestigations of partial aspects of the competition model as presented in this paper.
This validates the model. For example, Smithies (1941b) and Eaton (1972) show that
non-cooperative competition and elastic demand yields incentives for (close to) central
locations in the Hotelling model; Zhang and Sexton (2001) also yield mixed pricing
in equilibrium over some range of spatial differentiation in the duopsony; Economides
(1993) and Brenner (2005) also show that depending on location, some firms may ex-
hibit relatively higher local market power; and, as we observe maximum differentiation
in unbounded two-dimensional space, Kats (1995) gets this result for circular markets.
Additionally, there is empirical evidence. For instance, the survey of Greenhut (1981)
shows a variety of pricing in reality and we observe most of them in the simulations.
In general, we can explain our results with different effects caused by the flexible

adaptation of linear price strategies and the endogenous choice of location. Both repre-
sents a significant extension to previous price-location models. For instance, consider
the case of close to minimum differentiation under duopsony (t = 1). The observed
price strategy ensures high prices at the market border between both processors. This
competitive effect protects proximate locations from overbidding by the competitor.
At the same time, high local prices at proximate locations facilitate high supply effects
where it is most profitable (due to low transport costs) and low price discrimination
secures large market areas (market area effect) under high mill prices because suppli-
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Table 2. Outcome of the simulation experiments.

Duopsony Oligopsony Unbounded space Inelastic supply

Variable: transport number number number
costs of firms of firms of firms

m H � H N

α H � H N

d N H H H

m = processor’s mill price at its location, α = share of transport costs in local prices, β = degree
of spatial price discrimination, d = average distance between processors, H = decreasing, N =
increasing, � = indeterminate.

ers bear most of the transport costs. Consequently, the processor efficiently competes
against the proximate rival and accesses remote locations in the direction where no
other processor is located. We call these regions the hinterland of a processor.
Another example is the case of the oligopsony where some firms use higher price

discriminating strategies than others (e.g., if i = 3 or i = 6). Under the chosen loca-
tions, these processors face fierce competition in more than one direction. Therefore,
the competitive effect of pricing is the driving force. Firms discriminate against proxi-
mate suppliers to set higher prices at more distant locations. Conversely, if processors
occupy a location with significant hinterland, they face less intense competition. The
price strategy decision of these firms to opt for less price discrimination is driven by
the market area effect.
The presented simulation experiments cover a wide range of observations in agri-

cultural markets. For instance, markets for raw milk, meat packing, or fruit and veg-
etables feature spatially distributed production and processing as well as high price
discrimination (cf. Durham et al., 1996; Alvarez et al., 2000; Graubner et al., 2011).
Our results under oligopsony are consistent with these observations. Equally, we ob-
serve FOB pricing in markets where more than one processor locates at the same
location as in the case of grain delivered to harbors, the shipment of fresh produce to
traditional terminal markets (e.g., Sexton et al., 1991) or to one of multiple packing
houses located in close proximity to intense growing regions (e.g., Cho, 2004). Gal-
lagher et al. (2005) identify different pricing strategies of ethanol plants and our results
can explain this observation with the intensity of local competition.

6. Conclusion

We investigate spatial competition from an input market perspective because trans-
port costs and spatial distribution of supply and demand are key aspects for many
markets of agricultural products and renewable resources. Unlike previous studies, we
consider spatial differentiation (location of firms) and spatial price discrimination (spa-
tial pricing of firms) endogenous. Our approach accommodates a much more general
depiction of spatial competition than prior work, including two-dimensional spatial
markets, competition among multiple firms, and elastic input supply functions. To
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surmount the problem of analytical intractability, we use a computational approach
by combining agent-based modeling with genetic algorithms.
While results considerably differ from previous studies, they are widely consistent

with what we observe in agricultural markets including spatially dispersed production
and processing and the prevalence of spatial price discrimination in processor’s pricing
strategies. The particular aim of the paper is to provide a first investigation of what
is or could be possible and where might it be helpful. We showed that there are a
number of conditions which need to be considered, and often we do not even know how
alternative formulations of these assumptions or their combination affect the prediction
of a spatial competition model. Important issues of spatial economics are the firm’s
location and the nature of price competition in space. We addressed how the one
affects the other subject to critical model assumptions. Our results clearly highlight
that spatial competition models need to be carefully specified.
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