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1 Introduction

When assessing the integration of spatially separated markets, agricultural economists
typically analyze the transmission of price shocks between these markets. The law of one
price suggests that the same assets traded in markets in different locations should have
the same price. Otherwise traders would buy the good in the cheapest and sell it in the
dearest market to profit from arbitrage. Hence, prices in the two different places would
be drawn back together. However, this mechanism obviously only sets in if the price
differential exceeds the transaction costs incurred by moving goods between markets.
Threshold vector error correction models (TVECMs) have proven particularly adequate
to model these dynamics. They became widely popular with Balke and Fomby’s article on
threshold cointegration (Balke and Fomby, 1997). A TVECM differs from a vector error
correction model in that the coefficients are not fixed over time unless observations fall
into the same regime. Regimes are determined by relating the price differential (or, more
precisely, the error correction term) as the transition variable to the threshold parameters.
These lend themselves to be interpreted as transaction costs. Consequently, in the context
of modeling spatial arbitrage outlined above, three different regimes are defined by (i) the
value of the transition variable being smaller than the lower threshold or assets being
moved from the first to the second market, (ii) the transition variable taking a value in
between the two thresholds or no trade occurring and (iii) the value of the transition
variable exceeding the upper threshold or assets being moved from the second to the first
market.

Estimation of the threshold parameters is complicated by the fact that they are not
the only unknown model parameters. Of course, estimation in the presence of so-called
nuisance parameters is a situation commonly encountered. However, for TVECMs these
additional unknowns give rise to identification problems: On the one hand, if the difference
between model parameters for two adjoining regimes equals zero, the threshold which
separates them is not identified. On the other hand, if one of the threshold parameters
is located at the boundary of the space in which the transition variable takes its values,
the model parameters of the outer regime remain unidentified. The simplest approach to
handle nuisance parameters is to maximize them out for fixed values of the parameters
of interest – the thresholds – and base estimation on the profile likelihood function. The
profile likelihood estimator is indeed the prevalent threshold estimator in the econometrics
literature, see for example Hansen and Seo (2002). However, in certain situations this
estimator performs poorly, especially if there is only a small number of observations
available whereas the number of nuisance parameters is high. One would suspect threshold
estimation to become increasingly difficult the closer the true parameters get to a situation
in which identification problems occur; Balcombe et al. (2007) acknowledge this. As a
matter of fact, simulations reveal that the profile likelihood estimator tends to fail when
there is little difference in model parameters between regimes or thresholds divide the
data into sets which are quite unequal in size. This becomes a very sensitive issue when
modeling arbitrage. Clearly, the concept of arbitrage implies that the price differential
will revert to the middle regime. Especially when integration is strong, so that deviations
from the long-run equilibrium are corrected quickly, there will be few observations in the
outer regimes, making estimation of the threshold and the error correction parameters in
these regimes unreliable.

In this article, we suggest an alternative threshold estimator based on an empirical Bayes
approach. The idea is to both account for nuisance parameter variability and regularize
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their estimates if necessary. Simulation studies confirm that this new estimator yields
good results even in settings where the profile likelihood estimator is highly susceptible
to faults.

The rest of this article is organized as follows. In the second section, we specify the
model, discuss existing threshold estimators together with their deficiencies and present
our modified estimator. Its performance is illustrated by a simulation study in the third
section. The fourth section reviews an application of TVECMs in the analysis of spatial
market integration for the case of four corn and soybean markets in North Carolina
detailed in a seminal paper by Goodwin and Piggott (2001). We apply our empirical
Bayes estimator to their data in order to contrast old and new estimation results.

2 Theory

2.1 The Model

Observations pt = (pt,1, pt,2)T of a two-dimensional time series generated by a TVECM
with two thresholds or three different regimes, which are characterized by parameters
ρk, θk ∈ R2 and Θkm ∈ R2×2 for k = 1, 2, 3 and m = 1, . . . ,M , can be written as

∆pt =



ρ1γ
Tpt−1 + θ1 +

M∑
m=1

Θ1m∆pt−m + εt , γTpt−1 ≤ ψ1

ρ2γ
Tpt−1 + θ2 +

M∑
m=1

Θ2m∆pt−m + εt , ψ1 < γTpt−1 ≤ ψ2

ρ3γ
Tpt−1 + θ3 +

M∑
m=1

Θ3m∆pt−m + εt , ψ2 < γTpt−1

(1)

pt is assumed to form an I(1) time series with cointegrating vector γ ∈ R2 and error-
correction term γTpt. The errors denoted by εt are taken to have expected value E (εt) = 0
and covariance matrix Cov (εt) = Ω ∈ (R+)

2×2
. ψ1, ψ2 ∈ R are called the threshold param-

eters. Note that although all of the regression coefficients may change between regimes,
it is also possible for some of them to stay constant.

To express the model in matrix notation, we define vectors ∆P (i), ε(i) by stacking
the ith component of ∆pt and εt and I{γTP≤ψ1},I{ψ1<γTP≤ψ2}, I{ψ2<γTP} by stacking
I{γT pt−1≤ψ1},I{ψ1<γT pt−1≤ψ2}, and I{ψ2<γT pt−1}, respectively. I{·} denotes the indicator func-
tion. For observations at N time points, an N × p matrix X is constructed by stacking
rows xTt = (γTpt−1, 1,∆p

T
t−1, . . . ,∆p

T
t−M) of length p = 2M + 2, while β

(i)
k is given as the

ith column of the matrix (ρk, θk,Θk1, . . . ,ΘkM)T , i = 1, 2 and k = 1, 2, 3. With diag
(
I{·}
)

defined as the diagonal matrix with entries I{·} in the diagonal and E2 ∈ R2×2 the identity
matrix, we are now able to write

∆P (i) = diag
(
I{γTP≤ψ1}

)
Xβ

(i)
1 + diag

(
I{ψ1<γTP≤ψ2}

)
Xβ

(i)
2 + diag

(
I{ψ2<γTP}

)
Xβ

(i)
3 + ε(i)

= X1β
(i)
1 +X2β

(i)
2 +X3β

(i)
3 + ε(i)

to obtain the following representation of model (1),

∆P =

(
∆P (1)

∆P (2)

)
=

(
X1β

(1)
1 +X2β

(1)
2 +X3β

(1)
3 + ε(1)

X1β
(2)
1 +X2β

(2)
2 +X3β

(2)
3 + ε(2)

)
=(E2 ⊗X1)β1 + (E2 ⊗X2)β2 + (E2 ⊗X3)β3 + ε

=Xψβ + ε.
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A variety of modifications and restrictions of this specification of the TVECM are used
in price transmission studies to represent different dynamics. A popular choice is the
so-called continuous BAND-TVECM. Neglecting lags, this can be written as

∆pt =


ρ1

(
γTpt−1 − ψ1

)
+ εt , γTpt ≤ ψ1

εt , ψ1 < γTpt ≤ ψ2

ρ3

(
γTpt−1 − ψ2

)
+ εt , ψ2 < γTpt

(2)

In the middle regime, prices follow a random walk without drift while their difference
(assuming that γTpt = pt,1− pt,2) reverts to the threshold values in the outer regimes. Lo
and Zivot (2001) provide details on various threshold cointegration models which appear
in the context of modeling arbitrage.

We investigate both models of type (1) and (2). Instead of considering a q-dimensional
TVECM with r thresholds, we focus on a two-dimensional TVECM with two thresholds.
This setting is most frequently encountered in the analysis of market integration, and it
allows to keep the exposition simple. We expect analogous results to hold for the more
general model.

2.2 Commonly used threshold estimators

2.2.1 Profile likelihood estimator

As noted in the introduction, the most frequently encountered threshold estimator in
the econometrics literature is the profile likelihood estimator (which is identical to the
least squares estimator in case of independent Gaussian errors). Splitting all model
parameters into parameters of interest ψ and nuisance parameters λ, the profile like-
lihood function Lp is constructed by maximizing out λ for given values of ψ, that is,

Lp(ψ) = L(ψ, λ̂ψ) with λ̂ψ = argmax
λ∈Λ

L(ψ, λ). In turn, the profile likelihood estimator

ψ̂ is defined as the argument maximizing Lp, ψ̂ = argmax
ψ∈Ψ

Lp(ψ). Here, L constitutes

the likelihood function of the model, Λ the nuisance parameter space and Ψ the space
in which the parameter of interest takes its values. In our case, the thresholds form the
parameter of interest, ψ = (ψ1, ψ2), whereas the remaining unknowns in the model make
up the nuisance parameter λ. Hence, Ψ will typically equal the space of all (ψ1, ψ2) ∈ R2

which satisfy min
1≤t≤N

(γTpt) < ψ1 < 0 < ψ2 < max
1≤t≤N

(γTpt) whereas Λ = R6p × (R+)
2×2

.

As ψ determines the distribution of observations into regimes, estimates λ̂ψ are only well-
defined for those ψ which allow for a sufficient number of observations to fall into each
regime. Consequently, to guarantee adequate nuisance parameter estimates λ̂ψ, most
authors simply require an arbitrary minimum proportion (or number) of observations per
regime. Typically, a share of about 15% is imposed, see for example Andrews (1993).
Clearly, this is inappropriate if the true fraction is less. The importance of taking such
situation into account when modeling arbitrage has been emphasized above: If markets
are well-integrated it is not unlikely that only 10% of the data is left in each of the
outer regimes. In this case, an estimator based on the prerequisite of a minimum of
15% of the observations to be associated with each regime cannot be consistent as the
parameter space Ψ is restricted to exclude the true thresholds. Moreover, in this case,
the profile likelihood function Lp does not necessarily take its maximum at the boundary
of the parameter space, since Lp is typically not unimodal, but jagged with a number of
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local maxima. For a sample run of model (2) with true lower threshold ψ1 = −5, Figure 1
illustrates how the minimum condition influences the estimates of ψ1. ψ2 is kept at a fixed
value to simplify visualization. For values of ψ1 that leave less than the required share
of observations in one of the regimes, the line is dotted; these parts are not considered
when searching for the maximum of Lp. While in this example, criteria of 5% or 10%

result in identical estimates ψ̂1 = −3.89, which are relatively close to the true value −5,
the estimate changes dramatically when at least 15% of the observations are forced to be
present in each regime. This results in ψ̂1 = 6.

Figure 1: Effect of the minimum requirement on the profile likelihood function

However, it is not only the arbitrary constraint on the division of observations into regimes
which might distort estimation results. Profile likelihood estimation does not account for
the variability of the nuisance parameters. It is known that maximization of the profile
likelihood function produces biased estimates as, in general, the profile likelihood function
is not score unbiased. In addition, there are even examples of inconsistent profile likelihood
estimates – the ”many normal means” problem (McCullagh and Tibshirani, 1990) to
mention just one. In case of the TVECM, treating estimated nuisance parameters as
known and ignoring a loss of degrees of freedom can lead to biased threshold estimates in
small samples.

2.2.2 Bayesian estimator

In contrast to profiling, which involves maximization, estimation based on integrating
out nuisance parameters naturally accounts for their variability. This is the usual way
of treating nuisance parameters in a Bayesian setting. Hence, Bayesian techniques might
be particularly suitable for our problem. In fact, Bayesian estimators (BEs) have been
employed in some price transmission studies: for example, Balcombe et al. (2007) and
Balcombe and Rapsomanikis (2008) use a BE in the context of a TVECM. In the re-
lated setting of modeling financial arbitrage, Bayesian threshold estimators can be found
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in Forbes et al. (1999) and Balcombe (2006). However, none of these papers motivates
the choice of a BE by its superior performance in comparison to the profile likelihood
estimator. In contrast, Balcombe (2006) explicitly states that there is nothing which pro-
hibits the model to be estimated using classical methods, but points to computational
convenience as an argument in favor of a BE. All of these applications base their BEs on
noninformative priors1 and a quadratic loss function (which is equivalent to calculating
the estimator as the posterior mean). Yet, it turns out that given a limited number of
observations, the performance of the BE crucially depends on the priors selected; nonin-
formative priors distort estimates.

For a TVECM ∆P = Xψβ + ε with normal errors ε ∼ N (0, σ2E2N) a noninformative
(improper) prior p(β, σ2) ∝ σ−2 is associated with a posterior

p(ψ|∆P,X) ∝
(

∆P −Xψβ̂ψ

)T (
∆P −Xψβ̂ψ

)−(N−2p)

det
(
XT
ψXψ

)−1/2

for a uniform prior on the threshold parameters, ψ ∼ U(Ψ), and β̂ψ =
(
XT
ψXψ

)−1
XT
ψ∆P

(Lubrano, 2000). As in case of the profile likelihood function, we see that calculation of
the posterior density requires that a sufficient number of observations be present in each

regime in order to assure that
(
XT
ψXψ

)−1
and, hence, β̂ψ, are well-defined. Again, the

suggestion found in the literature is to require a certain share of observations per regime.
Balcombe et al. (2007), for example, specify that at least 20% must fall into each regime.
Comparing the posterior density p(ψ|∆P,X) to the profile likelihood function

Lp(ψ) ∝
(

∆P −Xψβ̂ψ

)T (
∆P −Xψβ̂ψ

)−N
it is easily seen that they differ by the term(

∆P −Xψβ̂ψ

)T (
∆P −Xψβ̂ψ

)2p

det
(
XT
ψXψ

)−1/2
.

In case ψ leaves only few observations in one of the regimes, the determinant det
(
XT
ψXψ

)
goes towards zero. Consequently, p(ψ|∆P,X) becomes very large in comparison to Lp(ψ).
Figure 2 illustrates this behavior for a sample run of model (2) with the true lower
threshold value of −5. For ψ2 fixed at its profile likelihood estimate ψ̂2, Lp(ψ1, ψ̂2) is
shown on the left. In this particular sample run, the profile likelihood estimator performs
well. The middle plot depicts the posterior p(ψ1, ψ̂2|∆P,X) for the same run. Clearly,
it increases drastically approaching the boundary of the parameter space. It takes its
largest values exactly for values of ψ which are arbitrarily included or excluded from Ψ
by varying the minimum requirement of observations per regime. As this is where most
of the mass of the integral is acquired, the minimum criterion strongly affects its value,

the threshold estimate calculated as the posterior mean,

∫
ψp(ψ|∆P,X)dψ.

2.3 Empirical Bayes Estimator

When rethinking the threshold estimator, there are good arguments to stick to a Bayesian
framework. On the one hand, BEs naturally incorporate the variability of nuisance pa-
rameters. On the other hand, there is reason to believe that the thresholds in a TVECM

1For Forbes et al. (1999), this is only partially correct. In their specific application, they have at least
some prior knowledge about the location of the thresholds which they include.
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Figure 2: Comparison of different estimating functions for a sample run

are estimated more efficiently (at least asymptotically) by a BE. While Bayesian and
maximum likelihood estimators (MLEs)2 are asymptotically equivalent under certain reg-
ularity conditions (Van der Vaart, 2000, Chapter 10), this is not necessarily the case for
nonregular problems as ours - it is not clear that the MLE is asymptotically efficient.
The performance of Bayesian threshold estimators in TVECMs has not been studied yet.
However, there exist results for some less intricate threshold models. Early assessments of
the efficiency of a Bayesian threshold estimator for related situations include Ibragimov
and Has’ minskii’s analysis of the estimation of a discontinuous signal in Gaussian white
noise. They proved that the MLE is asymptotically less efficient than BEs with respect to
a quadratic loss function (Ibragimov et al., 1981, Chapter 7). Yu (2007) first investigates
the efficiency of the threshold estimator in a simple threshold regression model with i.i.d.
observations. He shows that BEs are asymptotically efficient among all estimators in
the locally asymptotically minimax sense, and strictly more efficient than the MLE. In a
related paper, Chan and Kutoyants (2010) examine asymptotic properties of BEs for the
threshold autoregression model. While they do not particularly focus on efficiency, they
note that the limit variance of the BE is smaller than that of the MLE and comment on
how to establish asymptotic efficiency for the BE.

While asymptotically the choice of priors does not have an impact, we have seen that it can
critically influence estimation results in small samples. In particular, an estimator based
on noninformative priors can perform poorly. Yet, when no prior knowledge is available,
what are the other options? Roughly speaking, our idea is to exploit understanding of
when estimation fails to regularize the posterior p(ψ|∆P,X). We have observed that
trouble frequently occurs in case of diminutive differences between model parameters in
adjoining regimes. To formalize the notion of conceiving the model parameters in terms
of their discrepancies between regimes, we reparametrize the model. Using the notation
introduced in Section 2.1,

∆P = (E2 ⊗X1)β1 + (E2 ⊗X2)β2 + (E2 ⊗X3)β3 + ε

= (E2 ⊗X1)(β1 − β2) + (E2 ⊗X)β2 + (E2 ⊗X3)(β3 − β2) + ε

= (E2 ⊗X1)δ1 + (E2 ⊗X)β2 + (E2 ⊗X3)δ3 + ε.

While holding on to a noninformative constant prior for β2, we pick normal priors for δi,

2Since the profile likelihood estimator is identical to the MLE of the parameter of interest, we use
these terms synonymously; the former expression stresses the presence of nuisance parameters.

6



δi ∼ N (0, σ2
δi
E2p), i = 1, 3. For σ2

δi
tending towards infinity, these priors become nonin-

formative, too. However, for small values σ2
δi

, we introduce prior knowledge suggesting

that δi takes values close to zero. This becomes manifest when looking at the predictor δ̂
for δ = (δT1 , δ

T
3 )T obtained as the posterior mode under the assumption of normal errors

ε ∼ N (0, σ2E2N),

δ̂ = arg max
δ
p(δ|∆P,X)

= arg min
δ

(∆P −Wβ̃ − Zδ)T (∆P −Wβ̃ − Zδ) +
σ2

σ2
δ1

δT1 δ1 +
σ2

σ2
δ3

δT3 δ3

where W = E2 ⊗ X, β̃ = (W TW )−1W T∆P and Z = (Z1, Z3) = (E2 ⊗X1, E2 ⊗X3).
For large values of σ2

δi
, the first term will drive estimation results δ̂i, for small values

it is the latter. Note that rather than arbitrarily restricting the parameter space Ψ to
avoid the ill-posed problem of estimating m parameters from n < m data points, which
comes up near the boundary of Ψ, our choice of priors leads to the strategy of turn-
ing an ill-posed into a well-posed problem adopted by Tikhonov (Tikhonov et al., 1977).
While a variety of techniques how to adequately choose the regularization parameters
ρi = σ2/σ2

δi
have been developed in the context of Tikhonov regularization, they natu-

rally emerge in an empirical Bayesian setting. If the hyperparameters (the parameters
of the prior distribution) in a Bayesian modeling framework are unknown, one option is
to introduce another hierarchical level, that is, prior distributions for the hyperparame-
ters; the other option is to estimate the hyperparameters. This is the empirical Bayes
approach. We estimate σ2and σ2

δi
for each ψ by maximizing the log-likelihood function

`B(ψ, σ2, σ2
δ1
, σ2

δ3
) = logLB(ψ, σ2, σ2

δ1
, σ2

δ3
) = log p(∆P |X,ψ, σ2, σ2

δ1
, σ2

δ3
) of the model, 3

`B(ψ, σ2, σ2
δ1
, σ2

δ3
) ∝ −1

2

(
(2N − 2p) log σ2 + log |V |+ log |W TV −1W |

+
1

σ2
(∆P −Wβ̂)TV −1(∆P −Wβ̂)

) (3)

Here, β̂ = (W TV −1W )−1W TV −1∆P and V = E2N + σ2
δ1
/σ2Z1Z

T
1 + σ2

δ3
/σ2Z3Z

T
3 . This

leaves us with estimates σ̂2 and σ̂2
δi

, which are subsequently plugged into the posterior
density

p(ψ|∆P,X, σ̂2, σ̂2
δ1
, σ̂2

δ3
) ∝ p(∆P |X,ψ, σ̂2, σ̂2

δ1
, σ̂2

δ3
)p(ψ|X) (4)

to finally calculate the threshold estimator ψ̂ as the posterior mean

ψ̂ =

∫
Ψ

ψp(∆P |X,ψ, σ̂2, σ̂2
δ1
, σ̂2

δ3
)dψ

assuming a noninformative prior ψ ∼ U(Ψ) for ψ.

Looking at this posterior density p(ψ|∆P,X) in comparison with that of a Bayesian
model with exclusively noninformative priors for the sample run in Figure 2, it is evident
that irregular behavior near the boundary has been corrected for. Hence, we are able to
account for the variability of nuisance parameters, yet avoid problems at the boundary
of the parameter space. We do not need to artificially constrain the parameter space Ψ
by requiring a minimum number of observations to fall into each regime in order for our
estimating function to be well-defined.

3Strictly speaking, σ2 is not a hyperparameter. Nevertheless, treating it as such by estimating it
simultaneously with σ2

δi
greatly facilitates computation.
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3 Simulations

In this section we investigate the performance of our new threshold estimator and compare
it with that of the profile likelihood estimator. Beforehand, a comment on computational
issues. At least for model (1), any threshold parameters ψA 6= ψB which produce the
same distributions of observations into regimes result in identical values of the profile and
posterior likelihood functions, Lp(ψA) = Lp(ψB) and LB(ψA) = LB(ψB). Hence, Lp and
LB are step functions which take only a finite number of different values. This means
that for an appropriately specified grid (namely, consisting of the values observed for the
transition variable), a grid search yields an exact maximum and the integral as well can be
easily calculated accurately. In case of model (2), ψ enters the specification of the different
regimes which complicates the matter. We will exemplify the effect of different choices
for the grid in the next section. It is noteworthy that it is possible to explicitly calculate
the posterior density as (4) in our Bayesian setup. This leaves only the challenge of
computing estimates σ̂2, σ̂2

δ1
and σ̂2

δ3
in order to calculate the estimator. However, these

are readily available using the R-package for mixed models, nlme. More precisely, the
function lme.r with the default setting method=”REML” yields the arguments σ̂2, σ̂2

δ1

and σ̂2
δ3

maximizing (3).

In our simulation study, we consider the following BAND-TVECM,

∆pt =



(−0.25
0

) (
γTpt−1 + 5

)
+

(
0.2 0.2

0 0

)
∆pt−1 + εt , γTpt ≤ −5

εt , −5 < γTpt ≤ 10(−0.25
0

) (
γTpt−1 − 10

)
+

(
0.2 0.2

0 0

)
∆pt−1 + εt , 10 < γTpt

Errors are normally distributed, ε ∼ N (0, σ2E2) with σ2 = 1. The cointegrating vector γ
is assumed to be known to equal γ = (1,−1)T . Results are summarized in Figure 3 and
Table 1.

Profile likelihood estimator Empirical Bayes estimator
lower threshold upper threshold lower threshold upper threshold

restr. restr. restr. restr.
true value -5 -5 10 10 -5 -5 10 10
mean -0.932 -4.603 5.847 8.609 -2.709 -4.629 7.572 8.525
variance 41.166 3.921 39.604 10.269 5.573 1.444 8.445 4.594
MSE 57.663 4.073 56.802 12.19 10.812 1.58 14.327 6.764

Table 1: Comparison of profile likelihood and empirical Bayes estimator

The left-hand half of Figure 3 shows histograms for the lower threshold, while those for
the upper threshold are arranged on the right-hand half. The upper row displays his-
tograms for the profile likelihood estimator, and those for the empirical Bayes estimator
are found below. The difference between histograms in the first/third columns and those
in the second/fourth columns is that the latter deal with an estimator which presup-
poses knowledge that ψ1 < 0 and ψ2 > 0. In Table 1, this is indicated by ”restr.”. The
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Figure 3: Histograms

former estimates are based on the parameters space of all (ψ1, ψ2) ∈ R2 which satisfy
min

1≤t≤N
(γTpt) < ψ1 < ψ2 < max

1≤t≤N
(γTpt), the latter on that of all those (ψ1, ψ2) ∈ R2 which

additionally fulfill ψ1 < 0 < ψ2. It is clearly visible that the profile likelihood estimator
overestimates the lower and underestimates upper threshold. The empirical Bayes esti-
mates, in contrast, are less biased. Their variance and MSE are reduced drastically in
comparison to the profile likelihood estimator.

4 Empirical Application

We next apply our empirical Bayes estimator to the data analyzed by Goodwin and
Piggott (2001). They explore daily corn and soybean prices at important North Carolina
terminal markets. These include Williamston, Candor, Cofield and Kinston for corn; and
Fayetteville, Raleigh, Greenville and Kinston for soybeans. Observations range from 2
January 1992 until 4 March 1999. For each commodity, they evaluate pairs consisting
of the central market - Williamston for corn and Fayetteville for soybeans - and each
one of the other markets. They estimate the general TVECM (1) for logarithmic prices
by minimizing the sum of squared errors (which is equivalent to maximizing the profile
likelihood assuming independent Gaussian errors). Tables 2 and 3 compare threshold
estimates obtained by maximizing the profile likelihood function with empirical Bayes
estimates in terms of the thresholds as well as the resulting distribution of observations
into regimes. It is evident that relative to the profile likelihood estimates, the empirical
Bayes estimates for both lower and upper threshold tend to be drawn away from zero. This
suggests that here the profile likelihood estimator might indeed yield biased results and
markets might be even more tightly integrated than concluded by Goodwin and Piggott
(2001).
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Profile likelihood estimator Empirical Bayes estimator
lower threshold upper threshold lower threshold upper threshold

CORN
Candor-Williamston -0.0269 0.0033 -0.0668 0.0287
Cofield-Williamston -0.0036 0.0679 -0.0635 0.0377
Kinston-Williamston -0.0125 0.0192 -0.0201 0.0192

SOYBEANS
Raleigh-Fayettesville -0.0016 0.0105 -0.0214 0.0142

Greenville-Fayettesville -0.0075 0.0124 -0.0213 0.0117
Kinston-Fayettesville -0.0059 0.0264 -0.0876 0.0167

Table 2: Estimated thresholds

Profile likelihood estimator Empirical Bayes estimator
1st reg 2nd reg 3rd reg 1st reg 2nd reg 3rd reg

CORN
Candor-Williamston 290 (295) 678 (755) 797 (715) 13 1525 227
Cofield-Williamston 748 (69) 1011 (1661) 6 (35) 60 1463 242
Kinston-Williamston 244 (248) 1514 (1462) 7 (55) 7 1751 7

SOYBEANS
Raleigh-Fayettesville 409 (162) 1309 (1556) 47 (47) 12 1714 39

Greenville-Fayettesville 495 (410) 965 (1285) 305 (70) 95 1335 335
Kinston-Fayettesville 545 (543) 1208 (506) 12 (716) 9 1600 156

Table 3: Estimated number of observations per regime

Even though we have found the profile likelihood estimates by maximizing the same
function as Goodwin and Piggott (2001), the results presented in Tables 2 and 3 differ
from those reported in their paper. This is due to differences in the grid used to search
for the maximum. Goodwin and Piggott (2001) evaluate the estimating function at 100
equally spaced grid points for each threshold; while these grids cover the range between
the smallest observed error correction term and zero for the lower threshold, they run from
zero to the largest of them for the upper threshold. This procedure might not yield the
correct maximum. Revisiting Figure 1 it is easy to understand that the true maximum
might not be approximated well by specifying a grid which is too coarse. However, as
mentioned before, the function to be maximized is a step function. Hence, evaluating
it at each step (by specifying a complete grid of all observations for the error correction
term), we will necessarily end up with the correct maximum. The impact of the proper
grid is shown in Table 3. In the column ”Profile likelihood estimator”, estimates for
Goodwin and Piggott’s grid are reported in parentheses behind the estimates obtained
for the complete grid. The case of Cofield and Williamston clearly illustrates that this
effect of the type of grid used cannot be neglected. Caution has to be taken not only in
choosing the estimator, but also in its practical implementation.
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5 Conclusions

We discuss threshold estimators in TVCEMs. We point out weaknesses of commonly used
estimators and emphasize the relevance of these problems for price transmission studies.
We suggest a new estimator based on an empirical Bayes approach and demonstrate its
superior performance in a simulation study. Revisiting an empirical application dealing
with corn and soya prices, we find that using the new estimator changes results.
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