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A model for prediction of spatial farm structure

Øyvind Hoveid∗and Grete Stokstad†

oyvind.hoveid@nilf.no

February 17, 2011

Abstract

Spatial micro structure and its change over time is recorded for Norwegian
farm firms. Relative strong correlations between geographically close neighbors
are expected, either because growing farms swallow the smaller ones, or because
they are affected by some spatially related unobserved factors. Strong correla-
tions over time are also expected because of prevalent family farming.

The paper proposes a state-of-the-art Markov chain model in order to predict
the spatial and temporal micro structure taking account of both non-stationarity
and spatio/temporal correlations by means of techniques from non-linear state
space modeling and Gaussian Markov random fields.

The model and the complete data set is then a device with which one can
investigate the consequences of ignoring spatial and/or temporal correlations,
both with complete data and with more sparsely sampled data, like FADN panels
or USDA’s repeated cross-sections (ARMS).

1 Introduction

For Norwegian agriculture are almost complete single farm geo-referenced time series
of crop allocation and livestock recorded. These are gathered from the application
of direct support to Norwegian farms. Only farms which are too small to qualify
for support are exempt from this register. An illustration of farm sizes from the
municipality Trøgstad in 1999 and 2009 is given in figure 1. The distribution of
crop allocation and livestock heads are basic aspects of farm structure, and these
data then constitute an exceptional frame for prediction of farm structure over time
and space. The relevance of such predictions stems from micro-based policy analysis
which captures the policy effects on typical farms, but ignores the policy effects on
farm development and distribution.

In the literature has Markov chains played a dominating role in the modeling of
structural change of firms. Zimmermann, Heckelei, and Domı́nguez (2009) give a
review with regard to farms. In this tradition (1) the space of farm observations is
divided in K different subsets according to farm size and type. Each set is considered a
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state. (2) K×K-transition matrices, R(t, Z), between states are modeled as functions
of time t and other co-variates Z. 1 And (3) alternative equilibrium structures are
found as discrete distributions p∗(t, Z) over states, solving (I −R(t, Z))p∗(t, Z) = 0.

Markov equilibrium structures p∗(t, Z) are steady states of the stochastic process
given by the transition matrix R(t, Z). It is important to observe — and often misun-
derstood — that the p∗(t, Z) is not a prediction for the future. Since Markov chains are
stationary stochastic processes, this might be a valid interpretation only in stationary
economies. Rather, it should be interpreted as a counterfactual prediction for time
t. From this insight, the usual estimation of the transition matrix from firm changes
between two points in time, is dubious in non-stationary contexts.

Several additional short-comings of the Markov chain approach, relevant even in
stationary economies, can easily be pointed out: (A) Computational issues force K to
be kept relatively low compared to the number of observations. There is a loss of in-
formation by the reduction of an almost continuous and multi-dimensional observation
of a farm to a K-nomial state. It is the information on heterogeneity within each class
which is lost.2 (B) Even if states were relatively homogeneous, one should not expect
transitions to obey the Markov property. Actually, the theory of survival analysis
and competing risks — which is the backdrop of such transition data — points out
the time spent in each state as a decisive determinant for transitions. There is thus
inter-temporal correlation between probabilities that a farm is in a certain state at
two different points in time. Unless variables carrying information from other points
in time are taken into account, there is little scope for Markov models in this context.
(C) Probabilities may also be correlated in space. Farms with favorable natural and
social conditions for being active, may also have neighbors with similar conditions.
Probabilities for being active are then positively correlated. On the other hand, the
expansion of one farm will often come at the expense of neighbor farms. Probabilities
for being active are then negatively correlated.

Apart from these short-comings of the Markov chain approach to farm structure,
predictions of the equilibrium farm structure at t, p̂∗(t, Z), as a result of a path of
exogenous policy variables, Z, is policy relevant in several situations. This is further
discussed in section 2. Moreover, Markov chain methods are indeed relevant for the
estimation of such predictions. First, a Markov model of hidden continuous states
should be utilized to model the continuous aspects of firm data. The well-known
technique of state space modeling presented in section 3 takes care of correlations over
time by means of unobserved Gaussian state variables. The related Gaussian Markov
random fields are convenient for modeling of spatial correlations. This technique is
easily incorporated in the state space frame section 4. For the distinction between
active farms and inactive farms, discrete states are still needed. The simultaneous
modeling of observed finite states and unobserved continuous states is treated in section
5. Section 6 concludes and give perspective for further research.

1Early studies have transition matrices independent of any co-variate. These are useless for policy
modeling.

2See Piet (2008) for a more detailed critique.

2



2 Policy consequences for farm structure and struc-

tural change

The links between policy, farm structure and structural change are complex. To avoid
confusion over different methodologies, some theoretical concepts and assumptions
are needed. First an assumption — since farms tend to be fewer and fewer — all
potentially active farms at any point in time are assumed to belong to some finite set
of farms which at some time have been active. These individual farms are indexed,
n = 1, . . . , N . The assumption is greatly simplifying our modeling. Without it we
would have to deal with distributions of farm entry in the continuous space.

The object of study is some positive variable, y = y(z), affected by policy variables,
z, and aggregated over farms into, Y (Z) =

∑
n yn(zn). Sometimes is Y observable and

zn = z for all n. Then, can policy analysis be conducted in the aggregate. In all other
cases one need to approach policy analysis with a micro foundation.

Since, yn(zn) necessarily is a stochastic variable, the aggregate need to be modeled
as a sum of expectations of individual yn relative to some probability distribution,
π(yn|zn).3 Each distribution is in turn decomposed in a discrete part, the probability
that farm n is active (yn > 0), and a continuous part, the probability distribution of
yn given that n is active:

EY (Z) =
∑
n

Eπ(yn|zn)yn =
∑
n

∫
π(yn > 0|zn) π(yn|yn > 0, zn) yn dyn

This decomposition is favorable partly because discrete and continuous probability
distribution need different specifications, and partly because distinct aspects of policy
effects on farm structure are mirrored. The policy effect can now be modeled as:

∂ZEY (Z) =
∑
n

∫ [
∂znπ(yn|yn > 0, zn)

∂zn

∂Z

]
π(yn > 0|zn) yn dyn

+
∑
n

∫ [
∂znπ(yn > 0|zn)

∂zn

∂Z

]
π(yn|zn, yn > 0) yndyn (1)

where the first sum is the effect via change on the active farms, the farm size effect,
and the second sum is the effect via the number of active farms, the farm number
effect. Depending on the policy, the one can be zero while the other is non-zero, both
can be non-zero of same sign or of opposite signs. In the latter case it may happen
that the two effects cancel out. Price support is a case for a strong farm size change
effect on the quantity produced, while the farm number effect is expected to be vague.
Direct differentiated payments to active farms will be different with a negative farm
size effect due to splitting and a positive farm number effect. Possibly, these effects
will cancel out, but that depends on policy details.

3 State space models

Presentation of state space models are typically made in terms of time series which
are followed in real time. This corresponds to the framework where they were first

3π(·) is utilized as generic notation for probability distributions.
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employed: the control of spacecrafts based on noisy signals of their position. The
application is based on work of Kalman (1960) and Kalman and Bucy (1961) intro-
ducing the Kalman filter. Applications in economics are in particular guided by Harvey
(1989).

A standard presentation of a linear state space model consists of a state equation
and a measurement equation. The former can be specified as:

xt = Ftxt−1 + ξt (2)

where xt is a J-dimensional vector of unobserved state variables, Ft is a transition
matrix, and ξt is a vector of N (0, Qt) stochastic variables mutually independent over
time, where Qt is a symmetric positive semi-definite matrix. The state equation and
its assumptions implies a Markov property: The distribution of xt conditional on all
previous realizations is identical to the distribution of xt conditional on the latest
previous realization, generically π(xt|xt−1, . . . , x0) = π(xt|xt−1).

In turn the measurement equation

yt = Ztxt + εt (3)

links the vector of observations, yt, with the state variables by means of a matrix of
exogenous variables Zt, and measurement errors, εt, which are mutually independent
over time, also independent of the ξt-s, and distributed N (0,Σt), where Σt is a positive
definite diagonal matrix. One does not need off-diagonal elements of Σ since covariance
between different elements of yt can be expressed by off-diagonal elements of Qt. The
measurement equation and its assumptions inhibits conditional independence of yt|xt.
Moreover, the Markov property of the state equation is carried over to the complete
model, which consequently is a Markov model with hidden continuous states.

There are more general specifications of state space models than (2) and (3)
(de Jong 1991), but this one suffices for the current context. Typically, the con-
text will also suggest some structure for the involved matrices. State variables can
be grouped in different independent blocks, leading to a block-diagonal structure of
Ft and Qt. A group of state variables can exhibit deterministic change from t − 1
to t in terms of the relevant block of Ft when the corresponding block of Qt is equal
to zero. Random walks are obtained with a block of Ft equal to the identity matrix.
Independence between time points t − 1 and t is obtained with a zero block of Ft.
Cycles can be modeled with a rotation matrix block of Ft.

Grouping of state variables are also relevant for the column groups of the matrix
Zt. Some groups will simply have columns with a certain pattern of 1-s and 0-s for
all t, meaning that state variables are summed in a certain way for the explanation of
observations y. Other groups can have time-varying exogenous data in their columns.
The state variable will then represent a random (and possibly time-varying) regression
effect of the exogenous data on y.4

Economic time series are somewhat different from spacecraft positions. In the
spacecraft case the involved matrices are known or estimated in advance. The system
is known, the focus is on estimated states. For economic series the system specified
by the matrices is not known in advance. Hence, Ft, Qt and Σt are parameters or
functions of parameters that need to be estimated. Actually, the revelation of the

4Within agricultural economics Chavas (1985) contributed early along this line with an analysis
of the demand for meat over time.
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system parameters is most often the main focus. However, if one succeeds in finding
a stable and broadly accepted model, then can this model eventually be exploited in
monitoring and governing the economy by spacecraft analogy.

Economic time series have always some unobserved previous history of which little
or nothing is known. Again, this is a contrast to spacecraft navigation. However, such
lack of information can be handled within state space frame because of the inherently
Bayesian nature (Meinhold and Singpurwalla 1983). A normal prior for the initial

state variables, x0, can be specified with Ex0 = x0 and Var −1x0 = Q
−1

0 . The prior
has an impact on the remaining state variable estimates, in particular when the time
series are short. Consequently, it is desirable to estimate x0 and Q0, when these are
not given from some other procedure of inference.

At last, economic time series tend to be incomplete, in the sense that the involved
array of dependent and independent variables tend to be too small to provide the
correct model, or the data set has to few observations to identify all effects in that
model. In such cases the state variables mimic the heterogeneity caused by all the
omitted variables, and will reduce the problems of mis-specification.

A nice and convenient feature of state space models is that they contain both
autoregressive (AR) and moving average (MA) time series models as special cases.
Σt = 0 for all t means an AR model, whereas Qt = 0 for all t means an MA model
(Durbin and Koopman 2001). The order of the model depend on the structure of the
matrices. Thus, because every ARMA-model is a special case of a state space model,
the Markov structure of the state variables means little loss of generality, potentially.
The statistician/economist is responsible for choosing a structure of Ft, Zt, Qt and Σt

which makes the Markov property likely. If he succeeds, he has arrived at a relatively
sparse parametrization of a dynamic system where everything depends on everything.
The sparseness combined with generality is the virtue of this Markov model.

Since state-variables are unobserved, one need to predict them conditional on the
prior distribution, the system matrices and the observations. Estimation of parameters
has to rely on such predictions. Recursive prediction of state variables over time given
observations up to that point in time is known as filtering5, and this is of course the
core of spacecraft navigation. When using a diffuse prior, the filter predictions at
early points in time will be poor being based on little information. The technique
of smoothing gives relief for this problem by running a backwards recursion so that
estimates of state variables at all points in time can be stated, given priors and all
observations. Details of filtering and smoothing can be found in textbooks like Durbin
and Koopman (2001) and will not be presented here. Instead we turn to Fahrmeir and
Tutz (2001) (pp. 340-42) who takes a different approach based on ?.

Fahrmeir treats filtering and smoothing simultaneously by estimating the posterior
mode of state variables given all observations. With some change of notation from
Fahrmeir’s exposition, let:

G =


−F1 I 0 0

0 −F2 I
. . .

. . . . . . . . . 0
0 0 −FT I

 , Z =

Z1 0
. . .

0 ZT


5The Kalman filter is the first and most well-known version, but several other filters exist.
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x = (x′0, x
′
1, . . . , x

′
T )
′
, ξ = (ξ′1, . . . , ξ

′
T )
′
, y = (x′0, y

′
1, . . . , y

′
T )
′
, ε = (x0 − x0, ε

′
1, . . . , ε

′
T )
′

so that the state equation is written:

Gx = ξ (4)

with ξ ∼ N (0, Q) where Q = diag(Q1, . . . , QT ), while the initial condition and the
measurement equation are joined as:

y = Zx+ ε (5)

with ε ∼ N (0,Σ) where Σ = diag(Q0,Σ1, . . . ,ΣT ). This leads to the following com-
plete log-likelihood of both observed and unobserved data in terms of unknown but
fixed parameters θ0:

L(x, y|θ0) = −1

2

(
log |Q|+ log |Σ|+ x′G′Q−1Gx+ (y − Zx)′Σ−1(y − Zx)

)
(6)

This log-likelihood can for given parameters, θ0, be maximized with respect to x to ob-
tain an estimate of the posterior mode of x, x̂ = x̂(y, θ0). The estimate maximizes the
density of the distribution of x. Since the distribution is normal and hence symmetric,
this is also an estimate of the expectation of x. Fahrmeir shows that this is equivalent
to that obtained from Kalman filtering and smoothing (Fahrmeir and Tutz 2001) pp.
342. We prefer this form instead of the explicit Kalman recursions partly because it is
conceptually simpler, partly because it is easily generalized to models with non-linear
measurements which will be introduced later.

The likelihood function (6) constitutes also a core for parameter estimation with
the EM-algorithm (Dempster, Laird, and Rubin 1977), which again is essential for
non-linear measurement models. This is based on the second order Taylor expansion
of L(x, y|θ0) around x̂:

L(x, y|θ0) = L(x̂, y|θ0) + 1/2(x− x̂)′∂2
xx′L(x̂, y|θ0)(x− x̂)

This Taylor expansion is exact because L is a quadratic function in x. Moreover, the
first order term is zero because x̂ satisfies the first order condition, ∂xL = 0.

To approach the likelihood L(y|θ) of the true parameters, we apply Bayes theorem
to write:

L(y|θ) = L(x, y|θ)− log π(x|y, θ)
and take expectations over π(x|y, θ0) to obtain

L(y|θ) =

∫
L(y|θ)π(x|y, θ0)dx =

∫
(L(x, y|θ)− log π(x|y, θ0))π(x|y, θ0)dx

When L(x, y|θ) is a quadratic function in x and π(x|y, θ0) is normal, the first term can
be integrated analytically. The second term does not depend on θ, hence maximizing
the first term lead to an improved estimate of θ. When it comes to the normal densities
π(x|y, θ0), their expectations and variances are usually be found by the Kalman filter
and smoother. However, the complete log-likelihood (6) points to another way of
deriving them. When the maximization of this log-likelihood with respect to x, gives
the expectations of π(x|y, θ0), the inverse variance matrices will turn out from the
negative Hessian evaluated in the optimal point.
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4 State space models with spatial interactions

There is a symmetry between neighbors in space and neighbors in time which is ex-
ploited in spatial econometrics. By and large spatial econometrics is mimicking time-
series techniques in spatial contexts. Both AR and MA models have their counterparts
in spatial models. This is to some extent also the case with state space models, al-
though a slight contrast between time and space need to be emphasized. Time has
a natural ordering, whereas space in general has not.6 The statistician is responsi-
ble for stating the spatial relationships. These should both be justified and lead to
computable models in reasonable time.

Cases with a large time dimension and a small spatial dimension can in principle
be treated as a multivariate time series where the observations from all locations, ynt,
n = (1, . . . , N) are stacked into one large time-dependent vector, yt = (y′1t, . . . , y

′
Nt)
′.

No particular attention is then paid to spatial structure. The spatial structure is
then estimated. If this does not work computationally, an argued spatial structure is
required.

In extending the state space model to spatial dimensions the diagonal structure of
Σ−1 is retained to have contingent independence among observations, ynt|xnt, for all
(nt). All the spatial and temporal relationships are then taken care of by the normally
distributed state variables. Corresponding to the Markov structure of the time series
state space model, one can impose a similar structure in the spatial dimension with
specified feedbacks only between spatial neighbors. This is the core of a Gaussian
Markov Random Field (GMRF) (Rue and Held 2005). With a GMRF it is ensured
that the spatial dependence of everything upon everything is parameterized with a
sparse structure involving only neighbors.

To make this more explicit, let B be a JN ×JN matrix of eventual neighbor feed-
backs. This matrix is sparse as all elements which are not associated with neighbors
are zero. The neighbors are thus given by some index set, N∗ ⊂ (N × N). Let C be
a block diagonal JN -dimensional variance matrix of unit-specific stochastic variables,
un, independent between units. Spatially dependent state variables can now be speci-
fied as x satisfying: x = Bx+ u. The variance matrix of x is given most conveniently
by its inverse, the precision matrix:

Q−1 = (IJN −B)′C−1(IJN −B)

which also is sparse. Actually, the precision matrix shows the contingencies in the
spatial structure with non-zero entries.

Of particular relevance to economics, there are also other ways to model spatial
interactions among neighbors. Economic time series of a population of single firms will
exhibit transactions between firms, even though it is not observed who is buying from
who. When these transactions happens mostly between neighbors, a specified spatial
structure can account for them. This is immediately relevant for structural change in
agriculture.

Let S be a (N × (N − 1)) matrix, and let u be a stochastic J−N(N − 1) vector
with distribution N (0, ψ⊗ IN(N−1)) where ψ is scalar. The possibility of a transaction

6E.g. the Key West archipelago, Chile and local parts of Norway, can at a certain level of spatial
aggregation be considered ordered.
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between neighbor firms n and m is specified with

S−l,n×m =


d−1
nm for l = n, (n,m) ∈ N∗

−d−1
nm for l = m, (n,m) ∈ N∗

0 otherwise

where dnm is a measure of distance between neighbors n and m. Transactions of a
certain commodity arise according to u. The expression Su — which is a block of mu-
tually dependent state variables — will now be the stochastic outcome of transactions
between neighbor firms. The distribution is normal, expectation is zero, and variance
matrix is ψSS ′, which by construction has a spatial structure. This variance matrix
is not necessarily full rank. Actually, whenever some a firm is located to have only a
single neighbor, the variance matrix will be singular.

In multivariate settings the probability of transactions will vary with the commod-
ity, but the spatial structure of neighborhoods and distances is anyway invariant. One
would then assume that the variance of the outcome of transactions takes the form
Ψ⊗ SS ′, where Ψ is some symmetric positive definite matrix.

The variance matrix SS ′ is sparse, but its inverse or generalized inverse — the
precision matrix — is not. The precision matrix is constant, however, and need only
be computed once. The lack of sparseness is then not a serious computational problem.
The generality of the GMRF-s with only sparse precision matrices is thus challenged.

Another likely possibility in such economic series is positive correlation between
neighbors due to unobserved common shocks. Such effects can be specified with cor-
responding shocks in much the same way as transactions. Now a matrix S+ is defined
with

S+
l,n×m =

{
d−1
nm for l = n or l = n, (n,m) ∈ N∗

0 else

and a stochastic u+ is distributed N (0, ψ+IN(N−1)). S+u+ is then the stochastic
outcome of shocks common to neighbors.

Apart from such structuring of the variance matrices, Qt, no essential change to
the state space model is needed when adapting to a spatio-temporal context. However,
spatial models tend to have a smaller time-dimension than purely temporal models. A
common case is a pure cross-section with no time at all. Will the time-series modeling
then have any relevance? In any case are the initial assumptions, x0 and Q0, relevant,
but can the EM algorithm be utilized in their estimation? In principle the answer is
yes. A single data point is sufficient to estimate a posterior distribution, π(x0|y), to
be applied in an EM-algorithm.

5 State space model mixed with observed finite

states

Entries and exits are always associated with panels of farm data, and are closely linked
to structural change. Thus, entry and exit need to be modeled simultaneously with the
continuous aspects of the data. However, entry and exit are not single dimensional. A
farm may be active in various activities, k = (1, . . . , K). We write observed activity
of n at t w.r.t. activity k as cntk = 1, and inactivity as cntk = 0. Since the condi-
tional probability of activity, π(cntk = 1|xnt), not necessarily is associated with a high
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expected scale, Eπ(yntk|cntk=1,xnt)yntk, the two contingent probabilities, π(cntk = 1|xnt)
and π(yntk|cntk = 1, xnt), are specified independently. The first is specified as a logit:

log π(cntk = 1|xnt)− log π(cntk = 0|xnt) = (Z0kx)nt

log π(cntk = 0|xnt) = −log(1 + exp(Z0kx)nt)

where Z0k
nt is some exogenous matrix summing a set of state-variables. For the k-active

farm we observe not only activity, but also the level, yntk > 0. The positivity of the
observation suggests that some other distribution than the normal should be utilized.
In any case each element yntk of ynt will be modeled separately with a distribution,
fntk, of its own. This is in line with the linear state space models where errors of
the measurement equation are assumed independent between elements. This model-
ing strategy opens for the use of univariate parametric distributions like the gamma
distribution. To make the distribution contingent on state variables in line with gen-
eralized linear modeling, a response function, hk, which has argument an aggregate of
state variables Z1kx)nt, is chosen. h(Z1k

nt ) is then utilized as the expectation parameter
of the distribution, fntk.

As a response function we propose, hk(η) = (η+
√
η2 + ηk)/2, where ηk is a positive

parameter. This response function has the desirable property of being almost linear
in η.

One additional complication needs to be dealt with. Our data is subject to censor-
ing. Farms with activities in small scale only will not be observed. Censoring can be
modeled relative to linear combination of state variables which may vary over time,
γtZ

∗x ≤ γ0, where γt is a parameter vector, Z∗ = Z11, . . . , Z1I , and γ0 is a scalar. The
probability that a farm with state x is not censored at t can be also specified as a logit
probability,

log π(ynt 6= 0|xnt)− log π(ynt = 0) = γt(Z
∗x)nt − γ0

log π(ynt = 0|xnt) = log(1 + exp(γt(Z
∗x)nt − γ0))

The interpretation is that when state variables are relatively large indicating relatively
large expectations of observations, the probability of censoring is small.

These modifications of the measurement model have consequences for the complete
log-likelihood function:

L(x; y, θ) =
∑
nt

log π(ynt = 0|xnt) +
∑
ynt 6=0

[
γt(Z

∗x)nt − γ0 +
∑
k

log π(cntk = 0|xnt)

]
+
∑
yntk=1

[
(Z0kx)nt + log fntk(yntk; (Z0kx)nt))

]
− 1

2

(
log |Q0|+ log |Q|+ (x0 − x0)

′Σ−1(x0 − x0) + x′G′Q−1Gx

)
(7)

Estimation with the EM-algorithm can proceed almost as in section 3. As for the linear
model, expectations and variances of π(x|y, θ) can be found from the maximization of
(7). But since the measurement model no longer is quadratic in x and exact analytic
integration is impossible, some numeric integration method is required.
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6 Conclusions and further research

An estimable model of farm structure is proposed above. The model unifies both the
continuous change on existing farms and the change of farm numbers. An estimated
model will make it possible to predict both aspects both over time and space. Al-
though not pronounced in the model development, exogenous policy variables z can
be introduced in the model either as suggested as coefficients for random effects, Zx,
or as fixed effects subtracted from the measurements, ynt − βznt.

Markov methods are central for the feasibility of this modeling. First, with a
Markov property on the unobserved (hidden) state variables, the dependency of ev-
erything upon everything can be modeled with relatively sparse structures. Secondly,
Markov chains are required in the estimation algorithms. Apart from the keyword
”Markov”, there is virtually nothing in common with the traditional Markov chains
of farm/firm structural change. Actually, the transition matrix, which is the starting
point of those models, has played no role here. For sake of comparison one might state
a transition probability with the established notation and methodology:

π(yntk = y1k|yn,t−1 = y0)

= Eπ(xnt|xn,t−1)π(xn,t−1)π(yntk = y1k|xnt)/Eπ(xn,t−1)π(yn,t−1 = y0|xnt)

All elements of the transition are involved in the estimated model. The contingent
probability of ynt given xnt, π(yntk = y1k|xnt), comes from the measurement model.
The contingent probability of xnt given xn,t−1 comes from the state equation. And a
last pi(xnt) is a prior distribution of the state variable consisting with previous obser-
vations. Since every entity is contingent on state variables, and these are appropriately
integrated, there is no heterogeneity problem.

There is no point in computing transition matrices in this way in order to look
for Markov chain equilibria. As pointed out in the introduction, the transition matrix
is a record of the structural process in time. The equilibrium structure at a certain
point in time is given by the estimated distributions at that point in time. These are
derived taken time series information into account in general terms without forcing it
into the straight-jacket of finite-state transition matrices.

An estimated model combined with the complete data set of Norwegian farms,
can be utilized in various ways. First, it can give micro-based spatial and temporal
predictions of farm structure based on policy variables, hopefully as intended. By
the separation of the continuous and discrete aspects of farm structure there will be
a much higher level of detail in these predictions than what can be obtained with
traditional Markov chain models. Since the micro-spatial aspect of structural change
is completely novel, an evaluation of different spatial specifications is required.

Secondly, the model can be utilized as a benchmark for various alternative models
based on less informative data. FADN (European Commission 2011) has time series of
individual farms sampled with regional balance but with no regard to spatial neighbors.
USDA has repeated cross-sections of individual farms with the ARMS data (United
States Departement of Agriculture 2011). This set pays little regard both to spatial
and temporal neighbors. Apart from such relatively structured data sets, aggregate
data of various types is the mostly used source for prediction of micro structure. The
ability of such data sets to predict micro structure is hypothesized to be ranked in the
order they are mentioned.
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At last, various alternative sampling schemes can be evaluated according to their
best model results. Possibly, one should systematically sample close neighbors both in
time and space to each randomly selected farm. Such a sampling procedure may be a
serious contender to complete sampling — which for most practical purposes will be
too costly.
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structural change for integrated ex-ante assessment: review of methods and deter-
minants,” Environmental science and policy, 12, 601–618.

11

http://ec.europa.eu/agriculture/rica/index_en.cfm
http://ec.europa.eu/agriculture/rica/index_en.cfm
http://www.ers.usda.gov/Data/ARMS/


F
ig

u
re

1:
F

ar
m

lo
ca

ti
on

s
an

d
si

ze
in

m
u
n
ic

ip
al

it
y

T
rø

gs
ta

d
,

19
99

an
d

20
09

.
C

om
p
li
ed

fr
om

T
h
e

N
or

w
eg

ia
n

A
gr

ic
u
lt

u
ra

l
A

u
th

or
it

y
(S

L
F

),
A

p
p
li
ca

ti
on

fo
r

ag
ri

cu
lt

u
ra

l
su

p
p

or
t,

an
d

A
R

25
0

fr
om

S
ko

g
og

la
n
d
sk

ap

12


	hoveid
	Hoveid_Oyvind_657.pdf
	Introduction
	Policy consequences for farm structure and structural change
	State space models
	State space models with spatial interactions
	State space model mixed with observed finite states
	Conclusions and further research


