
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


  

 

 

 

 

 

Productive Efficiency in Water Usage: 

An Analysis of Differences among Citrus Producing Farms Sizes in 

Tunisia 

 

 

 

 

Boubaker DHEHIBI 

 

Department of Agricultural Economics 

National Research Agronomic Institute of Tunisia 

Rue Hédi Karray, 2049, Ariana, Tunisia 

Phone.: (+216)71230024 / 71230239 ; Fax.: (+216) 71752897 / 71716537 

E-mail.: bdhehibi07@webmails.com 

 

 
 

 

 

 

 
 

 

 

 
Paper prepared for presentation at the EAAE 2011 Congress 

Change and Uncertainty 
Challenges for Agriculture, 

Food and Natural Resources 
 

August 30 to September 2, 2011 
ETH Zurich, Zurich, Switzerland 

 
 

 

 

 

 

 

Copyright 2011 by [Boubaker DHEHIBI].  All rights reserved.  Readers may make verbatim 

copies of this document for non-commercial purposes by any means, provided that this 

copyright notice appears on all such copies. 

mailto:bdhehibi07@webmails.com


 - 1 -  

Productive Efficiency in Water Usage: 

An Analysis of Differences among Citrus Producing Farms Sizes in 

Tunisia 

 
 

Abstract - The objective of this paper is to measure productive efficiency of irrigation water 

efficiency based on the concept of technical efficiency and compared among different sizes farms in 

Tunisia. The proposed methodology is applied to a randomly selected sample of 144 citrus growing 

farms and differentiated by size (small, medium and large farms). A stochastic production frontier 

approach, based on Battese and Coelli’s (1995) inefficiency effect model, is used to obtain farm-

specific estimates of technical and irrigation water efficiency. The last step of the analysis consists on 

the identification of the factors influencing irrigation water efficiency differentials across citrus 

growing farms.  

 

Empirical results show that estimated mean technical efficiency ranges from a minimum of 12.82% to 

a maximum of 90.69% with an average estimate of 67.73%. This result means that 32.3% increase in 

production is possible with the present state of technology and unchanged input uses, if technical 

inefficiency is completely removed. Thus, improving technical efficiency will result to significant 

increases in framer’s revenue and profit.  

 

On the other hand, mean irrigation water efficiency is found to be 53%, which is much lower than 

technical efficiency and also exhibits greater variability ranging from 1.6% to 98.87%. Estimated 

mean irrigation water efficiency implies that the observed quantity of marketable citrus could have 

been maintained by using the observed values of other inputs while using 47.0% less of irrigation 

water. This means that farmer’s can achieve significant savings in water use by improving irrigation 

system technologies. 

 

Keywords: Water Efficiency, stochastic frontier production function, small, medium and large citrus 

farms, Tunisia. 

 

1. Introduction 

Irrigation water is becoming an increasingly scare resource for the agricultural sector in many 

regions and countries. A common ground in past policy schemes was the development of 

adequate irrigation infrastructure to guarantee the supply of irrigation water as the demand for 

agricultural products was increasing. However, these expansionary policies have resulted in a 

massive use of irrigation water at a heavily subsidized cost and physical scarcity. Water 

scarcity has become an increasing social and economic concern for policy makers and 

competitive water users. Particularly, agriculture is becoming the sector to which policy 

makers are pointing out at the core of the water problem. 

 

Tunisian reserves of water are approximately estimated at 4.7 Billion m
3
/year. 2.7 Billion m

3
 

coming from annual rivers in the north, 0.7 Billion m
3
 as groundwater in the Center, the plains 

and the coastal area and approximately 1.3 Billion m
3
 in the deep tablecloths mainly in the 

south. Water resources are unevenly distributed across the country with around 60% located 

in the North, 18% in the Center, and 22% in the South. Water resources that have a salinity of 

less than 1.5 g L-1 are distributed as follows: 72% of surface water resources, 8% of shallow 

groundwater, and 20% of deep groundwater. Water resources management and planning are 

outlined in the country's five-year development plans. The goals are to mobilize most of the 

surface water through the completion of 42 dams and the construction of 203 hillside-dams, 

1000 hillside-lakes, and 4000 recharge and floodwater diversion structures. The planned 

infrastructure in the year 2010, will account 87% of the potential (4760 Mm
3
). In addition, the 

plans emphasize water harvesting and wastewater reutilization. 
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Taking into account the limited water resources and the disparity between supply and demand 

often generated in conditions of dryness, Tunisia has engaged over the last three decades in a 

dynamic program of water mobilization.  Several investment projects were granted reaching 

9% of the total investments of the state in the VIII plan of development (1992-1996). 

Agriculture remains as the biggest water consuming sector (more than 80% of the total 

demand) and accounts for approximately 12% of the GDP.  

 

Irrigated agriculture represents 35% of the output value derived from the agricultural sector, 

20% of exports and 27% of agricultural employment (Ministry of Agriculture and Water 

Resources, 2003). Irrigated perimeters, contribute to 95% of the vegetable production, 70% of 

fruits and 30% of the dairy output. The average efficiency of the irrigation networks is 

relatively weak.  It is estimated approximately 50% (Bachta and Ghersi, 2004). 

 

The irrigated areas with those types of waters cover 411.4 thousand ha. Tree crops are first 

with an area of 152.6 thousand ha, which corresponds to 37% of the total surface. Vegetables 

are second with 30%. They are followed by forages (16%), cereals (16%) and other industrial 

crops (1%). The industrial sector and the tourism retain 5% and 1% of water resources, 

respectively. The service of water-drinking represents 11% in rural area; the service rate 

reached 80 % in 2000, whereas it did not exceed 38% in 1990. 

 

The objective of this paper is to measure the productive efficiency of water irrigation 

efficiency based on the concept of input- specific technical efficiency methodology proposed 

by Karagiannis et al., (2003). In addition, the paper presents a comparative analysis of the 

productivity of water use efficiency of small, medium and large citrus producing farms. The 

proposed measure is a non- radial, input-oriented measure of input –specific technical 

efficiency. It has an economic rather than an engineering meaning and it is defined as the ratio 

of the minimum feasible water use to observed water use, conditional on production 

technology and observed levels of output and other inputs used. It provides information on 

how much water use could be decreased without altering the output produced and the 

quantities of other input used. This measure explicitly recognizes that each irrigation system 

could be technically inefficient for several reasons that can be explored through statistical 

methods.  

 

The remainder of this paper is organized as follows. In section 2, we present the 

methodological framework paying special attention to the measurement of technical 

efficiency. Section 3 outlines the irrigation water efficiency measurement. The empirical 

model as well as the data and variables used in the empirical model are presented in section 4. 

Section 5 presents the empirical results and discussions and section 6 concludes with some 

remarks on policy implications. 

 

2. Theoretical Background: Stochastic Production Frontier 

Since the stochastic production frontier model was first, and nearly simultaneously, published 

by Meeusen and van den Broeck (1977) and Aigner, Lovell and Schmidt (1977), there has 

been considerable research to extend the model and explore exogenous influences on 

producer performance. Early empirical contributions investigating the role of exogenous 

variables in explaining inefficiency effects adopted a two-stage formulation, which suffered 

from a serious econometric problem
1
. 

                                                      
1
 In the first stage of this formulation, the stochastic frontier model is estimated and the residuals are 

decomposed using the Jondrow et al. (1982) technique. The estimated inefficiency scores are then regressed, in a 
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Recently, Kumbhakar, Ghosh and McGuckin (1991), Reifschneider and Stevenson (1991) and 

Huang and Liu (1994) proposed stochastic production models that simultaneously estimate 

the parameters of both the stochastic frontier and the inefficiency functions. While the 

formulated models differ somewhat in the specification of the second error component, they 

all used a cross section data. Battese and Coelli (1995) formulated a stochastic frontier 

production model similar to that of Huang and Liu and specified for panel data. In this study, 

we adopt the Battese and Coelli model but specified for a cross section data context. The 

model consists of two equations (1) and (2). The first equation specifies the stochastic frontier 

production function. The second equation, which captures the effects of technical 

inefficiency, has a systematic component iz' associated with the exogenous variables and a 

random component i :  

 

iiii uvxfLnYLn  );(       (1) 

iii zu   '        (2) 

Where iY denotes the production of the i-th firm; ix is a vector of input quantities of the i-th 

firm and  is a vector of unknown parameters to be estimated. The non-negativity condition 

on iu is modelled as i ~ N (0, 2

 ) with the distribution of i being bounded below by the 

truncation point iz' . Finally, iv are assumed to be independent and identically distributed 

N (0, v
2
) random errors, independent of the iu . 

 

The parameters of the stochastic frontier production function in (1) and the model for 

technical inefficiency effects in (2) may simultaneously be estimated by the maximum 

likelihood method. The technical efficiency of production for the i-th farm can be defined as 

follows: 

)(exp)(exp '

iiii zuTE        (3) 

A predictor for which is provided by its conditional expectation
2
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3. Measuring Irrigation Water Efficiency 

In order to achieve the mentioned objectives, we have used and applied the methodology 

developed by Karagiannis et al., (2003) for a cross section data from survey conducted into 

the most principal Tunisian citrus sector production. According to Karagiannis et al., (2003), 

the methodological framework of technology be described by the following stochastic 

production frontier function: 

                                                                                                                                                                      
second stage, against the exogenous variables contradicting the assumption of identically distributed inefficiency 

of the first stage. 
2
 For the derivation of the likelihood function, its partial derivatives with respect to the parameters of the model 

and an expression for the predictor of technical efficiency see Battese and Coelli (1993). 
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    yi = f(xi, wi,; a) exp (εi  vi-ui)   (7) 

 

Where i = 1,2,....,N refers to farms, y is the quantity of output produced, x is a vector of input 

quantities used, w is irrigation water, and εi is a composed error term consisting of a 

symmetric and normally distributed error term, vi, respecting those factors that cannot be 

controlled by farmers (i.e., weather effects).  

 

Then, farm specific estimates of output-oriented technical efficiency are obtained as TEi 
0
 = 

exp (-ui ) (Kumbhakar and Lovell, 2000), while farm-specific estimates of input oriented 

technical efficiency are derived by equation (7) with  yi  =  f (vixi , viwi ; α) exp (vi ) and 

solving for TEi 
1 

=  vi (Atkinson and Cornwell, 1994; Reinhard et al., 1999). Thus, TEi 
0 

is 

greater, equal, or less than TEi 
1 

whenever returns to scale are decreasing, constant, or 

increasing, respectively (Fâre and Lovell, 1978). 

 

The above measures of efficiency are incapable of identifying the efficient use of individual 

inputs. For this reason, the proposed irrigation water efficiency measure is based on the non-

radial notion of input specific technical efficiency (Kopp, 1981). Specially, it is defined as the 

ratio of minimum feasible to observed levels of outputs and input. Thus, irrigation water 

efficiency is an input-oriented, single-factor measure of technical efficiency defined as: 

 

    IE
1 

= [ min {λ : f (x, λ w ; a)  y }] (0, 1)   (8) 

Irrigation water efficiency, as defined in (8), has an input-conserving interpretation, which 

however cannot be converted into a cost saving measure due to its non radial nature (Kopp, 

1981). The proposed measure of irrigation water efficiency is illustrated in figure 1 

(Karagiannis et al., 2003).  

 

 

Figure 1: proposed measure of irrigation water efficiency. 

 



 - 5 -  

Let the ith inefficient farmer producing output Y0 by using x1 of all other inputs and w1 units 

of irrigation water. Then TEi 
1 

= OB /OA and IEi 
1
 = x1 C/ x1 A =w2 / w1. The proposed 

irrigation water efficiency measure determines both the minimum feasible water use (w2 ) and 

the maximum possible reduction in water use (w1 -  w2 ) that still permits the production of Y0 

units of output with unaltered the use of all other inputs. On the other hand, according to the 

TEi 
1
 measure, the maximum possible reduction in water use, required to make the ith farm 

technically efficient, is (w1 – w3). From figure 1, it is clear that the former (w1 - w2) will 

always be greater than the latter (w1 – w3). Consequently, the maximum possible reduction in 

water use suggested by IEi 
1
 should be considered as an upper bound (Akridge, 1989). 

 

Conceptually, measurement of IEi 
1
 requires an estimate for the quantity (w2), which is not 

observed. Nevertheless, using IEi 
1
 = w2 / w1 it can easily be seen that w2  =  w1. IEi 

1
. By 

substituting this into (1) and by noticing that point C in Figure 1 lies on the frontier, i.e., ui = 

0, (7) may be rewritten as: 

 

     yi = f (xi, wi
E
; a) exp (ui)    (9) 

Where wi
E
 = w2 (Reinhard et al., 1999). Then, a measure of IEi 

1
 can be obtained by equating 

(7) with (9) and by using the econometrically estimated parameters α. 

 

Since IEi 
1
 is a non radial efficiency measure that does not have a direct cost-saving 

interpretation, the single-factor technical cost efficiency measure could instead be used to 

evaluate the potential cost savings accruing to more effective management of a single factor 

(Kopp, 1981). Then, irrigation water technical cost efficiency, ITCEi , could be defined as the 

potential cost savings from adjusting irrigation water to a technically efficient level while 

holding all other inputs at observed levels. Following Akridge (1989), farm-specific estimates 

of ITCEi may be obtained as: 

     



J

j
ji

I

iwii SIESITCE
1

   (10) 

Where Swi  and Sji are the ith farm’s observed input cost shares for irrigation water and the jth 

input, respectively. Given that 0 < IEi 
I
   1 and 




J

j
ji

I

iwi SIES
1

1for all i, 0 < ITCEi 1. 

However, cost saving will vary with factor prices and relatively inefficient water use in a 

physical sense can be relatively efficient in a cost sense, and vice versa (Kopp, 1981). 

 

4. Empirical Model  

 

4.1. Model Specification 

Let the unknown production frontier (7) to be approximated by the following Cobb-Douglas 

specification: 

  uvwxy iiiwji

J

j
ji

 


lnlnln
1

0      (11) 

 

Using the Battese and Coelli’s (1995) inefficiency effect model, the one sided error term is 

specified as: 

    ui + g(zi; ) + wi      (12) 

Where z is a vector of variables used to explain efficiency differentials among farmers, δ is a 

vector of parameters to be estimated (including an intercept term), and wi is an iid. The model 

(11) and (12) can be estimated econometrically in a single stage using ML techniques and the 
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frontier (version 4.1) computer package developed by Coelli (1992). The variance parameters 

of the likelihood function are estimated in term of 
222

uv
  and 

2

2




 u , where 

the γ parameter has a value between zero and one. 

 

Using the estimated parameters and variances, farm-specific estimates of TEi
0
 are obtained as: 
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 is the cumulative density function of the standard normal random variable and E is the 

expectation operator. 

 

On the other hand, farm specific estimates of  IEi 
1
  are derived by using (9) and the following 

relations developed by Reinhard et al., (1999) and applied for the Cobb-Douglas specification 

case (11): 

     wwiwwii

I
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4.2. Data and Variables Definitions 

A cross section data of 144 Tunisian citrus producing farms covering the 2002-2003; 2003-

2004 and 2004-2005 periods are collected from surveys conducted in 2 delegations of the 

governorate of Nabeul, Tunisia (table 1). The choice of this region is justified by its 

importance in the national citrus production, transformation and exports sector. Indeed, 

according to the Ministry of Agricultural statistics, this region represents 1.7% of national 

agricultural land; it contributes for 80% for national citrus production and for more than 90% 

for national citrus exportation. 

 

Table 1: Distribution of citrus farms surveyed by delegation and by land area. 

Delegations Private Farms 

 < 1Ha 1 - 2 ha > 2ha Total 

Beni Khalled 20 31 19 70 

Menzel Bouzelfa 12 27 35 74 

Total Nabeul 32 58 54 144 
Source: Own elaboration from citrus producing farms in Tunisia. 

 

The selected sample comprises 32 farms of size lower than 1 ha (witch represent 22.22%), 58 

of size ranging between 1 and 2 ha (40.27%) and 54 of size higher than 2 ha (37.50%). It 

represents a total agricultural surface of about 392.22 ha. Citrus growing manpower adds up 

105921 productive citrus trees witch 8.63% are of age lower than 5 years, 8.49% of age 
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ranging between 5 and 10 years, 19.23% of age ranging between 10 and 20 years and 63.6% 

of age higher than 20 years. The density of plantation is about 270 trees/ha on average. The 

production of citrus during 2002/2003, 2003/2004 and 2004/2005 was 2390.7 metric tons per 

year, on average, witch correspondent to 67.7Kg/tree and 18.3MT/ha.  

 

As we posed at the outset, the dependent variable is the total annual citrus production 

measured in Kg. The aggregate inputs considered in the analysis are: (1) land, measured in 

hectares; (2) total labour measured in working days; (3) chemical inputs measured in Tunisian 

Dinars; (4) irrigation water measured in m
3
; and (5) other costs, comprising the rest of inputs 

used in producing citrus (mechanisation, etc.) measured in Tunisian Dinars. Summary 

statistics of these variables is given in table 2. From the surveyed farms, it appears that the 

average age of respondents is 55.8 years, ranging from 29 to 80. It is also important to 

indicate that on average, land holding is 2.61 ha, ranging from 0.2 to 18.5. 35.33% of the 

sample farmers are illiterate, 30.66 are with primary level, whereas 34.00% accumulated at 

least 6 years of schooling. 

 

In terms of structure of land, it appears that 81.33% of sample farmers are successors of 

farms, the other 18.66% are purchasers. 86.00% of farmers never followed a training program 

on conducting citrus plantation and improving conduct techniques. Moreover, only 71% of 

farmers are agreeing with the disposable of water especially in summer period. A significant 

part of surveyed farmers (90.6%) make resort for fertilization operations. It is important to 

indicate the high level of family labour with respect to total labour (68.65%), especially for 

citrus speculation (82.38%). Finally, in terms of machinery, only 28.00% of sample farmers 

have tractors. The other 72.00% make resort to the hiring. 

 

Table 2: Summary statistics of the variables used in the Frontier Model for citrus producing 

farms in Tunisia. 

Notation Variables Mean Standard 

Deviation 

Min Max 

P Production (in Kg) 47814.27 54577.96 2096.76 415129.1 

S Area (in Ha) 2.61 3.04 0.2 18,5 

L Labour (in Working Days) 428.44 364.93 46.5 2950.0 

CI Chemical Inputs (in TD) 1937.83 2491.76 0.00 14000.0 

IW Irrigation Water (in m
3
) 97.90 121.83 0.00 900.00 

OC  Other Costs (in TD) 631.77 1206.49 0.00 11300.00 

AF Age of Farmer (in years) 55.88 10.64 29.00 80.00 

SFL Share of Family Labour (in 

%) 

0.68 0.36 0.00 1.00 

SPT Share of Productive Trees (in 

%) 

0.86 0.19 0.00 1.00 

Note: 1TD =0.65 Euros. 

Source: Own elaboration from citrus growing farms in Tunisia. 

  

5. Results and Discussion 

 

5.1. Production Structure 

The estimated parameters of the Cobb-Douglas stochastic production frontier for the different 

farms sizes are presented in table 3. From this table it appears that all the parameters (i) have 

the anticipated positive sign and magnitude. On the other hand, the ratio of farm specific to 

total variability, , is positive and statistically significant at the 5% level. The value of 0.81 
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(for total sample) indicate that output oriented technical efficiency is important in explaining 

the total variability of output produced. The remaining portion (0.19) is due to factors outside 

the control of farmer (weather, diseases, etc.). Whereas, output technical efficiency is not 

important on explaining the volatility of output produced in the case of medium farms ( is 

positive but not statistically significant). 
 

Table 3: Parameter estimates (production elasticities) and returns to scale of the frontier 

model of a sample of Tunisian citrus producing farms. 

Parameters 

Estimates 

Small 

(<1 ha) 

Medium 

(1-2 ha) 

Large 

(>2 ha) 
Total Sample 

Stochastic Frontier Model 

Intercept 0.72** 0.064 0.64** 0.43** 

Ln(S) 0.69** 0.41* 0.22* 0.34** 

Ln(L) -0.054 -0.12 0.42* 0.03 

Ln(CI) 0.11* 0.22** -0.098 0.22** 

Ln(IW) 0.37** 0.29** 0.32** 0.33** 

Ln(OC) 0.036 -0.02 0.067 0.24 

Returns to Scale 1,152 0,78 0,929 1,16 

Variance Parameter 


2
 0.32* 0.16 0.63** 0.38** 

 0.79** 0.17 0.99** 0.81** 

Log-Likelihood -15.51 -24.96 -99.20 -79.46 

N 32 58 54 144 
Notes: **: indicates significance at the 5% level; *: indicates significance at 10% level. 
 

Average estimates of production elasticities and returns to scale for the whole sample and for 

the different sizes (small, medium and large) are presented in table 3 for the region of study 

under consideration. For total sample, estimated production elasticities of all five inputs are 

positives. They indicate that in Nabeul region land is the foremost important input followed 

by irrigation water and chemical inputs, while labour has the lowest point estimate, which on 

average were found to 0.03. In economics terms, this latter means that holding all other inputs 

constant, a 1% reduction in irrigation water requires a sacrifice of 0.33% of marketable 

output. On the other hand, the hypothesis of constant returns to scale is rejected at the 5% 

level of significance, and returns to scale were found to be increasing (1.16). 

 

A direct comparison of the parameters estimated (elasticities, in this case) shows the close 

difference between the small, medium and large farms in terms of intercepts, labour input and 

returns to scale. Whereas, some similarities are outlined for the importance of water irrigation 

weight (the relative coefficient is positive and statistically significant for all sizes). 

 

A shadow price of irrigation water may be computed by using the mean values of the relevant 

variables reported in table 3 and the estimated production elasticity of irrigation water for the 

whole sample. By combining these figures we find that a reduction of 0.979 m
3
 of irrigation 

water would “cost” approximately 1.24 kilograms in terms of forgone quantities and 0.53 

Tunisian Dinars in terms of forgone revenue.  

 

This in turn implies that the shadow price of irrigation water is equal to 0.53 Tunisian Dinars 

per m
3
, a value that is much higher than the market price charged in Nabeul region, which 

varies 0.09 and 0.1 Tunisian Dinars per m
3
. This shadow price should be considered as the 
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upper bound of the true shadow assumption that all other inputs are held constant at their 

observed levels, which might not be palatable for greater changes in the quantity of irrigation 

water. 

 

5.2. Technical and Irrigation Water Efficiency 

Results for estimates of technical efficiency (TEi), irrigation efficiency (IEi), and irrigation 

water technical cost efficiency (ITCEi) for the whole sample and disaggregated by size of 

farms are showed in tables 4. For the whole sample, the estimated mean output-oriented 

technical efficiency ranges from a minimum of 12.82% to a maximum of 90.69% with an 

average estimate of 67.73%. This result means that 32.3% increase in production is possible 

with the present state of technology and unchanged input uses, if technical inefficiency is 

completely removed. Thus, improving technical efficiency will result to significant increases 

in framer’s revenue and profit.  

 

On the other hand, mean irrigation water efficiency is found to be 53%, which is much lower 

than technical efficiency and also exhibits greater variability ranging from 1.6% to 98.87%. 

The estimated mean irrigation water efficiency implies that the observed quantity of 

marketable citrus could have been maintained by using the observed values of other inputs 

while using 47.0% less of irrigation water. This means that farmer’s can achieve significant 

savings in water use by improving the utilisation of irrigation system and by utilizing more 

advanced irrigation technologies. This recommendation is useful for all different farm sizes 

on which medium farms are expected to be more efficient in this case. 

 

Table 4: Efficiency ratings of Tunisian citrus producing farms. 

Efficiency (%) IE TE ITCE 

Total Sample (N=144) 

Mean Efficiency  53.00 67.73 70.81 

Min. Efficiency 1.6 12.82 70.21 

Max. Efficiency 98.87 90.69 99.90 

Small Farms (N=32) 

Mean Efficiency  52.06 68.01 91.09 

Min. Efficiency 9.41 32.77 75.54 

Max. Efficiency 99.05 86.61 99.90 

Medium Farms (N=58) 

Mean Efficiency  55.63 70.57 92.86 

Min. Efficiency 1.59 12.82 79.17 

Max. Efficiency 98.87 90.69 99.85 

Large Farms (N=58) 

Mean Efficiency  52.30 64.51 91.37 

Min. Efficiency 2.94 29.24 70.21 

Max. Efficiency 93.28 90.52 99.59 

Source: Own elaboration from citrus growing farms in Tunisia. 
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Moreover, cost savings that could be attained by adjusting irrigation water to its efficient 

level, would be small since its outlays constitute a small proportion of total cost. For this 

reason, the estimated mean ITCEt is much higher than IEi for the different sizes. Results from 

table 4 showed that the estimated mean irrigation water technical cost efficiency is found to 

be 70.81% (91.01% for small farms; 92.86% for medium farms and 91.37% for large farms) 

indicating a potential decrease of 29.19% (19%, 7% and 8%, respectively for small, medium 

and large farms) in total cost by adjusting irrigation water to its efficient level. In addition, the 

vast majority of farms have achieved irrigation water technical cost efficiency greater than 

90% (71% of farms). Thus, even though irrigation water is used least efficiently in technical 

sense, it offers only few potential cost savings if it is adjusted to its technically efficient level. 

 

5.3. Explaining Efficiency Differentials 

The second step of the analysis talks about the sources of efficiency differentials among 

farmers. In this fact, one of the advantages of Battese and Coelli (1995) model is that allows 

measurement of technical efficiency (TE) and examination of its differentials among farmers 

to be done with a single stage estimation procedure. The commonly applied two stage 

estimation procedure has been recognised as one that is inconsistent with the assumption of 

identically distributed inefficiency effects in the stochastic frontier, which is necessary in the 

maximum likelihood (ML) estimation (Reifschneider and Stevenson, 1991; Kumhakar et al., 

1991; Battese and Coelli, 1995). However, the two stage estimation procedure can be used 

with no problem for identifying the factors influencing irrigation water efficiency differentials 

across farms as irrigation efficiency (IE) is calculated from the parameter estimates and the 

estimated one sided error component of the stochastic production frontier in (7). The relevant 

second stage regression model has the following form: 

    Ln  IEi   = h (zi, δ) +  ei      (15) 

Where h (*) is deterministic Kernel of the regression model, δ is the vector of the parameters 

to be estimated and ei is an iid random variable with zero mean and constant variance. The 

above model is estimated with standard OLS. 
 

Therefore, and in order to explain the sources of efficiency differentials among farmers 

(small, medium and large), the inefficiency effects model (equation 12) and the second stage 

regression (equation 15) have been estimated.  

 

Estimation results from theses models are presented in table 5. It is indicated that estimated is 

carried out only for the whole sample because results by size are, in general terms, not 

significance. 

 

In the case of the inefficiency effects model, it is important to indicate that a negative sign of 

the estimated parameter indicates a positive relationship between technical efficiency and the 

variable under consideration, while in the latter a positive sign depicts a positive relationship 

between irrigation water efficiency and the corresponding variable.  

 

Farmer’s age squared does not seem to affect either technical or irrigation water efficiency. In 

contrast the farmer’s age affect positively technical and irrigation water efficiency. This 

finding indicates that young farmer’s are becoming relatively more technically efficient over 

time by improving learning by doing. On the other hand, farm’s size, education level, 

agricultural training, the share of productive trees and the water disposable perception tend to 

affect positively the degree of both technical and irrigation water efficiency. Finally, it is 

important to notice that the share of family labour affect positively the efficient use of 

irrigation water, but negatively the technical efficiency.  
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Table 5: Explaining Efficiency Differentials. 

Parameter 
TE IE 

Estimate Std Error Estimate Std Error 

0 0.911 0.291 1.415 0.5068 

FS -0.0079 0.0044 -0.0016 0.0078 

AG -0.0073 0.0106 -0.0197 0.0174 

AAGG 0.000008 0.0000 0.0001 0.00015 

EDC -0.0081 0.0334 -0.0177 0.0580 

AT -0.012 0.0381 -0.0132 0.0661 

FL 0.007 0.0422 -0.0184 0.0733 

SPT -0.035 0.0673 -0.1351 0.1168 

WDP -0.012 0.0295 -0.0154 0.0512 

R
2
  0.42 

Notes: FS: is the farm’s size in hectares; AG and AAGG: is the farmer’s age and age squared in years; EDC: is the level of 

schooling (1: illiterate; 2: primary level; 3: secondary level and 4: high school level); AT: is a dummy variable indicating 

farmer’s followed training programs on conducting citrus plantation; FL: proportion of family labour; SPT: share of 

productive trees measured in % and WDP: is a dummy variable indicating water disposable perception by farmer’s. 

 

 

5. Concluding Remarks and Policy Implications 

The aim of this paper is to measure productive efficiency of irrigation water efficiency based 

on the concept of technical efficiency and compared among different sizes farms. The 

proposed methodology is applied to a randomly selected sample of 144 citrus growing farms 

located in Nabeul (Tunisia) and differentiated by size (small, medium and large farms). A 

stochastic production frontier approach, based on Battese and Coelli’s (1995) inefficiency 

effect model, is used to obtain farm-specific estimates of technical and irrigation water 

efficiency. The last step of the analysis consists on the identification of the factors influencing 

irrigation water efficiency differentials across citrus growing farms on the basis on a second-

stage regression approach. 

 

Empirical results show that estimated mean technical efficiency ranges from a minimum of 

12.82% to a maximum of 90.69% with an average estimate of 67.73%. This result means that 

32.3% increase in production is possible with the present state of technology and unchanged 

input uses, if technical inefficiency is completely removed. Thus, improving technical 

efficiency will result to significant increases in framer’s revenue and profit.  

 

On the other hand, mean irrigation water efficiency is found to be 53%, which is much lower 

than technical efficiency and also exhibits greater variability ranging from 1.6% to 98.87%. 

The estimated mean irrigation water efficiency implies that the observed quantity of 

marketable citrus could have been maintained by using the observed values of other inputs 

while using 47.0% less of irrigation water. This means that farmer’s can achieve significant 

savings in water use by improving the utilisation of irrigation system and by utilizing more 

advanced irrigation technologies. 
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Moreover, cost savings that could be attained by adjusting irrigation water to its efficient 

level, would be small since its outlays constitute a small proportion of total cost. For this 

reason, the estimated mean ITCEt is much higher than IEi for the different sizes. Results from 

table 4 showed that the estimated mean irrigation water technical cost efficiency is found to 

be 70.81% (91.01% for small farms; 92.86% for medium farms and 91.37% for large farms) 

indicating a potential decrease of 29.19% (19%, 7% and 8%, respectively for small, medium 

and large farms) in total cost by adjusting irrigation water to its efficient level. In addition, the 

vast majority of farms have achieved irrigation water technical cost efficiency greater than 

90% (71% of farms). Thus, even though irrigation water is used least efficiently in technical 

sense, it offers only few potential cost savings if it is adjusted to its technically efficient level. 

 

The analysis of the sources of efficiency differentials among farmers showed that farmer’s 

age affect positively technical and irrigation water efficiency. This finding indicates that 

young farmer’s are becoming relatively more technically efficient over time by improving 

learning by doing. On the other hand, farm’s size, education level, agricultural training, the 

share of productive trees and the water disposable perception tend to affect positively the 

degree of both technical and irrigation water efficiency.  

 

Finally, results from this research for small, medium and large farms suggest that a substantial 

water price increase for citrus farmers would be an appropriate policy for water conservation. 

In addition, results implies that professional training programs, in advanced irrigation 

techniques, could be effective, particularly if targeted to farmers with limited skills and 

Stimulate the necessity for decisions makers to encourage investment on irrigation equipment 

machinery by facilitating access to credit. Finally, theses findings could be the background of 

a new research on providing the sources both of technical inefficiency and productivity 

growth on the Tunisian citrus producing sector. 
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