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1. Introduction
1
 

This paper investigates the link between the growth of the agricultural sector and its environmental 

impact in terms of GHG emissions. The analysis is carried out by testing a conventional 

Environmental Kuznets Curve (EKC) hypothesis (namely, the inverted U–shaped relation between 

emissions and growth) thus providing the basic evidence about the long-term sustainability of 

agriculture from a GHG emission perspective. Theoretical and empirical literature on the EKC is 

too broad to be extensively reviewed here (see Stern, 2004; Brock and Taylor, 2005). Nonetheless, 

two major developments in empirical studies are worth emphasizing. Firstly, the use of panel data 

with a long time dimension is increasingly preferred to cross-sectional (cross-country) and time-

series (single-country) approaches as they significantly improve the robustness and general validity  

of findings (Mazzanti et al., 2008; Galeotti et al., 2009). In this context, the use of single-country 

geographical units (e.g. regions) seems particularly suitable for this kind of analysis as this strongly 

reduces the amount of uncontrolled heterogeneity usually affecting multi-country studies. Secondly, 

sector-level analysis are increasingly preferred to aggregate studies as these latter disregard the 

relevant cross-sectoral heterogeneity in emission performance, and may eventually misinterpret 

aggregate results that could be actually generated by cross-sectoral compensating effects (Galeotti 

et al., 2009). If this compensating effect really occurs across sectors, it would inevitably undermine 

also those cross-country studies that compare countries at a very different development stage (i.e., 

with quite different sectoral composition) (Vincent, 1997; Stern, 2004). 

The present paper follows these streams of recent empirical literature by adopting long single-

country panel datasets (Italian regions) and focusing on sectoral emission records. Adopted data 

concern 1951-2008 and 1980-2008 regional-level agricultural emissions of methane and nitrous 

oxide, respectively. Such data cover a period of intense economic growth accompanied by strong 

consequent transformations of Italian regional agriculture (Rizzi and Pierani, 2006). Emission data 

derive from a disaggregation of the Italian GHG inventoryand from a bottom-up reconstruction 

using national emission factors and activity data. The respective EKC hypothesis as are assessed by 

firstly testing for stationarity of the adopted time series within the panel and, secondly, by 

estimating alternative panel model specifications with conventional and GMM panel estimators.  

2. Agricultural GHG emissions and justifications of the EKC 

2.1. Agricultural GHG emissions 

According to IPCC FAR-Fourth Assessment Report (Rogner et al., 2007) agriculture accounts for 

13.5% of 2005 global anthropogenic GHG emissions; in particular, the sector is responsible of 

about 60% of nitrous oxide (N2O) and about 50% of methane (CH4) global emissions.
2
 Agricultural 

GHG emissions have become central in the debate on policies contrasting climate change in 

developed countries. This is demonstrated by the ongoing discussion on the next reform of the 

Common Agricultural Policy (CAP) (Fischer Boel, 2009). Besides recent draft Commission 

document on the forthcoming EU budget review stresses that agriculture must do more to mitigate 

climate change and is expected  “to contribute to reducing greenhouse gas emissions and to 

developing the use of land as a carbon sink” (European Commission, 2009).  

This emphasis on the contribution of agriculture to overall GHG emissions, in fact, may seem 

overstated if we consider the marginal role the sector now plays in most developed countries from a 

strictly economic and occupational perspective, and if we compare agricultural emissions with the 

prominent mitigating contribution the sector can give in terms of higher carbon sequestration. 

Nonetheless, there remain two major motivations for paying attention to the emission performance 

of the farming sector within rich countries. On the one hand, in absolute terms, agricultural 

emissions remain relevant and their further reduction may compensate temporary unsustainable 

patterns of other high-emission sectors (energy production, transportation, etc.). In Italy, for 

                                                 
1
 Although this paper is common to both the authors, the authorship can be attributed as follows: sections 3 and 4 to 

Coderoni; sections 1, 2 and 5 to Roberto Esposti.  
2
 Compared to other studies, these estimates are even optimistic. For example, using different methodologies, the 

Worldwatch Institute (Goodland and Anhang, 2009) estimates that the contribution of agriculture to GHG global 

emissions may currently exceed 50% while FAO (2006) states that the livestock sector alone is responsible for 18% of 

all GHG production. 
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instance, agriculture remains the second source of national GHG emissions in 2008 (6.6%), after 

energy sector (84%), and still the dominant source for CH4 and N2O (43% and 70% of national 

emissions, respectively) (ISPRA, 2010).
3
 

On the other hand, coming back to a global perspective, the decline observed in many Annex I 

Parties
4
 may be crucial for developing countries whose agricultural transformation is still in 

progress. This transformation is still expected to induce a remarkable growth of agricultural GHG 

emissions in the next decades: worldwide, global agricultural N2O emissions are projected to 

increase by 35-60% up to 2030 (due to increased nitrogen fertilizer use and animal manure 

production) and global livestock-related CH4 production is expected to increase by 60% up to 2030 

due to the growing number of livestock (FAO, 2003; Smith et al., 2007).
5
  

Therefore, it seems critical to understand, from the historical experience of developed countries, to 

what extent the allegedly achieved sustainability of agricultural GHG emission has been caused by 

changes internal to the agricultural sector or merely by the relative decline of agriculture within the 

economy as development proceeds.  

2.2. Sustainability and the EKC  

An interesting relation occurs between emission sustainability and the EKC hypothesis. In 

particular, it can be shown that, for a given pollutant or GHG, assessing the EKC hypothesis may 

also provide an assessment of emission sustainability. This is definitely of interest here for the 

agricultural GHG emissions.  

With emission sustainability here we simply mean a non-increasing emission level (E) over time, 

that is, tEE tt  ,1 . It may be argued that such definition of emission sustainability is largely 

insufficient to achieve the global emission targets as established at the international level (the Kyoto 

Protocol) where, in fact, a substantial reduction of GHG emission is required (and pursued by 

policies) over the next decades (OECD, 2008). Nonetheless, non-increasing emissions still remain 

an interesting reference condition to analyse key forces and contributions behind agricultural GHG 

emission.
6
 Moreover, this straightforward definition of emission sustainability makes the relation 

between sustainability and the EKC more clearly emerge.  

To analyse which forces contribute to such sustainability and how it can be achieved, let follow 

Borghesi and Vercelli (2009) in their adaptation of the well-known IPAT model and decomposition 

(Holdren and Ehrlich, 1974; Kaya, 1990). Agricultural emission of the k-th GHG at time t, ktE , can 

be decomposed according to the following identity: 

(1) t

t

t

t

kt
kt L

L

VA

VA

E
E    

where tVA  and iL   indicate the agricultural value added (in real terms) and labour force at time t, 

respectively. Therefore, 
t

kt

VA

E
expresses the agricultural GHG emission intensity and 

t

t

L

VA
 the 

agricultural labour productivity.  

Taking the time derivative of the logarithms of the four variables, (1) can be expressed in growth 

rate terms, g:          

(2) LtPtItEt gggg    

                                                 
3
 Analogous figures can be observed in other EU countries, like France (De Cara and Jayet, 2000).  

4
 With reference to the Kyoto Protocol, so-called “Annex I Parties” are the industrialized countries that were members 

of the OECD (Organisation for Economic Co-operation and Development) in 1992, plus countries with transition 

economies (the EIT Parties), i.e., the Russian Federation, the Baltic States, and several Central and Eastern European 

States. Globally, agricultural CH4 and N2O emissions have increased by nearly 17% from 1990 to 2005. During this 

period, Non-Annex I countries showed a 32% increase, and were, in 2005, responsible for about 3/4 of total agricultural 

emissions. The other cases (mostly Annex I countries) collectively showed a decrease of 12% of the emissions (Smith et 

al., 2007). 
5
 For further details on 2020 emission projections see also US-EPA (2006).   

6
 Compared to the 2050 emission levels that would be obtained with conservative emission growth rate of 1% per 

annum, “if livestock emissions could be held at year 2000 levels, the amount of atmospheric space freed would be as 

big as total global transport emissions were in 2005” (Stephenson, 2010, p. 4).   
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Where LtPtItEt gggg ,,,  indicate the growth rates at time t of agricultural GHG emission, emission 

intensity, labour productivity and labour force, respectively. As emission sustainability implies 

tgEt  ,0 , it follows that the sustainability condition is 0 LtPtIt ggg . In the specific case of 

the agricultural sector, this condition may be further detailed by noticing that, in general terms (and 

it is definitely the case for the Italian regions under study here) agricultural labour force is regularly 

declining and agricultural labour productivity regularly increasing over time. Therefore, it generally 

is 0Ptg  and 0Ltg ; however, it also is LtPt gg   as real-term agricultural value added is 

slightly but regularly increasing over time, as well. As a consequence,   0 LtPt gg . The 

combination of these two forces behind emission decomposition can be called the scale effect as it 

ultimately express the impact on agricultural GHG emission of the increase of sectoral value added 

in real terms (Brock and Taylor, 2005). These two forces are somehow expression of processes that 

originate and develop outside the sectoral boundaries. Economic growth takes labour away from 

agriculture towards other sectors but also generates those technological improvements that make 

agricultural labour productivity increase with an even greater intensity. 

To make its GHG emission pattern sustainable, therefore, the agricultural sector must generate 

internal forces that contrast this scale effect and eventually make 0Itg  and  LtPtIt ggg  . 

These forces are the technological effect, that is, the introduction and emission-saving production 

techniques, and the composition effect, that is, the gradual shift of agricultural output composition 

towards lower-emission products (e.g., crops instead of livestock). Therefore, agricultural GHG 

emission sustainability requires that the technology and composition effects overcompensate the 

scale effect. 

Depending on the relative importance of these three effects, different shapes of the pollution-growth 

relationship may emerge. Emissions can simply and monotonously grow, output composition and 

technology remaining unchanged, with the scale of economic activity. At the same time, however, 

for a given scale and technology, emissions can change (either rise or fall) whenever the 

composition of output within the sector changes towards more or less emission-intensive activities. 

Such composition effect, in turn, is motivated on the demand side by the progressive shift of 

consumption preferences towards more income-elastic goods and services as economic growth 

proceeds. Finally, emissions per unit of output (i.e., emission intensity), scale and composition 

remaining unchanged, can monotonously decrease due to environment-saving technological 

improvements. 

In practice, the necessary, though not sufficient (Borghesi and Vercelli, 2009), condition to achieve 

this result is that, as economic and agricultural growth proceeds, emission intensity starts declining. 

But this argumentation naturally brings the analysis closer to the EKC hypothesis. In the present 

context, we can express this hypothesis as the inverted U-shape relation between agricultural GHG 

emission intensity and agricultural labour productivity. Therefore, when a given critical 

productivity level is reached, emission intensity starts declining at an increasing rate as labour 

productivity grows further. 

Figure 1 (part A) shows this ECK hypothesis and underlines how the turning point (decoupling or 

delinking) defines the area of potential sustainability: the ascending part of the EKC is definitely 

unsustainable in terms of GHG emission; the descending part, on the contrary, satisfies the 

necessary condition for sustainability to be met.  

The linkage between emission sustainability and the EKC can be pushed even further. Not only the 

existence of an EKC may provide evidence in favour of the emission sustainability at least 

according to the definition here adopted. From a strictly empirical point of view, such kind of 

sustainability could be actually assessed by simply looking at the GHG emission series. In fact, the 

EKC is much more insightful in this respect. Firstly, the existence of an EKC would indicate that 

sustainability will be satisfied even whenever the decline rate of agricultural labour force will 

naturally go to zero. Secondly, the descending part of EKC warrants that, sooner or later, the rate of 

decline of 
t

kt

VA

E
(or 

t

kt

L

E
) will exceed the growth rate of 

t

t

L

VA
  ItPt gg ,i.e.  and, thus, ktE  itself 

will not only remain constant but will also start declining. Therefore, assessing the presence of an 
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EKC for agricultural GHG emissions, since agricultural labour force decline can not last forever 

and agricultural labour productivity growth rate cannot increase indefinitely, provides a sound 

evidence of their long-term sustainability. Agricultural GHG emission sustainability, therefore, 

requires, as necessary condition, that the EKC hypothesis holds true.  

Figure 1 (Parts A and B) also illustrates that this same sustainability can be also assessed by 

expressing the EKC in terms of emission intensity of the agricultural labour force instead of the 

agricultural value added (that is, in terms of 
t

kt

L

E
 instead of 

t

kt

VA

E
). Let consider the following 

identity: 
t

t

t

kt

t

kt

L

VA

VA

E

L

E
 . Such relation between 

t

kt

VA

E
and 

t

t

L

VA
 can be expressed as an equilateral 

hyperbola parameterized by 
t

kt

L

E
. For increasing levels of 

t

kt

L

E
, these hyperbolas are displayed in 

Figure 1 (Part A) showing that, to any point of the 
t

kt

VA

E
= 











t

t

L

VA
f  EKC, corresponds a given 

t

kt

L

E
 

level, as well as that any 
t

kt

L

E
 level corresponds to two different points of the EKC, one in the 

ascending and the other in the descending part. It follows that from the 
t

kt

VA

E












t

t

L

VA
f  EKC we 

can also univocally derive the 
t

kt

L

E












t

t

L

VA
f  EKC whose turning point, with a constantly 

increasing long-term agricultural labour productivity (as it is always the case), is evidently reached 

after the 
t

kt

VA

E












t

t

L

VA
f  EKC decoupling. Therefore, it always lies in the area of sustainability. It is 

also worth noticing in Figure 1 (Parts A and B) that there is only a limited interval (the O interval) 

where the two relations follow opposite directions, the former EKC (namely, 
t

kt

VA

E












t

t

L

VA
f ) 

already descending, the latter still ascending.  

Therefore, not only agricultural GHG emission sustainability can be analysed within a conventional 

EKC framework, at least under the typical regularities of agricultural transformations 

accompanying economic growth. In addition, this EKC analysis can be specified in both 

specifications of emission intensity, that is as 
t

kt

VA

E












t

t

L

VA
f  or as  

t

kt

L

E












t

t

L

VA
f  (Borghesi and 

Vercelli, 2009), and the combination of the two can be informative as well.   

Empirical research distinguishing among different forces underlying the EKC emphasizes that, 

whenever the relationship between a strongly sector-specific indicator of pollution (CH4 and N2O 

emissions in the case of agriculture) and aggregate economic growth (typically represented by per 

capita GDP) is investigated, the eventual results can be the expression of the sole (or prevailing) 

macro-composition effect. For agricultural pollutants, this seems plausible given the unquestionable 

and ubiquitous regular decline of the sectoral share as economies grow. Therefore, if the interest is 

on the combination of technological and scale effects, but also of the abovementioned intrasectoral 

composition effect, the pollution-growth relationship must be necessarily investigated at the sectoral 

level, that is, linking sectoral emission and sectoral growth performances (Galeotti et al., 2009).  

It is worth noticing that the investigation of the technological effect may be problematic in 

empirical studies. Infact, several technological improvements related to agricultural GHG emission, 

mostly concerning livestock, shift of production from intensive to extensive systems, breeding 

productivity, forage improvements, etc. (Stephenson, 2010 can be hardly fully captured in the 

reconstruction of the GHG emission series as it is essentially based on land use and livestock 
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composition. In practice, therefore, the observed relation between 
t

kt

VA

E
(or 

t

kt

L

E
) and 

t

t

L

VA
 (i.e., 

between Itg  and Ptg ) mostly depends on the scale and the intrasectoral composition effects, and on 

which of them eventually prevails.    

4. Data and model specification 

As emphasised by the “new wave” of EKC studies, a rigorous empirical assessment of the 

hypothesis firstly requires a major effort in collecting proper and detailed pollution data. Sub-

national (regional) data are here used to improve the robustness of findings. In the present case, 

these data are, in part, the official national-level estimates of the Institute for Environmental 

Protection and Research (ISPRA), then disaggregated at regional level (top-down methodology) 

and, for the remaining part, longer time series reconstructed with a bottom-up methodology. More 

details on the application of these methodologies for the reconstruction of agricultural emission data 

can be found in Coderoni (2011).  

Following this reconstruction methodology, regional agricultural emission series cover the period 

1980-2008. Actually, for CH4 emissions longer regional time series (from 1951 to 2008) can be 

reconstructed. This allows the investigation of the relationship between agricultural emissions and 

growth over a period that actually includes the decades of more intensive transformation of Italian 

agriculture (fifties, sixties and seventies). Unfortunately, data requirements make emission 

reconstruction over such a long period affordable only for CH4 but not for N2O, thus not even for 

overall CO2 eq. 

For the agriculture sector, reported under the IPCC Category 4, five sources are here considered: 

emissions from enteric fermentation (4A), manure management (4B), rice cultivation (4C), 

agricultural soils (4D) and field burning of agriculture residues (4F). A sixth category, burning of 

savannas (4E), is not present in Italy. The estimated GHG emissions concern methane and nitrous 

oxide, as CO2 and F-gas (Fluorine gas) emissions are negligible.
7
 The evolution of GHG emission 

in the Italian agriculture over time shows a decline over the 18 years of inventory (ISPRA, 2010); 

this aggregate evidence, however, is the average resulting from pretty diverse regional patterns with 

regions showing almost constant emission levels over time and other cases with a regular increase 

until late nineties and, then, a period of slightly declining emissions (Coderoni, 2011).  

The recent empirical literature on the EKC mostly focuses on the analysis of panel data with long 

time series (Mazzanti et al., 2008) and on the improvement of the robustness of findings (Galeotti et 

al., 2009). The present paper aims at moving in these directions by adopting regional long-term 

emission series and working at the sectoral level to avoid cross-sectoral compensations. Galeotti et 

al. (2009) stress that, once the dataset under investigation has been established, the major empirical 

question becomes finding the appropriate specification of the relationship between emission and 

growth performances. Finding the appropriate specification requires two steps: first of all, the 

stationarity properties of the series in use must be investigated; secondly, an appropriate parametric 

specification of the relation must be chosen.
8
 

With regard to the first step, it must be acknowledged that conventional panel unit-root tests may be 

influenced by the presence of cross-sectional dependence that very likely occurs when spatial 

(geographical) data are under investigation (Baltagi, 2005). Therefore, instead of the conventional 

IPS test (Im et al., 2003), the IPS test robust to cross-section dependence (CIPS test) (Pesaran, 

2007; Lewandowski, 2007) is here adopted. If stationarity is accepted for all model variables, the 

EKC relation may be specified, as usual, in the levels. Otherwise, we have to look for cointegration 

among model variables and specify the model accordingly. Nonetheless, Liu et al. (2006), Hong and 

Wagner (2008), Galeotti et al. (2009) remind that investigating the cointegration relationship under 

the EKC hypothesis may be not trivial, especially within a panel, as the underlying alleged relation 

is not linear by definition.      

                                                 
7
 CO2 emissions and removals are reported in LULUCF (Land Use, Land-Use Change Forestry) sector. 

8
 Actually, non-parametric approaches can be also followed (Giles and Mosk, 2003). This of solution, however, raises 

other kinds of estimation issues.      
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Moving to the second step, the typical specification concern underlying the EKC relationship is to 

avoid functional forms that force the data to take particular shapes thus generating an empirical 

evidence that is actually an artefact. Flexible-enough specification are thus needed. A polynomial 

function is the simplest and most used solution. Here, a cubic function is adopted. Within a panel, 

however, looking for the proper such empirical specification raises two further issues. The first 

concerns the nature of the region-specific effect. As typical in the case of spatial data (Baltagi, 

2005), fixed-effects are here assumed: they imply a permanent (time-invariant) region-specific 

shifter of the curve (the EKC intercept) that, in turn, expresses the permanent heterogeneity across 

geographical units. Secondly, the model may be alternatively specified in a static or a dynamic 

form. The former case is more widely adopted by practitioners in empirical literature, but the latter 

should be preferred as, in fact, it embeds the former while admitting a more general representation 

of the underlying data generation process (in particular, persistencies or cycles in the adopted time 

series). A dynamic panel specification, however, has a major econometric implication. The presence 

of the lagged dependent variables among regressors (that is, of an AR(p) term), makes the 

conventional panel fixed-effect within (or Least Squares with Dummy Variables, LSDV) estimator 

potentially incur the so-called Nickell bias (Arellano, 2003, p. 85). LSDV estimates are consistent 

whenever T goes to infinity (Arellano, 2003, p. 90), but are biased in the finite sample. Even though 

in the present case (i.e., N=20 and T = 29 or 58) bias is expected to be small (Esposti, 2007), beside 

LSDV estimates we also perform Arellano-Bond (one-step) GMM estimation. Such estimation 

should prevent this bias, in principle, but its small-sample performance is unpredictable and 

practical aspects (namely, the choice of instruments) may be particularly critical (Arellano, 2003, p. 

120) also considering that the number of potential instruments largely increases with T. Earlier 

Monte Carlo studies Kiviet (1995) and Judson and Owen (1999) demonstrate that LSDV although 

inconsistent has a relatively small variance compared to GMM estimators. So, an alternative 

approach based upon the correction of LSDV for the finite sample bias has recently become 

popular. Kiviet (1995) uses higher order asymptotic expansion techniques to approximate the small 

sample bias of the LSDV estimator. Monte Carlo evidence in Kiviet (1995) shows that the bias-

corrected LSDV estimator (LSDVC) often outperforms the GMM estimators in terms of bias and 

root mean squared error (RMSE). However this estimator implements bootstrap standard errors that 

do not perform very well empirically. Besides, for the parameters of interest in this study (namely 

the EKC parameters ki ) the Nickell bias is negligible, as it affects mostly the lagged term. So, 

nowadays, the better way to estimate this kind of models is to use LSDVC estimates only to check 

the robustness of the findings obtained through LSDV estimator. Two specifications of the EKC are 

eventually adopted in the present empirical exercise and both are applied to the two alternative 

measures of emission-intensity: emission per unit of agricultural labour (E/L; model a); emission 

per unit of value added (E/VA; model b). Consider N regions (i=1,…, N) and T years (t=1,…, T). 

Firstly, the following static specification is estimated by using the conventional LSDV estimator:     

(3a) kit

it

it
k

it

it
k

it

it
kki

it

kit e
L

VA

L

VA

L

VA

L

E




















3

3

2

21   

(3b) kit

it

it
k

it

it
k

it

it
kki

it

kit e
L

VA

L

VA

L

VA

VA

E
























3

3

2

21    

where, for the i-th region at time t, kitE  expresses the emission level of the k-th agricultural GHG, 

itL  the agricultural working units and itVA  the agricultural value added. ki  indicates the region-

specific fixed effect. kite  is the conventional spherical disturbance, i.i.d. N(0,
2
). 1k , 2k  and 

3k  are the EKC parameters to be estimated.   

Then, the correspondent dynamic models are specified and estimated with the LSDV, the Arellano-

Bond GMM and the LSDVC estimator: 
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where k  is the AR(1) parameter.
9
  

Estimation of models (3a)-(4b) is repeated for the four different GHG emission series, that is, k= 

CH4 (1980-2008), N2O (1980-2008), CO2eq. (1980-2008), CH4 (1951-2008).
10

 To take into account 

the change from 1990 onwards in the reconstruction of GHG emission, a dummy variable (d90) 

taking value 1 from 1990 to 2008 is included among regressors (Coderoni, 2011). 

5. Model estimates 

5.1.  Panel unit-root tests 

One fundamental criticism to the EKC empirical literature refers to the often implicit assumption of 

stationarity of variables involved in the regressions (Galeotti et al., 2009). If time series were not 

stationarity, in fact, such regressions would be spurious. Thus, assessing for stationarity properties 

is preliminary to any estimation and assessment of existence, shape and other features of the EKC. 

Table 1 reports the CIPS test results performed on model variables.  

Test results suggest that 
it

it

L

VA
 definitely is stationary at whatever conventional confidence level and, 

as could be expected, the same conclusion holds true for its quadratic and cubic transformations, 
2












it

it

L

VA
 and 

3












it

it

L

VA
, respectively.

11
 All series of emission intensity largely reject unit-root at 5% 

confidence level when calculated on agricultural value added. Expressing emission intensity in 

terms of agricultural labour (L) provides less clear-cut evidence, but still all emission series reject 

non-stationarity at 10% confidence level. Considering that DF-based unit-root tests typically suffer 

from low power (high propensity to accept the null of non-stationarity), this evidence suggests that 

all model variables can be treated as stationary.
12

 Thus, equations (3a)-(3b) and (4a)-(4b) can be 

properly specified in the levels and consistently estimated using the abovementioned panel 

estimators.  

5.2. EKC estimates 

Tables 2 and 3 display model (4a, b) and (5a, b) estimates for the four GHG emission series. GMM 

estimation has been obtained using all admitted lags as instruments and correcting for robust 

standard errors. To maintain consistency and robustness of GMM estimated standard errors and 

considering the problematic choice of instruments when T becomes large (i.e., largely exceeds N) 

(see section 4), only the one-step GMM estimation is performed (Arellano, 2003). 

Two general comments can be made on results of both Tables 2 and 3. First of all, passing from the 

static to the dynamic specification substantially affects the results.
13

  This may be interpreted as an 

evidence of the fact that static EKC relationships may be often empirically found just because they 

tend to conceal the intrinsic autocorrelation in emission data. The second consideration concerns the 

                                                 
9
 The one-lag specification has been adopted among alternative AR(p) specifications according to the AIC (Akaike 

Information Criterion).  
10

 For the sake of simplicity, in the case of CH4,“short series” here identifies the 1980-2008 period, “long series” the 

1951-2008 period (see section 3 for details).  
11

 For more details on stationarity properties of monotonic or polynomial transformations of series with known order of 

integration see Granger and Hallman (1988) and Liu et al. (2006). 
12

 For all variables the test specification includes the constant term but not the deterministic trend. Such specification 

has been chosen running individual (regional) DF tests and finding the accepted specification following Enders (1995, 

p. 257). The prevailing specification, i.e. with constant and without trend, has been then adopted. Therefore, series are 

tested for their stationarity around a drift or constant term. One-lag, i.e. AR(1), test specifications have been adopted to 

be consistent with the dynamic specification in (2).  
13

 The coefficient associated to the AR(1) term is always significant. On the contrary, the 1990 dummy variable is 

statistically significant in the estimated (3b9-(4b) equations for NO2 and CO2eq. Due to space limits, these parameter 

estimates are not reported here and are available upon request.     
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quality of GMM estimates.
14

 It may be noticed that respective parameters, though qualitatively not 

much different from LSDV estimates, are less statistically significant, with the exception of results 

obtained with the longer series of methane emission. This can be considered a practical 

demonstration that, whenever T becomes larger than N, LSDV estimation may be preferable, as 

LSDVC confirm, to GMM estimation, as this latter may encounter increasing difficulties especially 

in the selection of instruments.  

In commenting the estimates in detail, it is worth reminding the main objective here is to assess if 

and where the EKC is observed for agricultural GHG emissions in Italian regional agriculture. 

Considering the different alternative estimates, we can limit the attention only to robust (that is, 

quite stable in value and sign across alternative specifications and estimators) and statistically 

significant EKC parameters ( 321 ,, kkk  ). Tables 2 and 3 suggest that there are few cases in which 

such robustness and statistical significance is observed.  

By looking at Table 2, it seems legitimate to conclude that there is no case for which an EKC is 

observed. Therefore, we obtain no evidence that, over the period under consideration and across 

Italian regions, the agricultural GHG emission performance inverted its relation with sectoral 

productivity growth. In all cases, the relationships between emission and growth tends, in fact, to be 

direct and, sometimes, even exponential with no evidence of inversion. Evidently, if present, the 

technological and intrasectoral composition effects have been always overcompensated by the scale 

effect (which is, in fact, an intensification effect in the present case, growth being expressed in 

terms of per working unit Value Added). 

As a matter of fact, series reconstruction itself may be at least partially blamed for this outcome. 

First of all, if we consider the aggregate CO2eq. emissions, it is worth reminding that a large part of 

these values is actually attributable to N2O emissions. Therefore, the behaviour observed for the 

latter tends to be confirmed even in the aggregate case. If we separately consider N2O and CH4 

emissions, several technological improvements could be, in principle, evoked. In particular, all 

changes in the forms and ways through which animals are fed, manure is managed and nitrogen 

fertilization is performed. The impact of these forces on series reconstruction, however, is quite 

limited. Even major changes in nitrogen fertilization, in Italian agriculture, are relatively recent and 

some important institutional or normative changes (the EU Nitrate Directive, for instance) have still 

only partially produced their effects. 

Eventually, the only force really contrasting the scale (intensification) effect is the decline in overall 

livestock number and changes in its composition in favour of low-emission animals. In this case 

policy may have played a role with particular reference to the introduction, in the eighties, of the 

EU milk-quota system that forced a reduction (or, at least, a stabilization) in the number of dairy 

cows thus also reducing the emission potential. Such change in livestock number and composition, 

however, was not able to eventually invert the direct relation between emission intensity and 

productivity growth either for N2O or for both series of CH4 emission.    

An alternative explanation for the lack of evidence supporting the EKC, however, could be put 

forward. It might simply be the case that the inversion point is still far to be reached and, therefore, 

all the in-sample points concentrate on the ascending part of the curve. If this explanation held true, 

we could more easily find the inversion point, thus the EKC, by estimating specifications (5a and 

b), because in such cases the EKC turning point is expected to occur earlier and should be more 

easily identified in econometric estimation.
15

  

Results displayed in Table 3, however, only partially confirm this hypothesis. Quite surprisingly, 

these latter estimates (referring to 
t

kt

VA

E
 as dependent variable) mostly show a monotonically 

decreasing relationship between agricultural GHG emissions and sectoral productivity growth. This 

is observed for the N2O case and, as a consequence, the CO2eq series, and for the CH4 long series. 

Such evidence would confirm that, if an EKC holds true, sample observations are all concentrated 

                                                 
14

 In all GMM estimations the Hansen tests (that also takes into account heteroskedasticity) confirms that the selection 

of instruments is appropriate, while LM autocorrelation tests accept the adopted dynamic specification as first order 

correlation is observed but no second order correlation. Tests’ results are available upon request.     
15

 In other words, the chance of out-of-sample turning points is lower.  
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in the descending part of the curve itself, therefore with the prevalence of technological and 

intrasectoral composition effects. But this is exactly the opposite of what observed for 
t

kt

L

E
. The 

straightforward explanation of this contrasting behaviour can simply be that no EKC is really 

observed for GHG emission in Italian agriculture over the sample period and the opposite behaviour 

of   
t

kt

L

E
 and 

t

kt

VA

E
 only depends on the opposite patterns of tL  and tVA  over time. 

Figure 2 illustrates the pattern of the emission-productivity relationship according to LSDV 

estimates.
16

 Three only cases are considered (CO
2
eq. and methane, short series, per labour unit 

emissions; methane, long-series, per VA unit emissions) as they are the only estimated polynomials 

whose estimate are robust across specification and estimators and provide statistically significant 

estimates of the EKC parameters. Figure 2 confirms that there is no empirical support to an 

inverted-U-shaped relationship between agricultural CO2eq. emissions and sectoral economic 

growth in Italian agriculture.  Following the arguments presented in section 2.2, this also implies 

that no sound evidence emerges about long-term emission sustainability.  

At the same time, evidence about methane emissions can be still reconciled with a sectoral ECK if 

we consider that it may be expressed in terms of emissions per unit of agricultural workforce, 
t

kt

L

E
, 

the other in terms of emissions per unit of agricultural value added, 
t

kt

VA

E
. In the former case per unit 

emissions are clearly and regularly increasing; in the latter case, on the contrary, they are regularly 

declining. This opposite relation with VA/L observed for E/L and E/VA matches the O interval 

mentioned in section 2.2 (Figure 1) and would imply that the observed sample falls in a very limited 

portion of the alleged EKCs. As this case would eventually be the only evidence in favour of an 

ECK for agricultural GHG emissions, such interpretation evidently deserves further investigation in 

future research.  
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Figure 1 – EKC for agricultural GHG emission expressed in emission intensity: emissions per unit 

of sectoral value added (A) or per unit of sectoral labour force (B)
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Figure 2 – Relation between agricultural emission intensity and labour productivity (VA/L) 

according to LSDV-dynamic estimates for the different: robust and significant relationships (see 

Tables 2 and 3) 
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Table 1 – Panel unit-root test (CIPS test) on EKC variables  
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Test 
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Table2- Estimates models (3a) and (4a) for all emissions series (standard errors in parenthesis) 
 STATIC MODEL (3a) DYNAMIC MODEL (4a) 

GHG LSDV LSDV LSDVC GMM 

CH 4 (short series)     

1(short)CH  4
  0.079*** 

 (0.019) 

0.018* 

(0.103) 

-1.877*** 

(0.691)
 0.032* 

(0.017) 

2(short)CH  4
  -0.003*** 

(0.001) 

-0.0008** 

(0.0003) 

0.107** 

(0.052)
 -0.001* 

(0.0008) 

3(short)CH  4
  .0001** 

(0.000) 

0.00001** 

(5.35e-06) 

-0.002* 

(1.891)
 0.00001 

(0.00001) 

N 2O     

1ON2
  0.004*** 

(0.001) 

0.001** 

(0.000) 

0.003 

(0.336)
 0.001 

(0.001) 

2ON2
  -0.000 

(0.000) 

-0.000 

(0.000) 

-0.0006 

(5.57)
 0.000 

(0.000) 

3ON2
  -0.000 

(0.000) 

-0.000 

(0.000) 

0.00001 

(0.0002)
 0.000 

(0.000) 

CO2eq.     

1eq.CO2
  3.238*** 

(0.816) 

0.843*** 

(0.322) 

0.857** 

(0.362)
 1.111 

(0.880) 

2eq.CO2
  -0.101** 

(0.044) 

-0.034** 

(0.017) 

-0.037** 

(0.019)
 -0.036 

(0.040) 

3eq.CO2
  0.001* 

(0.000) 

0.001* 

(0.000) 

0.001* 

(0.000)
 0.000 

(0.001) 

CH 4 (long series)      

1(long)CH  4
  0.037*** 

(0.005) 

0.003** 

(0.001) 

0.000 

(0.019)
 0.005** 

(0.000) 

2(long)CH  4
  -0.001** 

(0.000) 

-0.000 

(0.000) 

0.000 

(0.000)
 -0.000 

(0.000) 

3(long)CH  4
  0.000 

(0.000) 

-0.000 

(0.000) 

-0.000 

(0.000)
 0.000 

(0.000) 

Table 3 – Estimates of model (3b) and (4b) for all emission series (standard errors in parenthesis) 
 STATIC MODEL (3b) DYNAMIC MODEL (4b)                 

GHG LSDV LSDV LSDVC LSDVC 

CH 4 (short series)     

1(short)CH  4
  0.347 

(0.712) 

-0.593 

(0.852) 

-0.575 

(0.910) 

-1.120 

(1.420) 

2(short)CH  4
  -0.051 

(0.035) 

0.013 

(0.043) 

0.012 

(0.048) 

0.025 

(0.070) 

3(short)CH  4
  0.001 

(0.001) 

-0.000 

(0.001) 

-0.000 

(0.001) 

-0.000 

(0.001) 

N 2O     

1ON2
  -0.157** 

(0.062) 

-0.177* 

(0.051) 

-0.174** 

(0.069) 

-0.290** 

(0.127) 

2ON2
  0.004 

(0.003) 

0.006 

(0.004) 

0.006* 

(0.003) 

0.011* 

(0.006) 

3ON2
  -0.000 

(0.000) 

-0.000 

(0.000) 

-0.000 

(0.000) 

-0.0001 

(0.0001) 

CO2eq.     

1eq.CO2
  -38.198 

(34.329) 

-65.478 

(48.951) 

-64.384 

(40.952) 

-109.670 

(76.499) 

2eq.CO2
  -0.216 

(1.646) 

2.133 

(2.414) 

2.121 

(2.193) 

3.471 

(3.699) 

3eq.CO2
  0.007 

(0.025) 

-0.031 

(0.037) 

-0.031 

(0.037) 

0.042 

(0.056) 

CH 4 (long series)      

1(long)CH  4
  -7.846*** 

(1.055) 

-2.062*** 

(0.452) 

-1.878** 

(0.691) 

-2.636*** 

(0.535) 

2(long)CH  4
  0.402*** 

(0.055) 

0.115*** 

(0.022) 

0.107** 

(0.052) 

0.138*** 

(0.024) 

3(long)CH  4
  -0.007*** 

(0.001) 

-0.002*** 

(0.000) 

-0.002* 

(0.001) 

-0.002*** 

(0.003) 

***Statistically significant at the confidence 1% level; **Statistically significant at the confidence 5% level. 


