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I. Introduction 
 

The horticulture sector plays a very important role in Spanish agriculture and economy. 
Their participation in the final agricultural production reached 37%, with an increase 
during the last 10 years by 16% (MARM, 2008). This sector represents an important 
source of employment generating a total of 450,000 AWU (Agricultural Work Unit), 
which is the half of the job generated by the entire Spanish agricultural sector. (MARM, 
2008).  
The main production area is concentrated in the Mediterranean area. Andalucía, 
Valencia, Murcia and Catalonia represent a 66.3% of the total area devoted to 
horticulture production. By importance, Andalusia produce 33% of horticulture product, 
followed by Castilla-La Mancha (12%) and Murcia (12%). The main vegetable crops 
grown in Spain are tomato (35% of total produced vegetables), pepper and melon (8% 
each one). The 54% of pepper production is cultivated in greenhouses, followed by 28% 
of tomato and 21 % of melon. 
The most Spanish horticulture production is oriented to the exportation (40% of total 
production). In the second place, we find domestic consumption (32%), and then the 
transformation sector (17%). Vegetables account for 41.9% of exported volume, while 
the rest is represented by fruit (58.1%). The main exported products include tomato 
(almost one million tons), lettuce and pepper (about half a million tons each) and 
cucumber (400,000 tons). 
The total Spanish area under horticulture crops is 406,688 ha, of which 301,399 ha are 
grown outdoors (74%) and 78,407 under glass. Most national area devoted to 
greenhouses are located in Andalucía (72%), located mainly in the Almeria province. 
Followed by Murcia (7.3%), Extremadura (5.4%), Canarias and Valencia (4% each). 
We notice the relevance of greenhouse vs. Outdoor inside each community. In the case 
of Andalusia and Canary islands, the greenhouse area presents 42% and 46% of the total 
area respectively. In Valencia and Murcia, this area presents 11 % and 12% 
respectively, while in Extremadura this area reaches 8.2%. 
 
In this paper, dynamic technical efficiency is analyzed for both outdoor and greenhouse 
Spanish farms specialized in horticulture production. A dynamic stochastic frontier 
model is developed to estimate the long run technical efficiency and it persistence for 
both samples. The measurement of long-run technical inefficiency levels and its 
persistence helps us to evaluate the subsistence of farms over the long run and 
adjustment factors and forces leading to technical inefficiency.  
The next section reviews the literature concerning dynamic efficiency and the 
methodological approach. Section 3 discusses the econometric specification and the 
empirical application. In section 4, we discuss main results. The last section is devoted 
to draw our conclusions. 
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II. Methodology 
 

The majority of traditional stochastic frontier models tend to estimate frontier function 
and firm-specific inefficiency levels assuming that inefficiency levels are time-invariant 
(e.g. Schmidt and Sickles, 1984; Kumbhakar, 1987; and Greene, 2008). These studies 
do not allow for the explanation of time-varying efficiency levels through a formulation 
of production inefficiency that is impacted by behavioral or structural linkages over 
time. The change in efficiency is autonomous with the passing of time. Therefore, their 
technical efficiency models remain static and they fail to associate measurable evolution 
in technical efficiency with an economic motivation, giving a limited analysis of 
production slack.  
 
Few stochastic frontier production studies account for dynamics in panel data models of 
technical inefficiency (e.g. Cornwell et al., 1990; Kumbhakar, 1990; Battese and Coelli, 
1992; Lee and Schmidt, 1993 and Ahn and Schmidt, 1995). Such models aim to 
estimate the temporal pattern of time series variation in firm efficiencies levels. 
However, they are criticized by: a) the imposition of an arbitrary restriction on the 
short-run dynamic efficiency levels and, b) their incompatibility for the analysis of 
long-run dynamics on technical inefficiency.  
 
Other studies, such as Ahn et al., (2000), allow firm specific technical inefficiency 
levels to follow an autoregressive process of order one (AR(1)). This approach does not 
require the imposition of the arbitrary restrictions on the short-run dynamic efficiency 
levels, but it is criticized by the absence of a theoretical justification. The authors claim 
that this is a useful approach to examine a dynamic link between technical innovations 
and production inefficiency levels by specifying an autoregressive processes implying 
the ability of firms to change systematically by a fixed percentage of their past-period 
inefficiency level. The limited number of studies focusing on this aspect about dynamic 
models efficiency (e.g. Ahn et al., 2002; Huang, 2004 and Tsionas, 2006) are justified 
by a complex likelihood function specification as well as the difficulties of assuming the 
inference on unobserved firm-specific inefficiencies (Tsionas, 2006). 
The dynamic stochastic frontier models tend to estimate firms’ long-run technical 
inefficiency level, given the pressure on a firm’s ability to remain competitive in the 
long run unless they are technically efficient. Tsionas (2006) proposes that the 
inefficiency factors need to be adjusted by time which depends on adjustment costs. The 
higher the cost of adjustment; the greater the probability of finding evidence of 
persistent technical inefficiency. In this study, we consider a dynamic stochastic frontier 
model with persistent technical inefficiency over time using a parameter inferences and 
inferences on technical inefficiency on a firm-specific basis. 
Several methods can be used to analyze technical efficiency in a production function.  
However, many researchers have shown that Bayesian approach may have, in some 
cases, several advantages over the classical econometric methods in applied research. It 
was found to be an excellent tool for making inference on efficiencies in stochastic 
frontier models (see e.g. Koop et al., 1994, 1997). Bayesian inference produces exact 
finite-sample posterior, predictive distributions and, formal treatment of parameter and 
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model uncertainty (see e.g. Van den Broeck et al., 1994; Fernandez et al., 2003; Kim 
and Schmidt, 2000). However, the complexity of stochastic frontier models makes 
numerical integration methods inevitable. The most appropriate method in this context 
is Markov chain Monte Carlo (MCMC), as introduced by Koop et al. (1995).  
Many applications have used this approach. Koop et al. (1995) and Osiewalski and Steel 
(1998) were the first that suggested the use of Bayesian methods for technical 
efficiency. They used a model with an informative prior for firm-specific intercepts. 
Such a model is similar to the classical fixed effects model assuming a distribution for 
inefficiency. We point out among others Van den Broeck et al., (1994) that used a 
sampling technique to obtain the posterior distribution for the Erlang model. Koop et 
al., (1995) that developed a Gibbs sampling approach. Greene (1990 and 2000) 
evaluates a complicated integral using numerical and Monte Carlo integration. More 
recently, Tsionas (2000, 2002 and 2006) and Kozumi and Zhang (2005), used a Gibbs 
sampling method to analyze the case of non-integer shape parameter.  
The stochastic frontier production function with panel data can be expressed as follows 
(Tsionas, 2006):  
 

1, .. . . , , 1, .. . . ,i t it i t ity x v u i n t T      [1] 
 
where itx and   are a 1k   vector of regressors and parameters respectively. 

itv  is a two-sided random errors that are assumed to be iid 20 vIN( , ) , 
1,..., , 1,...,i n t T  , and itu  is a vector of independently distributed and nonnegative 

random disturbances that represent technical inefficiency. 
 
We assume that technical efficiency follows an autoregressive process: 
 

, 1log log ,it it i t itu z u      for 2 , . . . ,t T    [2] 

1 1 1log /(1 ) ,i i iu z       for 1t   for all 1 , . . . , .i n   [3] 
 
where 2~ (0, ),it IN   for 2,...,t T  is a random variable capturing the “unexpected log-
efficiency sources” and 2 2

1~ (0, /(1 )),i IN    for all 1,...,i n . The “systematic part” 

, 1logit i tz u    reflects “expected” log-inefficiency sources. itz  and   are an 1m  
vector of covariates and parameters, respectively. We assume that itv , itu , itx and itz  are 
independent.  
The joint density of the model is given by: 
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          [4] 
The first line of the joint density comes from the normality of | , ,it it ity x u  , while the 
second come from log-normality of , 1| , ,it it i tu z u  , and the last one is due to lognormal 
assumption on 1 1| ,i iu z  . 
 
In order to carry out the Bayesian inference, the likelihood function is completed with a 
prior distribution ( )p  for location parameters1  ,   and  . The joint prior distribution 
is given by: 
 

( , , ) ( , ) ( , ) ( )k m
N Np f V f V p              [5] 

( , )k
Nf x m V refers to the density of the k-variate normal distribution with mean vector m 

and covariance V.   has a Jeffreys´prior distribution2 and is independent of  , while 
scale parameter ( and  ) are independent with inverted-gamma prior: 
 

( 1) 2( ) exp( /(2 )), 0, 0np q n q
            [6] 

 
where   refers to any of  ,  , and ,n q  are parameters of the prior distribution. 
An application of Bayes  ́ theorem by the multiplication of the u prior’s given by [3] 
with the prior on structural parameters given in [5] and [6], gives a joint prior 
distribution involving  and latent variables u (Tsionas, 2006): 
 

( , , , ) ( , , , ) ( )p u y X Z p y u X Z p          [7] 
 
where ( , , , )p y u X Z  is the augmented likelihood function given in equation [6]. The 
high dimensional integral precludes a closed form solution to the likelihood function 

                                                   
1 There are assumed to be independent of the scale parameters and  . 
2The Jeffreys´s prior in the context of a simple AR(1) model has a following density: 

1/ 2 1/ 2( ) (1 ) (1 ) , 1 1p           . 
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and thus, requires a numerical solution approach. Gibbs sampling3 method with data 
augmentation has been used in order to make Monte Carlo draws from the joint 
posterior distribution of the model and to perform the computations (Gelfand and 
Smith, 1990).  
 
Using the conditional distribution of , , ,itu y X Z provided by Markov Chain Monte 
Carlo (MCMC) scheme, the technical efficiency is measured for each farm (Van den 
Broeck et al., 1994, Koop and Steel, 2001). 
 

III. Empirical application 
 

The dynamic stochastic frontier model has been estimated using a balanced panel data 
of 126 and 90 Spanish greenhouse and outdoor horticulture farms respectively. Those 
farms were observed during 6 years from 1999 to 2004. 
 
Even though our analysis is based on farm-level data, aggregate measures are used to 
define some variables that are unavailable from the FADN dataset. Input and output 
price indices are necessary to deflate all monetary variables which are derived from 
Eurostat (Eurostat, 2011) using 2000 as the base year.  
The dynamic stochastic functional form is specified as Translog functional form that 
takes the form: 

2
0 , ,

1 1 1 1

1 1ln ln ln ln ln
2 2

K K K K

it k kit ks k it s it T T T kit it it
k k s k

y x x x t t t x v u     
   

           

    [8] 
 
where k, j = 1,…,K  indicate the conventional inputs used in the production process.  
 
Production ity  is defined as an implicit quantity index by dividing total horticulture 
sales in currency units by the price index. Vector kitx  is defined as a (1x6) vector 
composed of five inputs and a time trend (t). Input variables are labor ( Lx ), defined as 
total hours spent on farm work, expenditure on fertilizers ( Fx ), pesticides ( Px ), and 
other inputs such as plants costs and farming overhead ( Ix ). The total area of 
horticulture defines the land variable LNDx .  
 
Vector iz , in the technical inefficiency effects function, is a (1x3) vector that specifies 
the variables age and farm size. The older farmers are expected to be less efficient in 
comparison to younger ones (Battese and Coellli, 1995). The farm size is represented by 
the log of total area and its square (e.g. Gianakas et al., 2003; Alvarez and Arias, 2004 
and Tsionas, 2006), since scale effects might be important in explaining technical 

                                                   
3 Gibbs sampling is an iterative approach that permit making draws from a joint distribution by doing an 

iterated sequential draws from the conditional distributions. 



7 
 

efficiency. A statistical package GAUSS 7 has been employed to estimate the dynamic 
stochastic frontier model.  
 

IV. Results and discussion 
 

The results derived from the estimation of the Translog dynamic stochastic frontier 
model for both samples; outdoor and greenhouse farms are presented in Table 1. First-

order parameters kβ  of labor (except for greenhouse farms) and other inputs are 
positive and statistically significant, indicating that the production is increasing in such 
inputs.  
The time trend is positive and statistically significant in the case of greenhouse farms, 
which suggests that the technology embodied in the greenhouse horticulture is changed 
with time. Therefore, any growth taking place over time is from new technologies 
implemented and can be added over time, which essentially means that there is an 
additional technical change effect. 
The estimation result of the gamma component reveals that age and size variable 
included in Gamma 1 component for outdoor horticulture are significant. This result 
implies that technical inefficiency increases at a decreasing rate for larger farms. 
Moreover, younger farmer are more efficient relative to elderly ones, which means that 
younger farmers are more prone to introduce changes in farm management techniques. 
The posterior means for the autoregressive component are 0.93 and 0.99 for outdoor and 
greenhouse farms respectively. This result shows that the autoregressive components for 
both cases are high and very close to unity which suggests that a big quantity of 
technical inefficiency is transmitted to the next time period, and the technical 
inefficiency is highly persistent in this sector.  

 



8 
 

Table 1. Results for dynamic stochastic frontier model using Translog functional form 

Production frontier model 

Parameter (equation 1) Outdor horticulture Greenehouse 
horticulture 

constant -3.9597 
(4.3478) 

0.7141 
(4.3813) 

Labor 1.8158 
(1.2444)* 

0.4574 
(1.1340) 

fertilizers 0.4893 
(0.5993) 

-0.3005 
(0.6535) 

pesticides -2.1764 
(0.6523)*** 

-0.1311 
(0.7478) 

Land -0.3893 
(1.2904) 

-3.0224 
(1.7006)** 

Other inputs 1.3024 
(0.7067)** 

1.1130 
(0.7478)* 

Labor* labor -0.2426 
(0.1925) 

-0.0459 
(0.1575) 

Labor* fertilizers -0.0600 
(0.0882) 

0.0924 
(0.0949) 

Labor* pesticides 0.3571 
(0.0966)*** 

-0.0876 
(0.1046) 

Labor* land 0.4177 
(0.1886)** 

0.0591 
(0.1979) 

Labor* Other inputs -0.2856 
(0.1217)*** 

-0.0015 
(0.1081) 

fertilizers * fertilizers 0.0117 
(0.0635) 

0.0177 
(0.0903) 

Fertilizers* pesticides 0.0630 
(0.0351)** 

0.1069 
(0.0683)* 

Fertilizers* land 0.1054 
(0.0754)* 

0.0228 
(0.0809) 

Fertilizers* Other inputs -0.0576 
(0.0640) 

-0.1855 
(0.0883)** 

pesticides * pesticides 0.1409 
(0.0517)*** 

0.01522 
(0.0838) 

Pesticides* land -0.3135 
(0.0947)*** 

0.1820 
(0.1059)** 

Pesticides* Other inputs -0.2254 
(0.0781)*** 

-0.0038 
(0.0907) 

land * land -1.3177 
(0.3159)*** 

1.0054 
(0.2848)*** 

land * Other inputs 0.0386 0.2486 
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(0.1160) (0.1640)* 

Other inputs * Other inputs 0.2497 
(0.0780)*** 

-0.0492 
(0.0605) 

trend 0.1917 
(0.1951) 

-0.1804 
(0.1897) 

Trend* trend 0.0030 
(0.0125) 

0.0332 
(0.0132)*** 

Trend* labor -0.0069 
(0.0258) 

0.0014 
(0.0268) 

Trend* fertilizers -0.0291 
(0.0156)** 

-0.0561 
(0.0215)*** 

Trend* pesticides 0.0609 
(0.0181)*** 

0.0642 
(0.0186)*** 

Trend* land 0.0093 
(0.0235) 

-0.0236 
(0.0298) 

Trend* Other inputs -0.0564 
(0.0230)*** 

0.0067 
(0.0226) 

Dynamic Technical efficiency model 

Parameter (equation 2)   

constant -0.4151 
(0.4404) 

-0.3687 
(0.6344) 

size -0.0196 
(0.0123) 

-0.0150 
(0.0615) 

(size)2 0.0002 
(0.0003) 

-0.0027 
(0.0096) 

age 0.009 
(0.0073)* 

0.0023 
(0.0105) 

Parameter (equation 3)   

Constant_1 -5.6687 
(1.6436)*** 

-0.44084 
(1.7509) 

Size_1 0.0614 
(0.0287)** 

-0.0340 
(0.2131) 

(size)2_1 -0.0013 
(0.0006)** 

-0.0019 
(0.0231) 

Age_1 0.0564 
(0.0266)** 

-0.0250 
(0.0259) 

sigma 0.2557 
(0.0160)*** 

0.3638 
(0.0126)*** 

Omega ( ) 1.0304 
(0.1559)*** 

0.6178 
(0.2958)*** 

Omega_1 1.3056 
(0.2333)*** 

0.9372 
(0.2237)*** 

Rho (  ) 
0.9307 

(0.0722)*** 
0.9942 

(0.0721)*** 
Note: ***, ** and * indicate that the parameter is significant at the 1%, 5% and 10% respectively. 
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The comparison of our results with previous studies shows a similarity with 
Tsionas (2006), that had a persistence component close to 1, indicate that the technical 
inefficiency of Spanish horticulture farms are highly persistent, which suggests a high 
cost of adjustment as well as strong competition in this sector. 

Table 2 shows estimated technical efficiency scores over the years for both 
samples. The predicted technical efficiency takes an average value of 77.3% and 89.2% 
for outdoor and greenhouse horticulture farms respectively. The static efficiency level of 
greenhouse farms is higher than outdoor farms by approximately 12 percentage. This 
difference can be explained by the use of high technology and the best control of use of 
different inputs in the case of greenhouse horticulture. 

The analysis of the evolution of technical efficiency during the period studied 
shows an improvement of efficiency level of greenhouse farms by 15%. While, we point 
out a decrease of efficiency level by 11% in the case of outdoor horticulture farms during 
the same period. Those results can be explained by the technical change effect that 
improves efficiency level along year in the case of greenhouse horticulture. 

Table 2. Evolution of Technical efficiency scores for outdoor and greenhouse horticulture 
farms (1999-2004)  

 

 
Results of the dynamic efficiency are reported in Table3. The measures of the 

long- run predicted technical efficiency in the case of outdoor and greenhouse 
horticulture farms are 17.16% and 15.59% respectively. We notice a very low predicted 
level of Long- run technical efficiency for both samples. However, these results are not 
surprising since the persistence parameter is high in both cases. Thus the difference of 
technical efficiency between static and dynamic frontier is very large for both samples. 
These results imply that the persistence of inefficiency of Spanish horticulture farms is 
strongly persistent over time. 

Table 3. Static and Dynamic Technical Efficiency for outdoor and greenhouse 
horticulture farms 

 

 1999 2000 2001 2002 2003 2004 
Outdoor horticulture 0.8329 0.8108 0.7894 0.7363 0.7338 0.7348 
greenhouse horticulture 0.8156 0.8587 0.8914 0.9153 0.9291 0.9440 

 Outdoor horticulture Greenhouse horticulture 
 Static model Dynamic model Static model Dynamic model 

Mean 0.7730 0.1716 0.8923 0.1559 
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V. Conclusion 

The purpose of this paper is the evaluation of dynamic technical efficiency for 
both outdoor and greenhouse Spanish farms specialized in horticulture production. A 
dynamic stochastic frontier model is developed to estimate the long run technical 
efficiency and it persistence for both samples. This analysis has been applied to 126 and 
90 Spanish greenhouses and outdoor horticulture farms respectively using FADN data 
set. Those farms were observed during 6 years from 1999 to 2004. 

The static efficiency level of greenhouse farms is higher than outdoor farms by 
approximately 12 percentage. The evolution of the static efficiency level during the 
studied period shows an increase by 15% in the greenhouse farms comparing to a 
decrease by 11% for outdoor horticulture farms. This difference can be explained by a 
best control of the use of different inputs in the case of greenhouse horticulture as well as 
the implantation of high technology that improves efficiency level over years. 

The empirical results show a big difference of technical efficiency level between 
static and dynamic case for both samples. These results are consistent with the high value 
of the technical inefficiency persistence parameter for both cases which suggests that the 
technical inefficiency is highly persistent and shows a strong competition in this sector.  
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