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ABSTRACT 
 

THE FINANCIAL FEASIBILITY OF MUNICIPAL SOLID WASTE TO 
ETHANOL CONVERSION 

 

By 
 

Osamu Sakamoto 
 

Lignocellulosic portion of municipal solid waste (MSW) is considered a potential 

feedstock for fuel ethanol production. I review the trends in MSW generation, 

composition and disposal practices, and evaluate the aggregate and regional potential of 

MSW as a feedstock. I present an overview of the current technology of MSW to ethanol 

conversion. An attractive feature of MSW-ethanol conversion is that the feedstock is 

available at a negative cost; i.e. disposal facilities charge tipping fees ranging from $15-

$100/ton to accept MSW. I assess the financial feasibility of a typical MSW-ethanol plant 

with a capacity of 500 tons per day under a number of scenarios with respect to tipping 

fees, ethanol prices, capital costs, byproduct prices and ethanol tax incentives. I find the 

profitability to be robust across scenarios. I then discuss technical, economic, 

environmental and social barriers that inhibit commercialization. 
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CHAPTER I 

INTRODUCTION 
 
 

1.1 Problem Statement 

Ethanol blended gasoline is currently used as a cleaner burning automobile fuel in 

the United States.  The Clean Air Act Amendments of 1990 (CAA90) mandated the use 

of reformulated or oxygenated gasoline in many urban areas in the United States. While 

ethanol and methyl tertiary butyl ether (MTBE) have been the two most common 

oxygenates, MTBE is more widely used due to relatively lower production cost. 

Moreover, ethanol is mostly produced in the Corn Belt Area of the Midwest, far from the 

major gasoline consumption urban centers. The critical shortcoming of ethanol is that it 

cannot be transported through pipelines. Hence, high transportation costs prevent 

increasing consumption of ethanol on the East and West coasts.  

In a recent turn, however, MTBE is now seen as a suspected carcinogen that 

moves quickly through bedrock into underground water supply, giving it taints the water 

and has a distinct odor (Broder et al. 2001; U.S. EPA 2004a). For this reason, 14 States 

have banned the use of MTBE in transportation fuels. MTBE was to be phased out in 

California beginning in 2003 (Dipardo 2002; RFA 2001a; GAO 2002). However, the 

state government announced the decision to delay the ban until 2004, in part to keep 

California's consumer gasoline prices from skyrocketing, and also to protect the state 

from facing another energy crisis. This phase out leaves ethanol as the leading candidate 

to replace MTBE. Taking the issues associated with national security and the balance of 

trade deficit of oil from the Middle East into consideration, demand is projected to 
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increase steadily over the next two decades (EIA 2004a; California Energy Commission 

2001a; Hutzler 2003). 

Most of the projected increase in ethanol demand in the short run is likely to be 

met by corn-based ethanol, produced in the Midwest. However, current technology 

allows cellulose contained in various kinds of biomass to be converted to ethanol. 

Significant amounts of cellulosic biomass, in the form of paper and paper products, is 

currently disposed in landfills or burned. Given this, in order to meet projected increase 

in ethanol demand, a good deal of attention is now being paid to biomass to support the 

corn-based ethanol. In other words, we can make use of this cheap abundant waste as an 

input for ethanol production.  

Biomass wastes that can be converted to ethanol include agricultural residues 

(e.g., rice straw or sugar cane bagasse), forestry residues, and biomass components in 

municipal solid waste (MSW).  The benefit gained by ethanol is not limited to an increase 

in ethanol production. MSW-ethanol conversion can be an alternative waste disposal 

process. In both industrialized and developing countries, MSW has been buried on land, 

or burned, as the final disposal process. Both methods have significant environmental 

impacts through air, water, and ground pollution. Although the U.S. has much more 

abundant landfill space, land scarcity is observed in populated urban areas. Because 

approximately 90% of MSW could be reused by available technology (GeneSyst 2004; 

Masada 2004), MSW-to-ethanol conversion would be a promising approach to reducing 

the material in landfills and to extend landfill life.  

A few previous studies have analyzed the costs and benefits of biomass-to-ethanol 

conversion. Several private and public organizations have surveyed regional biomass 
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availability and feasibility of ethanol production. For example, the California Energy 

Commission estimates the potential statewide ethanol production from available biomass, 

including MSW, in California (2001b). Motivation of the study is largely a result of the 

impending ban of MTBE. The state of Hawaii (1994) began researching biomass 

availability and the technological feasibility of biomass-ethanol conversion at an early 

date in an effort to reduce heavy dependence on oil imports. BBI International (2003) 

estimated the potential economic impact of biomass-ethanol production, such as 

employment impact in Hawaii. Mann and Bryan (2001) also addressed the feasibility of 

producing ethanol from various kinds of biomass available in northeastern North Dakota 

and northwestern Minnesota as a part of the Western Regional Biomass Energy Program 

(WRBEP).  

However, the vast majority of these previous studies focused on agricultural 

residues or dedicated energy crops expressly produced as an input for ethanol production. 

And only a few have analyzed MSW to ethanol conversion. This is largely because of the 

technological uncertainties and the limited data sources about the recycling market, 

conversion process, and possible benefit and costs related to this infant industry.  

The Tennessee Valley Authority (TVA) initially conducted an economic analysis 

of a proposed MSW-ethanol plant in Muscle Shoals in Alabama between 1990 and 1992, 

and found that the profitability was not positively robust, but was economically feasible 

(Broder et al. 1993). However, since the time of TVA’s analysis, technological efficiency 

of cellulose-ethanol conversion has dramatically improved. Fox et al. (1999) analyzed the 

feasibility of regional MSW based ethanol production in the city of Phoenix, in Maricopa 

County, Arizona, in the part of WRBEP with state-of-art technology using a gravity 
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pressure vessel (GPV). However, estimates of plant economics were site-specific and 

they did not assess nation-wide potential for MSW-ethanol conversion.  

Now the technology is ripe. In fact, three private firms, Pencor-Masada OxyNol 

(PMO) in the city of Middletown in Orange County, New York, GeneSyst International 

Inc. in the city of Canton in Stark County, Ohio, and Genahol-Arizona Inc. in the city of 

Phoenix in Maricopa County, Arizona, are planning to begin operation on a commercial 

scale in near future. Thus, this research, assessing financial feasibility of this infant 

industry, is timely.  

 

1.2 Research Objective 

The key to succeed in MSW-ethanol industry is “profitability.” This research is 

aimed to provide a comprehensive analysis of financial feasibility of MSW-ethanol 

production at a national scale with the current best available technology.   

To begin with, sustainable input flow should be guaranteed to maintain business. 

To attack this question, the paper initially studies the trend of MSW generation, 

recycling, and landfilling in the U.S. Then, the paper determines not only aggregate 

MSW availability, but also the lignocellulosic composition in MSW that is convertible to 

ethanol. Equally important, regional MSW availability will be addressed. The paper 

identifies regions that can supply enough MSW for an ethanol plant to maintain business.  

Second, the paper analyzes the financial feasibility of MSW-ethanol production. 

To carry out this analysis the potential yield of ethanol and a set of by-products per ton of 

MSW should be known. The next step is modeling a firm’s profit function by taking 

potential revenue sources and costs, related to production, into account. Timing of cash 
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outflows and inflows is also important for a firm’s investment decision. Cash flow is 

estimated over the entire economic life of the plant. Next, the key economic parameters, 

which are significant in determining plant economics, are identified and the robustness of 

profitability is analyzed with respect to variations in these parameters. Last, technical, 

economic, political barriers that inhibit commercialization are discussed.  

  

1.3 Thesis Outline 

This thesis consists of five parts. Chapter II provides the overview of the current 

ethanol market. In the last section of Chapter II, the advantage of MSW-ethanol 

production over traditional corn-starch based production is summarized.  Further 

discussion about how it can contribute to currently rapidly growing demand for ethanol is 

also included. Chapter III examines MSW biomass availability. Although there are 

substantial differences in terms of MSW composition by region and season, it provides an 

approximate range of MSW lignocellulosic compositions. Also, the distribution of MSW 

across the U.S. is presented. Chapter IV describes state-of-art technology and the 

operational steps of MSW-ethanol production. Moreover, it discusses the potential yield 

of ethanol and by-products based on the theory, laboratory-based and assumptions by the 

plants in the field. Chapter V, the core chapter of this thesis, analyzes profitability of 

ethanol conversion. Plant economics, the base case, are estimated based on the data by 

Titmas (2004), and sensitivity analysis is performed. Chapter VI is the concluding 

chapter that presents a summary of all research and suggests further research 

recommendations. 
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CHAPTER II 

THE OVERVIEW OF ETHANOL MARKET 
 

 
The purpose of this chapter is to provide an overview of the ethanol market. It is 

important to identify how MSW-ethanol producers can play as niche players in the clean 

fuel energy industry. The key issues to address this question are (1) the trend of national 

ethanol supply and demand, (2) the potential effect of a coming MTBE ban, (3) ethanol 

supply and demand across the U.S. region by region, (4) ethanol transportation problems, 

and (5) current ethanol market structure. The research results are presented in the above 

order. Finally, I provide a summary on how MSW based ethanol producers can contribute 

to the ethanol market. 

 

2.1 Data 

The main source for secondary data is from the Energy Information 

Administration (EIA) in the U.S. Department of Energy (DOE) and Renewable Fuel 

Association (RFA). These organizations estimate and report data on the United States’ 

ethanol and MTBE production on a monthly and yearly basis. Furthermore, EIA provides 

data on national and regional ethanol consumption as oxygenate, and as an alternative 

fuel to conventional gasoline (CG).  

 

2.2 U.S. Ethanol Supply  

Ethanol use began to boom in the early 1970s, when oil supply disruptions in the 

Middle East affected U.S. national security. In addition, our growing concern for a clean 
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environment became a driving force to eliminate lead (an octane booster) from gasoline. 

Lead is a cumulative toxin that builds up in soft tissue, such as kidneys, bone marrow, 

liver, brain bones, and teeth. Lead can be extremely damaging, especially for children, 

because it inhibits the body's oxygen and calcium transport and alters nerve transmission 

in the brain. Lead poisoning can cause mental retardation, impaired growth, and, at high 

doses, even death. The advent of the environmental movement in the 1970s hit the 

gasoline market when the U.S. Environmental Protection Agency (U.S. EPA) issued 

restrictions on the use of lead in fuel in 1978. Over the next ten years various levels of 

regulation resulted in a phase down of lead levels in gasoline. Ethanol and MTBE are the 

two common chemicals used to enhance gasoline's oxygen and octane content. Ethanol 

has been commonly used by blending it directly into gasoline in a mix of 10% ethanol 

and 90% gasoline, called “gasohol” or “E10” (DOE 2003).  

Ethanol production in the U.S. increased considerably in two decades. While only 

175 million gallons were produced in 1980, the ethanol supply has skyrocketed to 

approximately 2.6 billion gallons by 2003 (Figure 2.1).  This success in the ethanol 

industry is attributed to CAA90, which mandating the use of oxygenated gasoline in 

certain geographical areas not meeting the National Ambient Air Quality Standard 

(NAAQS) for carbon monoxide (CO). The main source of CO emissions is the 

combustion engine. While many types of these engines are used in products such as 

lawnmowers, chain-saws, and other gasoline powered equipment, the primary source of 

ambient CO in most areas is motor vehicles.  

Designed to increase combustion efficiency, oxygenated gasoline was viewed by 

the government as a practical way to help reduce CO emissions. Two programs have 
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been implemented to achieve the goals under CAA90. The Oxygenated Fuel Program 

(Oxyfuel Program) is in effect only during fall and winter months in certain urban areas 

to reduce CO emissions. It has been a tremendous success, with the number of non-

attainment areas decreasing by two-thirds since 1990, and areas continue to demonstrate 

attainment each year. The Reformulated Gasoline Program (RFG Program) requires the 

use of oxygenated fuel on a year-round basis in metropolitan areas with high levels of CO 

and ground-level ozone.  

Ethanol is already used in Federal RFG in populated metropolitan areas such as 

Chicago and Milwaukee (Figure 2.2). The Oxyfuel Program requires a minimum oxygen 

content of 2.7% in non-attainment areas, and the RFG Program requires 2% oxygen 

content. The two most common ways of boosting oxygen levels to the required Oxyfuel 

levels are to add either 15% MTBE or 7.5% ethanol to gasoline (ethanol required to be 

blended into gasoline is as half of MTBE because ethanol has higher oxygen content than 

MTBE).  

 

Figure 2.1 Trends of Domestic Ethanol Productions in the US 
Source: 1980-2000 by RFA (2001a) and 2001-2003 by EIA (2004b) 
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Figure 2.2 RFG Program Areas 
Source: U.S. EPA, 2004b 
 

2.3 MTBE Ban 

2.3.1 History of Ethanol and MTBE 

Recently, MTBE has become quite controversial. Claims have been made that 

MTBE has caused widespread contamination of drinking water wells, which can result in 

adverse health effects, including cancer, to consumers of MTBE contaminated water. 

Concern over the use of MTBE in gasoline began to grow with the detection of the 

chemical at low levels in groundwater nationwide; especially when it was found in 

relatively high levels in some municipal water supply wells (U.S. EPA 2004a). High 

profile cases, such as the closure of the Santa Monica, California well field and 
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contamination of the public wells in South Tahoe, California. brought national attention 

to this issue.  

MTBE is more soluble in water than any other gasoline component. It is 30 times 

more soluble than benzene. When MTBE is released into the soil as a result of a spill or 

leak it may separate from the rest of the gasoline, lead the plume to the groundwater, and 

dissolve rapidly once there. MTBE travels at the same rate as groundwater and is 

therefore often the leading edge of any petroleum plume. This puts receptors at a greater 

risk of MTBE contamination when gasoline leaks occur.  On the other hand, ethanol has 

high solubility but is biodegradable. Thus, it degrades into harmless byproducts before it 

reaches any potential receptor.  

On March 25, 1999, Governor Gray Davis released Executive Order D-5-99, 

which ordered the removal of the additive MTBE from California gasoline at the earliest 

possible date, but no later than December 31, 2002. In addition to the State of California, 

sixteen other states also plan to phase out MTBE use at a state level (Table 2.1). On 

December 13, 1999, Chicago became the first city to ban MTBE when city council 

unanimously voted to ban the petroleum-based oxygenate (Ames 2001). As long as the 

Federal requirement for 2% oxygen in RFG continues in all states, ethanol (as a substitute 

good for MTBE) will replace MTBE. At the same time, these regulations initiated by 

those states created incentives to the ethanol industry to expand production in order to 

prepare for growing demand after the law is enacted. Figure 2.3 shows monthly ethanol 

and MTBE domestic production during 1997-2003. Obviously, ethanol production 

capacity rapidly grew while MTBE production diminished. Growth in 2002 was 

particularly remarkable in that ethanol production eventually exceeded MTBE production 
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by 2003. The growth of ethanol is expected to increase steadily for at least another couple 

of decades (EIA 2004a; Hutzler 2003; DiPardo 2002; RFA 2001a; California Energy 

Commission 2001b). 

While ethanol will take the place of MTBE, it has not yet been competitive with 

fossil fuel. Current ethanol producers are largely supported by government subsidies. The 

U.S. Congress passed the National Energy Act of 1978, which gave a Federal tax 

exemption for gasoline containing 10% ethanol. The Federal subsidy, now at $0.52 per 

gallon, allows the price of ethanol to remain close to the price of CG. However, if another 

alternative fuel is found to be more economically and environmentally efficient by 

technological development in future, the tax incentive programs above could expire. 

Congress is now debating an amendment to the Energy Bill in which MTBE will be 

completely eliminated from all gasoline in the United States. The amendment, which still 

must be part of the final Senate Energy Bill passed and signed by President Bush, would 

boost the use of renewable energy fuel including ethanol to five billion gallons by 2012 

(Abbott 2003). Thus, the long-term ethanol production growth in the near future heavily 

depends on government policy. 
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Table 2.1 The MTBE Ban Schedule 

State MTBE Ban Schedule 
MTBE 

Consumption 
(% of U.S. total) 

California MTBE started January 1, 2004 (Firstly announced to ban in December 31, 
2002, but postponed) 

31.7 

Colorado MTBE ban started April 30, 2002 0 
Connecticut MTBE ban started October 1, 2003 3.1 
Illinois MTBE prohibited by July 2004 0 
Indiana MTBE limited to 0.5% by volume, starting July 23, 2004 0 
Iowa 0.5% MTBE by volume cap, already in effect 0 
Kansas MTBE limited to 0.5% by volume, starting July 1, 2004 0 
Kentucky  MTBE ban starting January 1, 2006; beginning in January 1, 2004, 

ethanol encouraged to be used in place of MTBE 
0.8 

Maine Law merely expresses state’s “goal” to ban MTBE; it is not an actual ban. 
The “goal” is to phase out gasoline or fuel products treated with MTBE 
by January 1, 2003 

0 

Michigan MTBE prohibited by June 1, 2003 0 
Minnesota All ethers (MTBE, ETBE, TAME) limited to 1/3 of 1.0% by weight after 

July 1, 2000; after July 1, 2005, total ether ban 
0 

Missouri MTBE limited to 0.5% by volume, starting July 1, 2005 1.1 
Nebraska MTBE limited to 1.0% by volume, starting July 13, 2000 0 
New York MTBE ban started January 1, 2004 7.5 
Ohio MTBE ban starting July 1, 2005 0 
South Dakota 0.5% MTBE by volume cap, already in effect 0 
Washington MTBE ban started December 31, 2003 0 
Source: EIA, 2002a 
 

Figure 2.3 Monthly Ethanol and MTBE Production in 1997-2003 in the U.S.  
Source: EIA, 2004b 
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2.3.2 Economic Advantage and Disadvantage of Ethanol over MTBE 

One of the major disadvantages of ethanol over MTBE is that its production is 

sensitive to change in corn prices. In Figure 2.1, ethanol production substantially dropped 

in mid-1996. Figure 2.4 points out high corn prices in mid-1996. This was due to wet 

conditions resulting in small corn supply and higher corn prices. Unlike MTBE, which 

can be produced from a chemical reaction of methanol (derivative of natural gas) and 

isobutylene (an oil refinery product), corn based ethanol production is affected by 

weather conditions. Note that this is not the case with MSW biomass based ethanol 

production. Daily MSW biomass supply is not as sensitive to weather conditions as are 

agricultural products. 

Although ethanol production is influenced by corn prices, the empirical analysis 

states the price of corn has very little to do with the price of ethanol (CFDC 2004). 

Ethanol prices are more highly correlated with the price of gasoline and gasoline 

blending components (Figure 2.5). Thus, low corn prices do not always indicate low 

ethanol prices, and high corn prices do not always indicate high ethanol prices. Holding 

the ethanol price constant, a low biomass price enhances the profitability of ethanol 

production. To put it another way, as the biomass price increases, profits by ethanol 

production diminish.  

Figure 2.6 is the historical ratio of unleaded gasoline (proxy for the ethanol price) 

to corn price available. The horizontal straight line indicates the historical average price 

ratio. The corn based ethanol production is now well above this level. Although it is still 

uncertain that price of ethanol will be unchanged in the future because the price is 

maintained at a certain level by the Federal and State tax exemption program, the cost 
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reduction by biomass-ethanol production is surely the key factor for the profitability of 

the ethanol industry in near term.  

 

Figure 2.4 Monthly Average Corn Farm Price Received in Illinois  
Source: Farmdoc, 2004 
 

Figure 2.5 Trends of Gasoline Price and Retail Ethanol Price 
Source: CFDC, 2004 
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Figure 2.6 Trend of Ratio of Unleaded Fuel Price to Corn Price  
Source: Missouri Value Added Development Center, 2001 
 

2.4 U.S. Ethanol Consumption 

2.4.1 Historical Ethanol Oxygenate Consumption 

Figure 2.7 depicts the historical consumption of both ethanol and MTBE as 

oxygenate. Ethanol consumption has not changed much in a decade and was still less 

than half of MTBE consumption in 2002. However, after California begins banning all 

MTBE use as oxygenate, demand for two oxygenate fuels is expected to be changed, or 

will potentially even be reversed. According to the estimate of the U.S. General 

Accounting Office (GAO) and the U.S. Department of Transportation (Figure 2.8), an 

additional eight million gallons of ethanol will be needed to meet ethanol demand in 

California after the phase-out of MTBE.   
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Figure 2.7 Historical Ethanol and MTBE consumption as an Oxygenates 
Source: EIA, 2002b 
 

Figure 2.8 California Ethanol Consumption in 2000 and Projected Consumption in 2003-
2005 

Source: GAO, 2002 
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Oxygenate use of ethanol, such as E10, is a complement to petroleum, but higher blends, 
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 Currently, 394 million gallons of fuels are consumed as alternative fuels in the 

U.S. Fuels made of natural gas, such as liquefied petroleum gases (LPG), compressed 

natural gas (CNC) and liquefied natural gas (LNG) account for roughly 96% of total U.S. 

alternative fuel consumption. Natural gas is cheaper and more abundant non-renewable 

resource than oil. The U.S. natural gas reserves are expected to last at least 80 years. It is 

easier to process than oil, can be easily transported, produces less air pollution and burns 

hotter than any other fossil fuel.  

However, natural gas has some environmental drawbacks. When it is processed it 

releases highly toxic hydrogen sulfide into the air and when it is transported, it could 

cause huge explosions. Also, the largest component of natural gas methane is more potent 

than carbon dioxide as a greenhouse gas. However, because of its abundance it is useful 

as a transition from nonrenewable to renewable energy sources.  

Renewable alternative fuels include E85, E95 (95% ethanol), M85 (85% 

methanol), M100 (100% methanol). Ethanol as alternative fuel use is not as promising as 

blending use in the near term for a few reasons. First, most automobile engines do not 

allow the use of E85 fuel. Second, gas stations also do not allow the use of E85 fuel, so a 

new infrastructure would be needed to popularize it. Studies of the DOE and the General 

Service Administration (GSA) have shown that refueling stations need at least 200 steady 

customers for any single grade in order to make profitable use of the facilities. Though 

large numbers of flexible-fuel vehicles are being sold, they are spread out over the entire 

nation, and achieving a "critical mass" of 200 that use a single refueling station is still 

difficult to achieve (U.S. Department of Transportation 2002). Finally, a gallon of ethanol 

has only two-thirds the energy content of a gallon of gasoline (Hadder 1997). To be 
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competitive with CG, further engine modifications are necessary in order to make up for 

low energy content. 

Although there are some drawbacks to ethanol use as an alternative fuel, E85 is 

gradually gaining popularity. Figure 2.9 shows historical consumption of alternative fuels 

and Figure 2.10 indicates the number of vehicles using alternative fuels (renewable fuels 

and electricity). Noticeably, E85 is consumed more than methanol or electricity.  

 
 

Figure 2.9 Trends of Alternative Fuel Consumption in the U.S.  
Source: EIA, 2002b 
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Figure 2.10 Trends of Number of Vehicle using Alternative Fuel in the U.S.  
Source: EIA, 2002b 
 

2.5 Regional Ethanol Production and Consumption 

As mentioned earlier in this chapter, ethanol is now dominantly produced in the 

Corn Belt of the Midwest region.1 Figure 2.11 plots ethanol plants on a U.S. map. This 

excessive concentration of the ethanol industry in one region results in heavy reliance on 

MTBE as an oxygenate fuel outside the Midwest area of the U.S. (Figure 2.6 and 2.7).  

Remarkably, about 75% of ethanol is solely consumed in Midwest areas, while other 

regions only account for 25% of total ethanol consumption. For MTBE consumption, 

Midwest consumption remains at the no more than 2%, and almost all is exclusively 

outside of the Midwest region. Thus, in reality, ethanol and MTBE are not competitive in 

the market, but divvy up the oxygenate fuel market share by region.  

                                                 
1 All States are divided into four regions (i.e., West, South, Midwest, Northeast) corresponding to the 
Census Region and Division of U.S. Bureau of the Census (2001). West is AK, AZ, CA, CO, HI, ID, MT, 
NM, NV, OR, WA, WY, South is AL, AR, DC, DE, FL, GA, KY, LA, MD, MS, NC, OK, SC, TN, TX, 
VA, WV, Midwest is IA, IL, IN, KS, MI, MN, MO, NE, ND, OH, SD, WI, and Northeast is CT, MA, ME, 
NH, NJ, NY, PA, RI, VT. 
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Table 2.2 summarizes the historical MTBE consumption in 17 states that plan to 

phase out their MTBE use as oxygenate fuel. It is apparent that only 5 out of 17 States 

will be affected by state regulation (i.e., California, New York, Connecticut, Kentucky, 

and Missouri). It is unlikely that other States will be seriously distressed by a MTBE ban 

because 9 out of 12 States are located in the Midwest. Nevertheless, the five states noted 

above consume 44.2% of total U.S. MTBE consumption. Especially California, the most 

automobile dependent state in the nation, which accounts for 32% of total U.S. MTBE 

consumption.  

It is a conceivable eventuality that the states that have not yet announced a MTBE 

ban will shift to ethanol use to accommodate public opinion. If these states, especially 

heavily MTBE dependent states such as Texas and New Jersey, begin to phase-out 

MTBE use by regulation, the increase of ethanol demand will be further accelerated. 

Similar to California, there is a huge potential market for clean fuels in the Northeastern 

states (NESCAUM 1999). These states have such a small number of ethanol plants and 

would be driven by necessity to import ethanol from the Midwest in the near future to 

meet the boost in ethanol demand. 
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Figure 2.11 Map of Ethanol Plants in the U.S. 
Source: Frazier, Barnes & Associates, LLC., 2004 
 

 

Figure 2.12 Ethanol Consumption by Region in 2000 in the U.S.  
Source: EIA, 2003 
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Figure 2.13 MTBE Consumption by Region in 2000 in the U.S.  
Source: EIA, 2003 
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Table 2.2 Historical MTBE consumption in the U.S. (million gallons) 
  1995 1996 1997 1998 1999 2000 2001 
States Enacting MTBE Ban 
 California 71.2 78.8 86.5 97.3 103.6 102.4 79.7 
 Connecticut 10.6 9.4 10.0 10.0 9.0 8.5 9.4 
 Kentucky 1.8 2.2 2.4 2.1 2.2 2.2 2.2 
 Missouri 0.0 0.0 0.0 0.0 2.3 3.3 3.2 
 New York 22.7 22.0 23.7 24.4 21.4 19.7 21.1 
 Illinois 3.2 1.0 0.9 0.4 0.0 0.0 0.0 
 Colorado 0.3 0.3 0.3 0.2 0.1 0.0 0.0 
 Indiana 0.4 0.1 0.1 0.1 0.0 0.0 0.0 
 Maine 3.7 3.7 3.7 3.7 0.8 0.0 0.0 
 Iowa 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
 Kansas 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
 Michigan 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
 Minnesota 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
 Nebraska 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
 Ohio 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
 South Dakota 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
 Washington 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
States Consuming MTBE and not Announcing MTBE Ban 
 Arizona 0.3 0.3 1.8 3.7 3.7 3.6 3.6 
 Delaware 2.6 2.2 2.6 2.8 3.0 3.0 3.0 
 Dist. Of Columbia 1.1 0.8 0.9 0.8 0.8 0.8 0.7 
 Maryland 13.4 10.1 11.2 11.1 11.2 11.7 12.6 
 Massachusetts 16.2 16.0 16.9 16.4 14.8 16.5 16.8 
 New Hampshire 2.0 2.1 2.3 2.6 2.6 2.9 3.2 
 New Jersey 30.7 29.0 31.4 32.6 28.1 26.3 27.1 
 North Carolina 0.4 0.0 0.0 0.0 0.0 0.0 0.0 
 Pennsylvania 9.3 8.7 9.2 9.4 8.8 9.3 9.7 
 Rohde Island 3.8 3.5 3.4 3.5 2.9 2.9 2.6 
 Texas 25.9 23.7 27.0 29.2 31.2 30.3 30.5 
 Utah 0.0 0.0 0.1 0.1 0.0 0.0 0.0 
 Virginia 14.0 11.4 12.3 13.1 13.2 13.6 13.6 

United States 233.6 225.3 246.7 263.5 259.7 257.0 239.0 
Source: EIA, 2003 
 

2.6 Transportation Problem 

The major drawback of ethanol is the high transportation cost, because ethanol 

cannot be shipped through pipelines. Although Federal and state tax incentives have 

made ethanol producers competitive in the market and economically profitable, high 

transportation costs prevent other regions from consuming ethanol. MTBE can be piped 

to a refinery, then blended with gasoline, and piped to pumping stations throughout the 
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United States. Generally, pipelines are the fastest and most economical method for 

transporting liquids.  

There are three main reasons why ethanol cannot be moved through pipelines. 

First, ethanol absorbs water and impurities that normally reside in fuel pipelines. Water, 

typically containing dirty particles such as rust, separates ethanol and gasoline, and these 

dirty particles reduce engine performance (Whims 2002). Therefore, ethanol needs to be 

carried by other means and must be blended at the terminal instead of the refinery.  

Second, the location of a pipeline is problem. Most of the pipelines in the U.S. run 

from the Gulf Coast to the East and West Coasts. Thus, corn based ethanol in the 

Midwest needs to be transported to the Gulf Coast for piping. Construction of a new 

pipeline connecting the Midwest and other regions is not likely in the near future due to 

high establishment costs.  

The third and final weakness is the logistical limitation of the existing pipelines. 

Compared to the volume of liquids normally shipped via pipelines, ethanol has 

insufficient volume. This cannot justify the construction of new pipelines.  

Therefore, ethanol must be transported by barge, rail, or truck to fuel stations. 

Downstream Alternative, Inc. (DAI) has estimated the possible transportation costs and 

capital investment costs when the national production of ethanol is less than five billion 

gallons per year (BGY) by 2012 scenario (Table 2.3 and 2.4). DAI’s study has estimated 

the shipping cost from PADD (Petroleum Administration for Defense District2) II from 

                                                 
2 The United States is divided by the U.S. DOE into five PADD regions for planning purposes. PADD 1 is 
the East Coast, including CT, DC, DE, FL, GA, MD, ME, MA, NC, NH, NJ, NY, PA, RI, SC, VA, VT, and 
WV. PADD 2 is the Midwest, including IA, IL, IN, KS, KY, MI, MN, MN, MS, ND, NE, SD, OH, OK, 
TN, and WI. PADD 3 is the Gulf Coast, including AL, AR, LA, MS, NM, and TX. PADD 4 is the Rocky 
Mountain area, including CO, ID, MT, UT, and WY. PADD 5 is the West Coast, including AK, AZ, CA, 
HI, NV, OR, and WA. 
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other regions. PADD II is not expected to import any of its ethanol. In contrast, PADD I 

and V will have to incur a burden of high freight cost ($0.11/gal and $0.13/gal, 

respectively) to import most of their ethanol from PADD II. In terms of capital 

investment cost, DAI study results show an estimated average national cost of about 8 

cents per gallon of ethanol to transport it to markets.  

The DAI concludes that the transportation industries could increase capacity to 

meet increased ethanol transportation demands without serious risk of sustained supply 

disruption (EIA 2002c). However, high shipping costs would become a disturbance in 

extending the ethanol market.  

Again, this is not true for biomass-ethanol production. Biomass is an abundant 

and inexpensive regionally-available renewable resource. Furthermore, in the case of 

MSW-ethanol, it substantially reduces freight cost when compared to agricultural or 

forest residues based ethanol production. MSW availability is positively related to 

population; thus, urban areas have more abundant MSW biomass resources than do rural 

areas. These are also the places that ethanol is most needed. Consequently, Ethanol 

produced from MSW quickly and easily meets the needs of ethanol demand in urban 

areas.  
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Table 2.3 Total Freight Costs for Ethanol Transportation for 5 BGY by 2012 Scenario 
(million 2000 dollars) 

Ethanol imports from 
PADD II Shipments within PADDS Total 

PADD 
Ethanol 
shipped 
(BGY) Ship/ 

Barge Rail 
Avg. 

(cents/
gal.) 

Truck Rail Barge 
Avg. 

(cents/
gal.) 

Total 
Avg. 

(cents/
gal.) 

I. East Coast 1.3 $57.4 $70.0 9.8 $13.1 - $4.0 1.3 $144.5 11.1 
II. Midwest 2.2 - - - $77.9 $12.8 $3.2 4.3 $93.9 4.3 
III. Gulf Coast 0.7 $2.6 $35.3 5.4 $8.0 - $0.3 1.2 $46.2 6.6 
IV. Rocky Mountain 0.1 - $4.5 4.5 $0.2 - - 0.1 $4.7 4.7 
V. West Coast 0.8 $51.1 $32.9 10.5 $17.8 - - 2.2 $101.8 12.7 
Total 5.1 $111.1 $142.7 30.2 $117.0 $12.8 $7.5 2.7 $391.1 7.7 
Source: Technology and Management Services, Inc., 2002. Data taken by DAI, 2002 
 

Table 2.4 Total Estimated Capital Investment for Terminal Improvements and Retail 
Conversion for E10/E5.7 for 5 BGY by 2012 Scenario (million 2000 dollars)  

PADD 

New 
ethanol 
volume 
(BGY) 

Cost of 
new 
tanks 

Cost of 
tank 

conversion

Cost of 
blending 
systems 

Modifying 
for rail 
receipt 

Contin-
gency 

Retail 
conversions Total 

Amortized 
cost 

(cents/gal.)

I. East Coast 1.102 $8.89 $0.65 $24.30 $7.10 $1.26 $6.50 $48.66 0.69
II. Midwest 1.072 $5.40 $0.31 $33.00 $5.33 $2.02 $7.44 $53.49 0.78
III. Gulf Coast 0.626 $5.74 $0.34 $22.20 $3.55 $1.24 $5.28 $38.34 0.96
IV. Rocky Mountain 0.042 $0.75 $0.02 $2.40 $1.07 $0.12 $0.31 $4.66 1.73
V. West Coast 0.145 $2.33 $0.06 $4.20 $0.36 $0.24 $1.25 $8.42 0.91

Total 2.987 $23.11 $1.38 $86.10 $17.41 $4.88 $20.78 $153.57 0.80

 Source: Technology and Management Services, Inc., 2002. Data taken by DAI, 2002 
 

2.7 Ethanol Market Structure 

Another problem for the ethanol industry is the fact that ethanol production is a 

highly concentrated industry. Illinois based Archer Daniels Midland (ADM), controls 

approximately 40% of all ethanol production in the United States.  Since ADM is such a 

dominant market power, the concern is that only a few ethanol producers will be able to 

expand production to meet demand as long as we rely only on corn-produced ethanol. 

Many complain that only ADM can benefit from the banning of MTBE (Pace 2003). 

Further, large producers have typically partnered with smaller producers or farm coops to 
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market the smaller producer’s supplies of ethanol; thus, the concentration ratio may 

underestimate the actual market concentration. 

On the other hand, the GAO forecasts that a MTBE ban attracts new small 

producers into the market, and the market share of the large producers is projected to 

decline (GAO 2002).  

There are both advantages and disadvantages of concentrated ethanol market 

structure. One advantage is that the industry can take advantage of economies of scale; 

industry could lower unit costs to produce a gallon of ethanol. Moreover, pricing 

coordination is easier if fewer firms control most of the market shares.  

A disadvantage of the current ethanol market structure is that it discourages 

competition. New suppliers tend to be left out of the market so that only the preferences 

of a few big agribusiness giants are counted.  

There are a few reasons why competition is not emerging. First, ethanol is a 

homogeneous commodity. Even though it is made from different feedstocks such as corn, 

rice straw, or MSW, it seems identical to consumers. Thus, consumers choose products 

mainly based on the price. New suppliers cannot appeal to consumers by differentiating 

the market. The second reason is a technological barrier. Ethanol conversion needs high 

technology and well-trained employees that are not easily available. Third, small 

suppliers cannot afford the enormous initial capital investment cost.  Fourth, the fuel 

distribution network is controlled by the oil industry, whose products compete with 

ethanol. Large oil companies prefer to contract with a few large producers instead of a 

number of small ethanol producers.   
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Figure 2.14 Top Eight U.S. Ethanol Producers by Production Capacity (2002) 
Source: GAO, 2002. Data taken by RFA 
 

2.8 Concluding Remarks 

In this chapter I looked at the current ethanol market condition. Ethanol demand 

in the near future will rise because of the phase-out of MTBE, especially in California. 

Now, I summarize how MSW-ethanol production contributes to the future ethanol 

market.  

First, ethanol demand is projected to increase.  States need to guarantee a 

sustainable flow of ethanol with the MTBE ban. Biomass-, including MSW, based 

ethanol production is increasingly seen as an important and capable approach to meet the 

anticipated boost in ethanol needs. For example, New York and northern New Jersey 

need about 391 million gallons of ethanol to replace MTBE. According to Masada, less 

than half of New York’s MSW would meet this need (Masada 2004). 
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Second, the U.S. currently depends excessively on imported oil from other 

countries. The U.S. presently imports 56% of its petroleum needs and is expected to 

reach 60% by 2010 (EIA 2004a). At the beginning of the 1970s OPEC decreased the 

output of oil, which resulted in a dramatic increase in oil prices.  The world’s interest in 

alternative fuels increased significantly. The aim was to become less dependent on oil 

and to reduce the cost of expensive oil imports. Ethanol production reduces the U.S. trade 

balance by $2 billion annually (EIA 2004a). It is estimated that if existing landfill 

inventories and newly generated MSW were converted to ethanol, as much as 25% of oil 

and gasoline resources could be saved and used in industry or power generation. 

(GeneSyst 2004) 

Third, corn-based ethanol production is sensitive to corn prices. Corn-ethanol 

plants face ceaseless uncertainty about meteorological factors. Thus, excessive 

inclination to corn-based production could result in a shortfall of the ethanol supplies. A 

biomass-based ethanol plant, on the other hand, generally deals with more than two 

biomass inputs for ethanol production. MSW is a mixture of miscellaneous waste, 

including biomass that it is not as sensitive to weather as corn-based production. Paper, 

the most abundant biomass in MSW, is not affected by seasonality. Thus, MSW-based 

ethanol can contribute to the stability of ethanol availability and its price.  

Fourth, ethanol is now exclusively produced in the Midwest. Unless regional 

plants are constructed, ethanol must be transported to gas terminals far away from plants. 

Automobile dependent states on the West and East coasts are forced to incur high 

shipping cost. This burden indirectly goes to tax payers, because ethanol price manages 

to be competitive with other fuels through Federal and state tax incentives. Unlike corn-
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based production, MSW-ethanol production can be operated regionally. It provides 

ethanol quickly to urban markets where it is most needed. It is unlikely MSW-ethanol 

could bring about regional fuel self-sufficiency, but it would support some self-

sufficiency.  

Finally, the ethanol market is controlled by a few big agribusiness firms. It is 

quite controversial as to whether or not competition is ideal to expand the ethanol market. 

It should be subject to public choice. Even though the current ethanol market is 

dominated by a few firms, MSW-ethanol producers still have the potential to enter into 

this monopolistic market. Furthermore, there are various kinds of jobs relevant to ethanol 

industry (RFA 2001b). MSW-ethanol production would create jobs for local community.  

 
.  
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CHAPTER III 

MSW BIOMASS FEEDSTOCK AVAILABILITY 
 
 
This chapter describes potential MSW biomass availability. The “biomass” refers 

to all the Earth’s vegetation and many products and co-products that come from it. 

Biomass waste, which can be converted to ethanol, is generally divided into three 

categories: (1) forest waste, (2) agricultural waste, and (3) biomass component in 

municipal solid waste (DOE 2004). Of all three potential biomass wastes, agricultural 

residue is now regarded as a potential alternative feedstock to conventional corn-starch 

for ethanol production. The corn stover-to-ethanol industry especially can potentially 

contribute largely to ethanol production in the Midwest (Tally 2002). California also 

seeks to take advantage of rice straw, which used to be burned on the field. After state 

regulations banned all field burnings due to environmental considerations, huge amounts 

of rice straw was being landfilled. Now California proposes to use this abundant resource 

to meet the rapid increase in ethanol demand (California Energy Commission 2001a).   

MSW is defined by the DOE as “residential, commercial and institutional post-

consumer waste.”  MSW contains a significant proportion of plant-derived organic 

material that constitutes a renewable energy source. Waste paper, cardboard, construction 

and demolition wood waste, and yard waste are examples of biomass resources in 

municipal waste (DOE 2004).  The U.S. EPA (2003) categorizes MSW into following 

components: (1) paper and paperboard, (2) glass, (3) metals, (4) plastics, (5) rubber and 

leather, (6) textiles, (7) wood, (8) yard trimmings, and (9) food scraps. Of all eight 

components, paper, wood, yard trimmings, and food scraps are so-called MSW biomass 

and could be converted to ethanol.   
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The chapter is organized in the following manner: first, the historical trends of 

MSW landfill operation are identified; second, I define MSW material composition and 

derived lignocellulosic component of total MSW; finally, the paper provides regional 

MSW availability data over the U.S.  

 

3.1 Data 

 Data exclusively came from secondary sources. Reliable data was obtained by the 

U.S. EPA (2003) and the series of The State of Garbage in America in BioCycle 

magazine (Goldstein and Madtes 2001; Kaufman et al. 2004). Estimation methodologies 

conducted by the two organizations, however, differed substantially.  The EPA’s 

estimation was based on an annual survey using the national material flow analysis 

method conducted by Franklin Associates. This data was useful when our interest was to 

get intuition for a fraction of each MSW composition at a national aggregate level. 

However, it lacks regional detailed information. BioCycle estimates utilized an annual 

survey of state level MSW officials. As a result, regional level MSW generation details 

were available, but no details on the composition of MSW were reported.  

 There was a large discrepancy between The EPA and BioCycle. This was 

principally due to different definitions of MSW. The EPA (2003) states, “MSW as 

defined here does not include construction and demolition (C/D) debris, biosolids, 

industrial process wastes, or a number of other wastes that may well go to a municipal 

waste landfill.”  Therefore, the EPA’s data did not include (C/D) waste, sewage sludge 

and non-hazardous industrial wastes that are normally disposed in MSW landfills. 

BioCycle estimates were based on total disposal at MSW landfills (Themelis 2003; 
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Themelis and Kaufman 2004). Consequently, BioCycle estimates of MSW tended to be 

greater than the EPA’s estimates. 

 To estimate MSW availability, BioCycle data was more appropriate for my 

research since a MSW-ethanol plant would utilize all kinds of MSW that is disposed in 

landfill. Nevertheless, the EPA’s data was useful to obtain the United State’s typical 

MSW composition. In section 4 of this chapter, I make comparison among several 

previous MSW composition surveys, ranging from statewide, countywide, and citywide 

to observe the breadth of distribution of typical MSW composition in the United States. 

The chapter is not aimed to provide precise estimates, but rather to identify the trends in 

MSW generation and landfill, regional MSW availability, and MSW composition in 

general. Thus, I used data estimates from both the EPA and BioCycle for analysis.  

 

3.2 Trends in National MSW 

3.2.1 Trend of MSW Generated, Landfilled, Incinerated, and Recycled  

As seen in Table 3.1 and Figure 3.1, MSW generation has been steadily 

increasing in the past decades (tripled since1960). Behind it, there is a continuing 

augmentation of the U.S. population in the last couple of decades.  However, while the 

population increased by 55% in the last four decades, the pace of increasing rate of MSW 

generation per capita is more rapid, at 67%, to be exact. Approximately, the weight of 

daily MSW generated per capita in 2000 was 1.8 pounds (820g) greater than 40 years ago. 

This change is rooted in mass production, mass consumption, and mass waste producing 

life styles in the U.S. 
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Regularly, when material is thrown away it is subject to one of the three solid 

waste management (SWM) approaches: landfilled, incinerated, or recycled. SWM in the 

U.S. has been dominated by landfilling. It is obvious from Figure 3.1 that the amount of 

MSW landfilled has been much greater than both that of incinerated and recycled MSW 

in the last 40 years. Figure 3.2 tells us that more than half of MSW (55.3%) was 

landfilled in 2000. Nowadays, the rate of increase in MSW landfilled has diminished, 

while recycling is growing steadily. The amount of MSW landfilled is, however, still 

predicted to grow in the future as MSW generation continually grows.  

A high percentage of MSW landfill is very attractive to MSW-ethanol producers. 

They will not face difficulty in obtaining MSW due to competition with the recycling 

industry, except in some regions where the government encourages municipal recycling 

programs.  

 

Table 3.1 Trend of MSW Generation, Recycling, and Landfilling in 1960-2000 
Million Tons   

  1960 1970 1980 1990 1994 1995 1998 1999 2000
Generation 88.1 121.1 151.6 205.2 214.4 211.4 223.4 230.9 231.9

Increment rate - 37.4% 25.3% 35.3% 4.5% -1.4% 5.7% 3.4% 0.4%
Population3 (million) 181 205 227 250 260 263 270 273 281
MSW per capita (ton) 0.49 0.59 0.67 0.82 0.82 0.80 0.83 0.85 0.82

Recycling 5.6 8.0 14.5 29.0 42.2 45.3 48.0 50.1 53.4
Composting* - - - 4.2 8.5 9.6 13.1 14.7 16.5
Total Recycling** 5.6 8.0 14.5 33.2 50.6 54.9 61.1 64.8 69.9
Incineration 27.0 25.1 13.7 31.9 32.5 35.5 34.4 34.0 33.7
Landfilled 55.5 87.9 123.4 140.10 131.2 120.9 127.9 132.1 128.3 
  Percent of Total Generation 
Total Recycling** 6.4% 6.6% 9.6% 16.2% 23.6% 26.0% 27.4% 28.1% 30.1%
Incineration 30.6% 20.7% 9.0% 15.6% 15.2% 16.8% 15.4% 14.7% 14.6%
Landfilled 63.0% 72.6% 81.4% 68.3% 61.2% 57.2% 57.2% 57.2% 55.3%
Source: U.S. EPA (2003) 

                                                 
3 Population data in 2000 is taken by U.S. Bureau of the Census (2001). 



 35

Figure 3.1 Trend of MSW Generation per Capita and SWM in the U.S. 
Source: U.S. EPA, 2003 
 

Figure 3.2 Percentage of SWM in 2000 
Source: U.S. EPA, 2003 
 

3.2.2 Trend in Landfills 

It should be noted here, however, that the number of landfills is steadily 

decreasing in spite of the fact that the amount of MSW landfilled is growing. Today there 

are fewer landfills, and those are mostly large and privately owned (U.S. EPA 2003). 
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Small landfills have been closed, while big landfills have grown in number and size (See 

Figure 3.3 below). Typically, until the 1970’s, each municipality operated its own small 

landfill, charging a modest “tipping-fee” for commercial and industrial users and for the 

trash of small towns and villages on its periphery. Things have changed dramatically, 

however, in the past 20 years. 

The change comes after regulation of the Resource Conservation and Recovery 

Act (RCRA) in 1980s. The increasing concern about the effects of dumps on our health 

and the environment has led to new regulation for the opening, operation, closing, and 

post closure monitoring of sanitary landfills. This change is also attributed to economies 

of scale of landfill management (Porter 2002). First, some regulations of the RCRA 

imposed nearly uniform costs (e.g., decontamination equipment cost or monitoring cost) 

on landfills almost regardless of their size, which meant that the cost per ton of such 

regulations was much higher for small landfills. Second, many of the new regulations 

eventually required expertise (e.g., engineer or legal experts), so high personnel expense 

became a heavy burden for small landfills owners. Finally, new regulations applied only 

to new landfills. This resulted in the expansion of existing landfills since it was costly 

option. 

Inevitably, small municipalities quickly recognized their inability to handle the 

new and complex regulations at a reasonable cost. Even large cities began to close their 

landfills. Only 38 out of the 100 largest cities own their own landfills (Ezzet 1997). On 

the other hand, large private companies acquired massive amounts of landfill capacity. 

Regulation changed the ownership structure of landfills. Figure 3.4 illustrates the trend of 

ownership of landfill and Figure 3.5 shows the trend of volume of waste managed by 
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private and public landfills. Clearly, landfilling activity has shifted towards private 

ownership, hence more waste is now being managed by private owners than it used to be 

as a result of the RCRA. This tendency was accelerated when MSW of closed public 

facilities is shipped to private landfills rather than new publicly owned facilities (Repa 

2000).  

Consequently, in many states, remaining landfill capacity is limited by both 

physical and economic reasons. Between 1986 and 1991, thirteen States (Connecticut, 

Georgia, Kentucky, Massachusetts, Mississippi, New Jersey, New York, Oklahoma, 

Pennsylvania, Rhode Island, Vermont, Virginia, and West Virginia) reported less than 

five years of landfill capacity (Repa 2000). Although landfill capacity has increased over 

the past decades because of newly established landfills, BioCycle reported that 6 out of 

11 Northeastern states (Connecticut, Massachusetts, Rhode Island, New Hampshire, New 

York, Rhode Island, and Vermont) have less than 10 years of landfill capacity remaining 

(Goldstein and Madtes 2001).  

 
 

Figure 3.3 Trend of Number of Landfills in the U.S. 
Source: U.S. EPA, 2003 
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Figure 3.4 Trend of Landfill Ownership 
Source: Repa, 2000 
 

Figure 3.5 Trend of MSW Volume Managed by Ownership 
Source: Repa, 2000 
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products, and then separate lignocellulosic composition from the others. Weekly waste 

collection costs are also not ignorable if a plant is not collocated with an existing landfill 

or material recovery facility (MRF). However, if a tipping fee is high enough to offset 

this cost, producers could overcome this weakness.  

Figure 3.6 shows historical tipping fee across regions in the United States. The 

national average nominal tipping fee has increased fourfold from 1985 to 2000. The real 

tipping fee has almost doubled, up from a national average (in 1997 dollars) of about $12 

per ton in 1985 to just over $30 in 2000 (Repa 2000).  

Equally important, it is apparent that the tipping fee is much higher in densely 

populated regions.4 The trend differs by municipality level, from $9 a ton in Denver to 

$97 in Spokane.  Statewide averages also vary widely, from $8 a ton in New Mexico to 

$75 in New Jersey (Ackerman 1997). The average tipping fee in the Northeastern region 

is particularly high at more than double the national average tipping fee. 

Sometimes the tipping fee is regarded as a landfill scarcity indicator because it is 

inversely related to the remaining landfill capacity (Porter 2002). The less landfill space, 

the higher the tipping fee residents are charged. This sizable tipping fee is available in 

metropolitan areas where waste is abundant and ethanol is mostly needed.  

Chartwell Information publishes Solid Waste Digest, which reports the tipping fee 

and daily MSW volumes of existing MSW dumping landfill, waste-to-energy facilities 

(WTE) including incinerator, transfer station (TS) including MRF across the U.S. 

(Chartwell Information 2003). According to this report, the national average tipping fee 

                                                 
4 According to data of Repa (2002), Northeast is CT, MA, ME, NH, NH, NY, RI, and VT; Mid-Atlantic is 
DE, MD, NJ, PA, VA, and WV; South is AL, FL, GA, KY, MS, NC, and SC; Midwest is IA, IL, IN, MI, 
MN, MO, OH, and WI; South Central is AR, AZ, LA, NM, OK, and TX; West Central is CO, KS, MT, 
ND, NE, SD, UT, and WY; and West is AK, CA, HI, ID, NV, OR, and WA. 
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of all types of SWM facilities is $36 per ton. The national average tipping fees charged 

by landfills, TS, and WTE were $33.12, $40.76, and $57.34 per ton, respectively.  

Detailed data of Solid Waste Digest is summarized in Appendix A.  Landfill data 

is used for cross-sectional econometric analysis and it is found that the tipping fee is 

significantly related to the location of facility (region) and type of facility, but not related 

to daily waste volume that the facility accepts.  

 

Figure 3.6 Trend of Tipping Fee in the U.S. (Dollar per ton) 
Source: Repa, 2002 
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waste 3.3%. As noted above, paper and paperboard, wood, yard trimmings, and food 

scraps are components that can be converted to ethanol.5  These account for 66.0% of the 

total MSW generated (Table 3.2 and Figure 3.7). 

MSW composition normally includes moisture content.6 Many civil engineers 

assume a roughly 30% moisture content in total MSW. If this assumption is incorporated, 

approximately 46.3% of initial waste by weight can be feedstock for ethanol production. 

As later discussed in Chapter IV, incoming daily MSW is sorted out to 

recyclables and non-recyclables by existing municipal MRF that is collocated by the 

ethanol plant or by plant itself. The remaining waste, so-called “MSW fluff” is used as 

primary input for ethanol production. Recyclable composition in MSW is counted as 

input for ethanol production because it would have a higher salvage value in the recycling 

market. In other words, only landfilled MSW is used for ethanol production.  

Under this more realistic case, 59.7% of landfilled MSW accounts for 

lignocellulosic composition (Table 3.3 and Figure 3.8). Assuming a 30% moisture 

content, 49.8% of MSW fluff is pure lignocellulosic component. The fraction of 

lignocellulosic composition in landfilled MSW is relatively lower than that of total 

generated MSW. This is largely due to the high recycling ratio of paper and paperboard 

goods and soaring composting rate of yard waste. In the next section, I look into the 

historical and current availability of biomass in MSW.   

 

                                                 
5 Lignocellulose consists of cellulose, hemicellulose, and lignin. Cellulose and Hemicellulose contains 
sugars that can be fermented into ethanol. The structure of lignocellulose is explained in Chapter IV in 
detail. 
6 Moisture content in typical MSW is estimated by the University of Central Florida (2004).  
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Table 3.2 Summary of Total Generated MSW Component in the US in 2000.  

  Paper Wood Yard 
Trim 

Food 
Scraps Glass Metal PlasticsRubber/

leather Textile Other 
Waste 

Total 
MSW 

Million Tons 86.7 12.7 27.7 25.9 12.6 18.0 24.7 6.4 9.4 7.7 231.9
MT  78.7 11.5 25.2 23.5 11.4 16.4 22.4 5.8 8.5 7.0 210.3
% of Total MSW 37.4% 5.5% 12.0% 11.2% 5.44 7.8% 10.7% 2.8% 4.1% 3.3% 100%
  Lignocellulosic Composition Non- Lignocellulosic Composition   
Million Tons 153.1 78.8 231.9
MT 138.9 71.5 210.3
% of Total MSW 66.0% 34.0% 100%
                        
Moisture Content 6% 20% 60% 70% 2% 3% 2% 6% 10% 8% - 
Million tons (dry) 81.5 10.2 11.1 7.8 12.4 17.5 24.2 6.0 8.4 7.1 186.1
MT (dry) 74.0 9.2 10.1 7.1 11.2 15.9 22.0 5.4 7.7 6.4 168.8
% of total dry MSW 43.8% 5.5% 6.0% 4.1% 6.6% 9.4% 13.0% 3.2% 4.5% 3.8% 100%
  Lignocellulosic Composition Non-Lignocellulosic Composition   
Million tons 110.6 75.6 186.1
MT 100.3 68.5 168.8
% of total MSW 59.4% 40.6% 100%
Source: U.S. EPA, 2003 
 

Figure 3.7 Lignocellulosic Compositions in MSW in the U.S. in 2000 
Source: U.S. EPA, 2003 
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Table 3.3 Summary of Total Landfilled MSW Component in the US in 2000.  

  Paper Wood Yard
Trim

Food 
Scraps Glass Metal PlasticsRubber/

leather Textile Other 
Waste 

Total 
MSW

Million Tons 47.4 12.2 12.0 25.2 9.8 11.6 23.4 5.6 8.1 6.7 162.0
MT  43.0 11.1 109 22.9 8.9 10.6 21.2 5.1 7.4 6.1 147.0
% of Total MSW 29.2% 7.5% 7.4% 15.6% 6.1% 7.2% 14.4% 3.5% 5.0% 4.1% 100%
  Lignocellulosic Component Non-Lignocellulosic Component   
Million Tons 96.8 65.2 162.0
MT 87.8 59.2 146.945
% of Total MSW 59.7% 40.3% 100%
                        
Moisture Content 6% 20% 60% 70% 2% 3% 2% 6% 10% 8% - 
Million tons (dry) 44.5 9.8 4.8 7.6 9.6 11.3 22.9 5.3 7.3 6.1 129.2
MT (dry) 40.4 8.9 4.3 6.9 8.7 10.2 20.8 4.8 6.6 5.6 117.2
% of total dry MSW 34.5% 7.6% 3.7% 5.9% 7.5% 8.7% 17.7% 4.1% 5.7% 4.8% 100%
  Lignocellulosic Component Non-Lignocellulosic Component   
Million tons 66.7 62.5 129.2
MT 60.5 56.7 117.2
% of total MSW 51.6% 48.4% 100%
Source: U.S. EPA, 2003 
 

Figure 3.8 Lignocellulosic Compositions in Landfilled MSW in the U.S. in 2000 
Source: U.S. EPA, 2003 
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3.3.2 Paper and Paperboard 

Paper-based ethanol plants are in fact being operated in some regions (SENES 

Consultant, Limited 1993; BioCycle 1992). As discussed in Chapter IV, paper contains a 

high percentage of cellulose (convertible to glucose) and has the highest ethanol yield 

among all kinds of biomass feedstock. Furthermore, paper and paperboard are the largest 

component of total MSW generated (37.4%). Thus, the recyclability of paper and 

paperboard is a key factor for sustainable input flow for MSW-to-ethanol conversion.  

The variety of products that comprise the paper is summarized in Table 3.4. 

Newspaper and corrugated boxes show extraordinarily higher recycling rates (58.2% and 

70.1% respectively) than other paper product, although the rate is still much lower than 

other industrialized countries, such as EU nations or Japan. Generally, paper products for 

packaging and container use are more recycled than non-durable use. A total of 45.4% of 

total paper products are recycled in the U.S. in 2000.  

In fact, at the present, paper and paperboard product shows the highest recycling 

rate among all materials in MSW. Despite growing paper recycling over time, as seen 

from Figure 3.9, production volume of paper product has amplified at the almost same 

rate. More than half of paper products are still landfilled in 2000. Thus, a huge amount of 

paper product is available for ethanol production.  
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Figure 3.9 Trends of Paper & Paperboard Generation, Recycling, and Landfilling 
Source: U.S. EPA, 2003 
 

Table 3.4 Paper and Paperboard Generation in MSW, 20007 
      Generation Recovery Landfilled 
Product Category 
  Nondurable Goods 

(Million 
tons) 

(Million 
tons) 

(% of 
generation)

(Million 
tons) 

 Newspaper 15.030 8.750 58.2% 6.280 
 Books 1.140 0.220 19.3% 0.920 
 Magazines 2.130 0.680 31.9% 1.450 
 Office Papers 7.530 4.070 54.1% 3.460 
 Telephone Directories 0.740 0.130 17.6% 0.610 
 Standard Mail 5.570 1.780 32.0% 3.790 
 Other Commercial Printing 7.040 1.650 23.4% 5.390 
 Tissue Paper and Towels 3.210 Neg. Neg. 3.210 
 Paper Plates and Cups 1.040 Neg. Neg. 1.040 
 Other Non-packaging Paper 3.910 Neg. Neg. 3.910
 

 

Total Nondurable Goods 47.340 17.280 36.5% 30.060 
 Containers and Packaging      
   Corrugated Boxes 30.210 21.360 70.1% 8.850 
  Milk Cartons 0.490 Neg. Neg. 0.490 
  Folding Cartons 5.580 0.430 7.7% 5.150 
  Other Paperboard Packaging 0.200 Neg. Neg. 0.200 
  Bags and Sacks 1.550 0.300 19.4% 1.250 
  Other Paper Packaging 1.370 Neg. Neg. 1.370 
  Total Container and Packaging 39.400 22.090 56.1% 17.310 
Total Paper and Paperboard 86.740 39.370 45.4% 47.370 

Source, U.S. EPA, 2003 
 

                                                 
7 Neg. = less than 5,000 tons or 0.05 percent. 
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3.3.3 Wood, Yard Trimmings, and Food Scraps 

 The trends of generation, recycling, and landfilling are similar in wood and food 

scraps (Figure 3.10 and 3.11). These two components are not recycled in the market at all, 

thus almost all goes to landfill. Landfilling of a large amount of wastes can be avoided if 

these un-recycled wastes are converted into ethanol.  

It should be noted that the quantity of wood waste in Figure 3.10 has a problem 

with the data. As noted above, the EPA’s data does not count wood waste generated at 

C/D sites as MSW. Normally, large amounts of wood waste are generated as a C/D waste, 

more than household or offices. Thus, there are some missing wood wastes disposed in 

MSW landfill in EPA’s data.  

 Fehrs (2003) estimates national wood waste generated as both MSW and C/D 

wood wastes. He estimates generated wood waste in MSW at 11.8 million MT (12 

million tons), which is close to the EPA’s result. He estimates C/D waste at 15 million 

MT and 24 million MT respectively, and a total 39 million MT. Thus, approximately 4 

times greater wood waste is generated in C/D.  Alternatively, Walsh (2000) utilizes a 

study by Glenn (1998ab) supplemented with additional data from Araman (1997) to 

estimate total urban wood waste quantities generated by the states, and then for the entire 

U.S. at 34 million MT (dry). It includes C/D wastes and yard trimming, but not paper and 

food scraps, which account for a large part of the lignocellulosic component in MSW. 

The sum of dried wood and yard waste by the EPA is 19 MT. Thus, here we confirm 

again that a much larger quantity of wood waste generated as C/D waste.  

Figure 3.12 shows that the amount of yard trimming landfilled has decreased 

dramatically since 1990’s. This is due to boost in number of yard waste municipal 
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composting program (Goldstein 2003). Furthermore, yard waste tends to be used as a 

cover of bioreactor landfill since it is biodegradable. Now the amount of yard waste 

recovered closely catches up with that of generated yard waste. Considering 60% 

moisture content, dried lignocellulosic portion in yard waste accounts for only 3% in total 

waste landfilled. Thus, based on EPA’s typical waste composition estimate, yard waste 

cannot contribute as a significant input for ethanol production.  

 

Figure 3.10 Trends of Wood Generation, Recycling, and Landfilling 
Source: U.S. EPA, 20003 
 

0

5

10

15

20

25

30

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

Year

(M
ill

io
n 

to
ns

)

Generated Recycled Landfilled



 48

Figure 3.11 Trends of Food Scraps Generation, Recycling, and Landfilling 
Source: U.S. EPA, 2003 
 

Figure 3.12 Trends of Yard Trimming Generation, Recycling and Landfilling 
Source: U.S. EPA, 2003 
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ranging from statewide, countywide, to citywide. Research methods were not inconsistent. 

Some surveys are based on material composition as collected curbside by each household, 

while others are based on reports from landfill or MRF owners. The definition of MSW 

composition also varies by study. Some categorizes “green waste” or “organic waste” as 

the sum of wood and yard waste. The survey year also is different among studies. Thus, 

some numbers need to be adjusted for more accurate comparison study.  

 Regardless of limitation to application, we still can generalize some points from 

Table 3.5. First, although there are some margins of error from the EPA’s estimate and a 

few minor exceptions, total lignocellulosic component is constantly more than half and 

roughly consists of 55-70% of total MSW. Stated another way, 55-70% can be used as an 

input for ethanol production and 45-30% of MSW avoids being landfilled. .  Note that 

ethanol yield can be different even if the percentage of lignocellulosic composition of 

two communities is identical. Yield still depends on paper, wood, yard, and food waste 

composition in total MSW. 

Second, paper waste, ideal feedstock for ethanol production due to rich cellulose 

content, consistently accounts for the lion’s share of total MSW composition - almost 

30%. High paper content leads to high ethanol yield, and, therefore, profitability of the 

ethanol plant. Frankly speaking, most communities are filled with valuable MSW 

biomass feedstock.  

In the rest of paper, I consistently use the assumption of 55-70% lignocellulosic 

content for further research.  
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Table 3.5 Comparison of MSW Composition Survey 
 Scale Paper and 

paperboard 
Wood 
waste 

Yard 
trimming 

Food 
scraps 

Other 
biomass 

Biomass 
Composition 

U.S. EPA Nation 29.2% 7.5% 15.6% 7.4% - 59.7% 
Hawaii8 State 26.0% 32.0% 8.0% - 66.0% 

Minnesota9 State 34.3% 7.5% 2.3% 12.4% 3.5% 60.0% 
Pennsylvania10 State 33.3% 4.2% 8.3% 5.2% 12.0% 67.5% 

Wisconsin11 State 29.2% N/A 1.8% 14.3% 9.1% 54.4% 
Denton, TX12 County 37.9% 7.0% 8.0% 12.2% - 65.1% 

Maricopa, AZ13 County 24.0% 26.0% 11.0% - 61.0% 
Canton, OH14 City 41.1% 3.7% 17.9% 7.9% - 70.6% 

New York, NY15 City 22.1% 2.2% 4.1% 12.7% 7.8% 58.1% 
Seattle, WA16 City 22.5% N/A N/A 32.9% 1.6% 57.0% 

 

3.5 Regional MSW Biomass Availability  

MSW biomass availability differs regionally. The annual state average MSW 

generation per capita was estimated by BioCycle (Kaufman et al. 2004). Available 

information is summarized in Table B.1 in Appendix B. As noted above, estimates by 

BioCycle unfortunately do not include data for material composition in MSW by region. 

As a result, we cannot obtain state level MSW lignocellulosic composition. Nevertheless, 

it is still useful to look at regional MSW yield differences. Multiplying BioCycle data by 

county or metropolitan area population data, as reported by the U.S. Bureau of the 

Census (2002), yields regional annual MSW generation. Figure B.1 illustrates the 

population distribution across the United States.  Figure B.1 plots the different color on 

                                                 
8 Data taken by the state of Hawaii, Department of Business, Economic Development & Tourism (1994). 
9 Data taken by “Statewide MSW Composition Study” conducted by the Solid Waste Management 
Coordinating Board (2000) 
10 Data taken by “Statewide Municipal Waste Composition Study” conducted by the  state of Pennsylvania, 
Department of Environmental Protection (2003) 
11  Data taken by “Wisconsin Statewide Waste Characterization Study” conducted by the Cascadia 
Consulting Group, Inc. (2003) 
12 Data taken by “Surveying the Commercial Municipal Solid Wastestream in Denton, Texas” conducted 
by Brady et al. (2000) 
13 Data taken by Fox et al. (1999) 
14 Data taken by Fox et al. (1999) 
15 Data taken by “Energy recovery from New York City Solid Wastes” written by Themelis et al. (2002) 
16 Data taken by “2002 Residential Waste Stream Composition Study” conducted by the Cascadia 
Consulting Group, Inc. and Sky Valley Associates (2003) 
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the county corresponding to county population. Figure B.2 also shows annual MSW 

generation by county.  

It is apparent from these two figures that MSW is much more generated in the 

East and West coasts, followed by the Great Lakes and Gulf Coast areas. Taking into 

account the regionally different tipping fee, the Northeast area would be the most 

attractive region for MSW-ethanol producers.  

According to GeneSyst (2004), a county or metropolitan area where population 

exceeds 100,000 supplies enough MSW for profitable ethanol production. In 2000, there 

were 524 out of 3,141 U.S. counties with populations over 100,000. The U.S. Bureau of 

the Census (2001) also provides population data of metropolitan areas in 2000. There are 

260out of 280 metropolitan areas which exceed 100,000 in population. . Thus, so-called 

metropolitan areas are materially  applicable for MSW-ethanol production. 

One concern about the above analysis is that the scale of the area varies by county 

and metropolitan area to a large extent. Thus, MSW-ethanol producers need to consider 

MSW density – MSW availability within a certain area (tons per square mile). Even 

though MSW generation is enough by county as a whole, MSW hauling costs need to be 

considered to reflect more reality. If the targeted amount of MSW is not available in a 

small compass, high waste hauling cost discourages waste suppliers to transport MSW to 

ethanol plants.  

Gallagher et al. (2003) estimated the minimum radius supplying enough 

agricultural residues to ethanol plant. I use their concept to estimate MSW density:  

 

1)-.....(3..........)( 2 dyrQ π=  
where, 
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Q  = Capacity of the processing plant 
  r  = Radius (distance) from the plant 

       d  = Population density (capita/square miles) 
  y  = Daily MSW yield (daily MSW generation per capita; tons/capita) 

       dy = Daily MSW density (tons/square miles)  
 

 The term dy is MSW density. Table B.2 summarizes the MSW density of the U.S. 

top 20 metropolitan areas. MSW density in New York City is 7.39 tons per square mile. 

On the other hand, only 2.05 tons of MSW are available per square mile in Los 

Angeles.17 Although total MSW generations in these two cities are nearly the same, 

MSW is more abundant in New York City than in a small area. Using equation (3-1), we 

can estimate MSW availability in a certain square area. For example, daily MSW 

availability in N.Y. City in the circular area with a 10 mile radius (100π square miles) is 

approximately 2,321 tons, while in L.A. it is only a quarter, at 643 tons.  

 The next step is to estimate the minimum radius or areas that provides enough 

MSW for operation. Converting equation (3-1) above yields the following function: 

 

)23.......(.................... −=
dy
Qr

π
  

 

Suppose the targeted daily MSW volume is 500 tons per day (TPD). The 500 

TPD is available within 4.64 miles in New York City, while L.A. needs to haul MSW 

nearly double the mileage. As seen in Table B.2, range of minimum radius that supplies 

500 TPD is huge, as some metropolitan areas needs more than a 40 mile radius from 

                                                 
17 Daily MSW yield is obtained by the yearly state average MSW generation per capita, estimated by 
Kaufman et al. (2004) and divided by 365 days a year.  
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ethanol plants. This magnitude would be expanded when county, instead of metropolitan 

area, is at issue.   

Unfortunately, almost of all previous literature estimating waste hauling cost is 

based on weight basis ($ per ton). This is because hauling cost is not affected by the 

distance waste is transported, but rather, more sensitive to the number of trucks used for 

waste hauling. Usually, waste collection and hauling is labor intensive and this cost 

accounts for nearly 80% of total costs in the waste management industry by the national 

average. Hauling cost is at least $0.50 per mile per ton of garbage to haul collected 

wastes (Heimlich 2004). MSW density would be the part of function that affects waste 

hauling cost.  

There are some research limitations in terms of regional waste availability. First, 

even among the same county or metropolitan area, MSW density is still different. The 

volume of waste is also dependent upon the major industry located in the area, since 

sizeable amounts of industrial waste are included in MSW. At the initial planning process, 

MSW-ethanol producers need to survey community’s MSW availability in more detail. 

Next, and more fundamentally, MSW-ethanol producers would not collect and 

haul waste by themselves. Instead, they would make use of already existing private or 

public waste collection services, as PMO and GeneSyst plan to do. The city of 

Middletown in Orange County will supply waste to PMO (City of Middletown 2004). 

GeneSyst also has made several contracts with waste suppliers. The plants will actually 

be operated in collaborative mode with waste suppliers rather than collected individually. 

Thus, collection cost may not be an obstacle for MSW-ethanol plants. Instead, plants 
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would be more interested in the credibility of historical record of daily waste collected by 

waste suppliers.  

 

3.6 Concluding Remarks 

Throughout this chapter I looked through national and regional MSW availability 

and its lignocellulosic composition. There are several research limitations that should be 

noted before going further in this thesis.  

First, MSW composition is different by region. There are enormous disparities in 

material composition, even among the same waste category. In particular, food waste 

would not be identical in two communities. Some food wastes contain rich cellulose, 

while lignocellulosic content in other wastes would be scarce. The areas that consume 

more moisture content food waste might make MSW-ethanol conversion complicated.  

There are numerous reasons why massive disparity of waste composition exists. 

The primary reason is rooted in economic factors. Consumption patterns of urban areas 

might be different from that of rural areas. Usually, wealthy urban areas generate much 

more waste, especially food waste.  

Moreover, as studies by the Cascadia Consulting Group Inc., and Sky Valley 

Associates (2003) show, even among the same category of “residential waste”, waste 

composition of a single family and multi-families is dissimilar. Thus, MSW composition 

is also influenced by non-economic factors, such as family structure.  

MSW composition is also affected by the characteristics of main industry located 

in a certain region. Large amounts of agricultural waste are produced in rural areas, while 

metal and plastic are exclusively doomed to be scrapped in industrial zones. Business 
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districts could be attractive for MSW-ethanol producer because of the daily mass disposal 

of office paper. This massive industrial waste is finally landfilled, usually with regular 

household waste.  

The second research limitation concerned with MSW availability analysis is the 

seasonal effect of MSW biomass availability. MSW composition is not consistent within 

the entire year, but is sensitive to season. For example, loads of MSW is generated at a 

popular spot during site-seeing season. Those wastes generated at that time may not be 

similar to the waste composition of the local community. Consequently, annual MSW 

generation is not as simple as multiplying the daily MSW generation by 365 days. For 

further MSW availability analysis, we should know the MSW biomass availability at 

peak and off-peak periods.  

Despite the data limitations, I found several important conclusions in Chapter III. 

First, the growth rate of MSW generation diminishes in a decade, but MSW generation 

per capita still steadily increases. Although recycling rates, especially for paper and yard 

waste, has improved greatly, a considerable amount of waste is still currently shipped to 

landfills without being converted into usable goods. MSW-ethanol plants still have 

chances to enter into the SWM industry.  

Second, roughly 55-70% of total waste is expected to be converted to ethanol. 

This implies not only potential large ethanol production, but also huge reduction of waste 

landfilled. Thirty percent of paper composition would also be an economic incentive for 

MSW-ethanol producers. Given some portions of non-lignocellulosic MSW (e.g., 

aluminum, ferrous metal, or plastic) can be recycled, approximately 80-90% of total 

MSW currently landfilled can be economically processed.  
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Third, MSW biomass availability is correlated with population. A region with a 

population of more than 100,000 can be qualified for profitable MSW-ethanol production. 

Nonetheless, some communities are not feasible for  ethanol production because the 

MSW density differs completely by region. A key economic parameter is tipping fees 

which are correlated to population density. Densely populated regions tend to have 

landfill site scarcity problem; therefore they have economic incentive to export MSW out 

of region (Repa 1997; McCathy 1998; Duff 2001). Tipping fees are a cost to use landfill, 

so landfill scarcity would result in an increase in tipping fees. Opening a MSW-ethanol 

plant nearby populated region would prevent interstate waste exporting and stabilize 

tipping fees.  

The next step is to estimate the yield of ethanol and other sets of by-product per 

ton of MSW. Chapter IV describes the current available technology and presents 

reasonable yield estimations.  
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CHAPTER IV 

TECHNOLOGY AND POTENTIAL PRODUCTS YIELD 
 
 
 The main objective of this chapter is to estimate the yield of ethanol and by-

products under available technologies. No plant has started MSW-ethanol production at a 

commercial scale. Hence, uncertainty is an inevitable problem. Several technologies are 

available for biomass-ethanol production; their conversion efficiencies at a commercial 

scale are not proven. The paper focuses mainly upon a gravity pressure vessel (GPV). 

GPV is state-of-art technology that makes huge reduction of operation costs possible.  

This chapter is organized in the following manner. First, I briefly describe current 

available technology and anticipated processing steps in MSW-ethanol plant at the 

commercial level. Note that the technology description section is not intended to compare 

cost-effectiveness among alternative technologies. Instead, it is aimed to present the 

trends of mainstream technology in both lab scale and commercial scale. This will help 

readers to realize that the technology is already ripe, but the problem lies in economic 

viability.  

The next step is to estimate the yield of products per ton of MSW. The estimate is 

based on laboratory scale estimates from previous literature of engineering and biology, 

and also from personal communication with practitioners in the field. Although there are 

inconsistencies among researchers, the chapter presents a range of reasonable estimates. 

This is a vital step for Chapter V, which analyzes financial feasibility and sensitivity of 

MSW-ethanol production.  
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4.1 Molecular Mechanism of Biomass-Ethanol Conversion Process 

 First, the paper describes chemical structure of biomass itself, and the conversion 

process of biomass to ethanol. Biomass is principally composed of cellulose, 

hemicellulose, and lignin. The first two are composed of chains of sugar molecules. 

Cellulose contains glucose, which is the same type of sugar (a six carbon (C6) sugar) that 

is found in corn-starch. In the plant cell wall, the cellulose molecules are interlinked by 

another molecule, hemicellulose. Hemicellulose contains mainly non-glucose sugars (five 

carbon (C5) sugars), such as xylose. Lignin is a biopolymer rich in phenolic components, 

which provide structural integrity to plants. Current technological improvement allows 

the glucose and xylose to be extracted from cellulose and hemicellulose. These sugars are 

finally fermented to produce ethanol.  

 Figure 4.1 illustrates conversion of cellulose to glucose. Glucose is produced from 

cellulose by a step called hydrolysis; splitting the bonds in the cellulose to produce 

monomeric sugars.  

 

Figure 4.1 Conversion Process from Cellulose to Ethanol 
Source: State of Hawaii, 1994 
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After the hydrogen bonding between cellulose chains is disrupted, cellulose is 

decrystalized and converted to glucose by using the appropriate technologies explained in 

next section. Ethanol is then produced from glucose in a process called fermentation. 

Figure 4.2 describes the fermentation process from glucose to ethanol.  

 

Figure 4.2 Glucose Fermentation 
Source: State of Hawaii, 1994 
 

 Figure 4.1 shows that one molecule of glucose ferments into two molecules of 

ethanol and two molecules of carbon dioxide. Molecular weights of glucose, ethanol, and 

carbon dioxide are 180, 46, and 44 respectively. The molecular weight of two molecules 

of ethanol is 92 (46*2). Thus, the weight of ethanol produced is just over half (51%) of 

the weight of glucose input, and carbon dioxide accounts for the other half (49%). 

 Similar to glucose, hemicellulose can also be extracted from biomass and be 

transformed into xylose. Figure 4.3 illustrates the xylose fermentation process. 

Fermentation changes xylose into ethanol, carbon dioxide, and water. However, this 

fermentation process is not as simple as glucose fermentation. Different laboratory results 

show different potential yields of ethanol from hemicellulose (Roberts and Hilton 1988). 

Table 4.1 shows assumed technological efficiency. It is apparent that hemicellulose-

xylose-ethanol conversion indicates a wide range of variation (20-81%).  However, 
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special microorganisms have recently been genetically engineered to ferment 5-carbon 

sugars into ethanol with relatively high efficiency (Badger 2002).  

 

Figure 4.3 Xylose Fermentation 
Source: State of Hawaii, 1994 
 

Table 4.1 Technological Efficiency of Biomass to Ethanol Conversion 
 Low estimate High estimate 
Cellulose to glucose 95% 100% 
Hemicellulose to xylose 50% 90% 
Glucose to ethanol 95% 100% 
Xylose to ethanol 40% 90% 
Cellulose to ethanol 90% 100% 
Hemicellulose to ethanol 20% 81% 
Source: State of Hawaii, 1994 
 

4.2 Processing Steps 

This section describes the technical steps that convert MSW lignocellulosic 

biomass into ethanol. In general, MSW-ethanol production processes comprise the 

following four components: (1) MSW classification, (2) hydrolysis, (3) fermentation, and 

(4) distillation. Figure 4.4 visually illustrates the operation of an MSW-ethanol plant. It is 

a simplified material flow chart, which omits details on many materials and chemicals 

added and generated at each step, but captures the key processes that occur.  
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Figure 4.4 Processing Steps of MSW-Ethanol Plant  
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4.2.1 MSW Classification 

 An initial step is used to separate the four principal components of biomass (i.e., 

cellulose, hemicellulose, lignin, and extractives) and make them accessible to further 

chemical and biological treatment (Mann and Bryan 2001). The process is generally 

followed by physical, chemical, and biological steps. Physical pretreatment is essentially 

cleaning, grinding, or shredding feedstock to sizes that are appropriate for subjecting to 

the hydrolysis process to liberate sugars. Chemical pretreatment is the process that uses 

chemicals to make feedstock more digestible. Biological pretreatment is done to 

solubilize lignin and make cellulose more vulnerable to hydrolysis and fermentation.  

Non-lignocellulosic composition in MSW is sorted out and shipped to the 

recycling market if it has high salvage value. Aluminum, ferrous metal, or plastic is 

potentially salable if appropriately extracted. These are recovered either by hand picking 

or by automated waste separation processes from daily MSW fluff.  

Note that the pretreatment procedure varies depending on the choice of the 

hydrolysis technology. Usually enzymatic hydrolysis requires more costly pretreatment. 

Identifying optimal pretreatment steps would result in the reduction of capital investment 

required for hydrolysis and fermentation steps.  

 

4.2.2 Hydrolysis 

 There are many approaches to the process of converting cellulose, hemicellulose, 

and other complex forms of sugars into monosaccharides appropriate for fermentation. 
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Most commonly known hydrolysis technologies are dilute acid hydrolysis, concentrated 

acid hydrolysis, and enzymatic hydrolysis.  

 The dilute acid hydrolysis process is one of the oldest, simplest, and most 

efficient methods of producing ethanol from biomass. The economic analysis of TVA is 

based on this process (Broder et al. 1993). Dilute acid hydrolysis is used to hydrolyze the 

biomass to sucrose. In dilute acid hydrolysis process, lignocellulosic biomass is treated 

with low concentration acids at high temperatures for a short duration, ranging from a 

few seconds to minutes. The advantages of dilute acid hydrolysis are quick reaction times 

and low acid consumption. However, high temperatures increase the rates of 5-carbon 

sugar decomposition and equipment corrosion (Jones and Semrau 1984). Sugar 

degradation products can also cause inhibition in the subsequent fermentation stage 

(Larsson et al. 1999). Consequently, under these conditions the glucose yield is only 

between 50% and 60% of the theoretical yield (Wyman 1996).  

 To decrease sugar degradation, a two-stage process has been developed. The first 

stage is conducted under mild process conditions to recover the 5-carbon sugars, while 

the second stage is conducted under harsher conditions to recover the glucose. However, 

even after using the two-stage dilute acid hydrolysis process, even though 5-carbon 

sugars are recovered somewhat, the yield of glucose is still only about 50%.  

 Concentrated acid hydrolysis dissolves and hydrolyzes cellulose into glucose 

sugar using concentrated sulfuric acid, followed by dilution with water (Mann and Bryan 

2001). It uses relatively mild temperatures and the only pressures involved are usually 

those created by pumping materials from vessel to vessel. TVA began developing this 

technology in the 1950s (Broder et al 1991). Arkenol Inc. uses this technology in its rice 
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straw ethanol plant at Rio Linda in Sacramento County, California, in the late 1990’s 

(Arkenol 2004). The proposed plant of PMO in the city of Middletown, New York, also 

utilizes concentrated acid hydrolysis.  

 The advantage of concentrated acid hydrolysis is a high sugar recovery efficiency 

of nearly 90% of both cellulose and hemicellulose yields. The drawback of this process is 

that it is relatively slow, and cost effective acid recovery systems have been difficult to 

develop. Without acid recovery, large amounts of lime must be used to neutralize the acid 

in the sugar solution and this neutralization forms large quantities of calcium sulfate, 

which requires disposal and creates additional expense.  

 Enzymatic hydrolysis is the process that uses enzymes as catalysts to break down 

the biomass in a similar way. Since cellulose is usually protected by a matrix of 

hemicellulose and lignin, enzymatic conversion of cellulose to sugar is extremely slow 

(Galbe and Zacchi 2002). Thus, for an enzyme to work, pretreatment of the raw material 

is necessary to expose the cellulose.  

One example of enzymatic hydrolysis is the simultaneous saccharification and co-

fermentation (SSCF) that combines hydrolysis and fermentation in one vessel. Because 

sugars produced during hydrolysis are immediately fermented into ethanol, this process 

can eliminate problems associated with sugar accumulation and enzyme inhibition. 

Moreover, the SSCF process can control by-product yield effectively with much less 

process energy requirement. Unfortunately, the SSCF process, including input cost of 

enzymes, is very expensive and is still in its early stages of development.  

Until now, acid hydrolysis is considered a technologically and economically more 

feasible process compared to enzymatic hydrolysis. If enzymatic process became a 
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cheaper option, however, it would be a more efficient way to produce ethanol from MSW 

in the long run.  

 

4.2.3 Fermentation 

 Fermentation is the process of yeast converting sugar into ethanol and carbon 

dioxide. The efficiency of fermentation by yeast has dramatically improved over the past 

decade. Bacterial fermentation processes have also drawn increasing attention from 

researchers because of their speed of fermentation. One example is a genetically 

engineered microorganism, developed by the University of Florida, that has the ability to 

ferment both 5- and 6-carbon sugars. In general, bacteria can ferment in minutes as 

compared to the hours of yeast (Badger 2002). Thus, the speed of fermentation is 

predicted to be shorter in the near future.  

 

4.2.4 Distillation 

 Ethanol is initially obtained in a mixture with water. Distillation is the primary 

step in removing the ethanol from water and other residual solids after fermentation. The 

water and ethanol mix is heated to evaporate the ethanol, which is then cooled and 

collected. However, it is impossible to purify the ethanol beyond about 95% purity (190 

proof), because there is a homogeneous azeotrope at a composition of roughly 95% 

ethanol and 5% water. At this composition the liquid and vapor phases in a distillation 

operation have the same composition and so no further separation of water from ethanol 

can be accomplished. In order to blend with gaolisne, the last 5% must be removed. This 
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is typically acomplished using azeotropic distillation or molecular sives (Mann and Bryan 

2001).  

 

4.2.5 Processing Steps by GeneSyst 

 This section describes ten actual processing steps used by GeneSyst. In each of 

the following steps that are outlined, MSW progressively chanbges from a random size 

and flow rate, to a consistent material ready for industrial process methods, and then 

converted into ethanol and other chemical by-products.  

 The first step is to receive wastes. Wastes are imported to the tipping floor of the 

processing facility. Wastes are handled indoors to prevent wind blown debris and to 

effect vector control.  

 Then, MSW is subjected to a picking line to remove marketable goods (e.g., 

aluminum) or materials that will interfere with the reaction to convert cellulose fibers to 

glucose (e.g., tires, plastic, or leather). The hand picked separation is the simplest way to 

accomplish both visual inspection as well as selective removal of selected items. Certain 

wastes such as florescent lights and batteries are segregated due to their toxic content. 

 The next three steps are automated MSW classification steps. The third step chops 

the remaining waste into uniform size of roughly two to four inches. The solid waste 

piece is then discharged into water flood tank at the fourth step. At this step, light 

material bits such as styrofoam float to the surface and materials that are dense sink to the 

bottom and are removed by a small conveyor. These washed materials are recycled or 

shipped to landfill. The fifth step uses a conventional clarifier. At this process, materials 
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which are rich in cellulose settles to the bottom since cellulose is slightly heavier than 

water. The same tank will remove the last of the plastics that are lighter than water.  

 The sixth process is hydrolysis. GeneSyst uses GPV for its hydrolysis with 

technologically and economically efficient way. The next section presents technological 

description of GPV process. 

 After hydrolysis, water mix including sugars converted from cellulose, goes 

through one more cleaning step, which is similar to the fifth step. Dirt particles, dust, 

lime, gypsum sink to the bottom, while bits of wax or plastic float to the surface. The 

next two steps are conventional fermentation and distillation processes. At the final step, 

liquids prepared for sale are stored.  

 

4.3 Technological Description of GPV 

 Historically, production of ethanol has been limited to using sources of soluble 

sugar or starch (primarily in the Midwest using corn). This is because producing glucose 

from cellulose and hemicellulose at high yields is a far more complex process than 

deriving sugars from corn starch. Therefore, although the feedstock cost of 

lignocellulosic biomass is far lower, the cost of obtaining sugars from such materials has 

been historically far too high to attract industrial interest.  

However, new technologies have been developed that now allow for the 

production of ethanol from lignocellulosic biomasses. The technical progress has been 

accompanied by commensurate economic improvement. There are various technological 

options available to convert lignocellulosic biomass into ethanol. Some government 

laboratories, academic institutions, and private sector companies have devised various 
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techniques to accomplish each of the steps required to process biomass to ethanol.  

To our best knowledge, GPV is one of the most promising technological 

developments applicable to MSW-ethanol production; in fact, it will be used by both 

GeneSyst and Genahol-Arizona. GPV is a pipe that hangs vertically inside a steel-lined 

chamber, drilled and cemented into the earth (illustrated in Figure C.1 in Appendix C). 

Wastes and water enter at the top of the pipe, and are directed downward to the bottom of 

the pipe and then back up and out. The principles of the technology are that water at very 

high pressure is contained underground in the form of liquid steam. Water at this 

supercritical state will dissolve oil, coal, and most any organic chemical. The more 

pressure, the more heat, and it is the heat that speeds up the reactions that deteriorate 

waste.  

Once dissolved in water, organics are quickly manipulated by injecting oxygen, 

acid, or a catalyst to achieve the desired end product (GeneSyst 2004). The ability of 

GPV to cause the entire flowing stream can make chemical condition induced or 

quenched within seconds so that the chemical yields of interest can be controlled. Thus, 

GPV functions simultaneously as a means of pressurization and de-pressurization, a 

counter-flow heat exchanger, a pump with gas and thermal lift, a liner, and a plug flow 

chemical reactor. This technology is applicable to the largest identified U.S. waste 

market.  

The major advantage of the GPV process is as follows: 

 

• Temperature and chemical condition can be controlled, so yields of desired 
chemical product are maximized. 

• Temperature and chemical condition can be controlled, so plants can handle a 
broad spectrum of wastes. 



 69

• Due to simultaneous pressurization, de-pressurization, preheating, and chemical 
reaction, plants can economize time significantly. The reaction time is much 
shorter than a biological reaction, and even shorter than conventional technology.  

• GPV uses the gravity of pressurization. The pressure in the depth of water 
increases without regard to whether the water or fluid is moving or not moving, so 
pressurization without moving parts is accomplished. This results in a reduction 
of operation cost. 

• GPV process does not need de-watering prior to treatment, so it is not hampered 
by the wetness of the wastes that typically occurs during the rainy seasons, when 
wastes can become too wet to incinerate.  

• The cost to place a facility with GPV is inexpensive. Facilities require much less 
space compared to a conventional landfill. Moreover, it requires a shorter period 
(one year) of construction compared to the old technology (one and half years, 
estimated by TVA). 

• GPV is a closed linear process vessel. Additionally, neither CO  nor nitrogen 
oxide (NOx) is produced during oxidation in water. Thus, plant operators are not 
exposed to air emissions and plants can be located near areas of high 
concentrations of MSW, including existing or old landfill sites. It can be located 
even in the city. 

 

In Chapter V, I estimate plant economics of 500 tons per day plant based on 

GeneSyst’s technological efficiency.  

 

4.4 Potential Ethanol Yield 

4.4.1 Theoretical Assumption 

In section 1, molecular transformation mechanism of lignocellulosic biomass into 

ethanol is briefly explained. Though the idea is quite straightforward, estimation of 

potential ethanol yield is complex. This is primarily because 5-carbon and 6-carbon sugar 

content is dissimilar among various kinds of biomasses. An example is illustrated in 

Figure 4.5 that is prepared for a plant in California, which converts agricultural residues 

into ethanol. The percentage of glucan and xylan (a polymer of glucose and xylose 

respectively) is different among the three plants. While poplar sawdust contains more 

glucan and less lignin, corn stover contains a higher percentage of lignin and a low 
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fraction of glucan. Theoretically, biomasses resourced that have high cellulose content 

and low lignin content are more desirable as feedstock for ethanol production.  

Current available technology makes it possible to convert most 5-carbon sugars 

and 6-carbon sugars into ethanol (Titmas 2004).  Thus, as long as we know the sugar 

composition, we can obtain an approximate estimation of the ethanol yield. However, 

MSW is a mixture of miscellaneous wastes. Not only lignocellulosic composition of 

MSW (paper, food, wood, and yard waste) is different, but also the sugar content of each 

material is different among communities.  

 

Figure 4.5 Sugar compositions of Poplar Sawdust, Corn Stover, and Bagasse 
Source: Titmas, 2004 
 

 Table 4.2 summarizes the theoretical yield, near-term yield, and mid/long-term 

yield of ethanol from various kinds of biomass resources. Expected conversion yields at a 

commercial ethanol plant are based on the estimation by the National Renewable Energy 
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Laboratory (NREL) (Wooley et al. 1999). Estimation is measured by gallons of ethanol 

per bone-dry ton (BDT). Mann and Bryan (2001) further process the NREL data to 

estimate feedstock requirements that sustain sufficiently the different size of facilities; 20, 

40, 60 million gallons per year (MGY), case respectively.  

It is obviously seen that theoretical ethanol yields vary by biomass feedstock. 

Additionally, as noted several times in this paper, ethanol yields of paper waste are the 

highest among all kinds of biomass feedstock. Near-term estimation is based on the 

hydrolysis conducted by dilute acid processes. Technological efficiency may be different 

if other technologies are used. However, Mann and Bryan (2001) state that other 

hydrolysis processes with dilute acid or enzymatic hydrolysis should not vary by more 

than ±15% from estimation. Furthermore, yields from concentrated acid hydrolysis 

process, as typified by PMO and Arkenol, may be close to Mid-long-term yield in Table 

4.2.  
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Table 4.2 Estimated Feedstock Requirements for Various-Sized Biomass-Ethanol Plant 

Category of biomass 
resource 

Category of 
waste 

Theoretical 
yield18 

(gal/BDT)

Near-term 
yield19 

(gal/BDT)

Biomass required to supply 
various-sized ethanol 

facilities (K BDT) 

Long/mid-
term 

yield20 
(gal/BDT) 

Biomass required to 
supply various-sized 

ethanol facilities (K BDT)

    20MGY 40MGY 60MGY  20MGY 40MGY 60MGY
Paper MSW 127.8 63.0 317 635 652 95.3 210 420 630

Urban Wood Waste MSW 108.2 45.6 439 877 1316 66.6 300 601 901
Urban Yard Waste MSW 91.8 45.6 439 877 1316 66.6 300 601 901
Food Processing 

Waste MSW N/A 43.6 459 917 1376 64.4 311 621 932

Field and Seed Crop 
Residue 

Agriculture 
Residue 

102.0 55.1 363 726 1089 85.5 234 468 702

Wheat Straw Agriculture 
Residue 

114.1 57.6 347 694 1041 84.2 238 475 713

Corn Stover Agriculture 
Residue 

113.3 57.2 349 699 1049 83.6 239 478 718

Switch Grass Energy Crops 97.4 43.6 458 917 1375 64.4 311 621 932
Forest 

Sslash/Thinning Forest Residue 112.8 66.5 301 602 902 94.8 211 422 633

Lumber Mill Waste Forest Residue 112.8 59.5 336 642 1008 82.5 242 485 727
Aspen Forest Residue 131.0 77.3 259 518 776 110.0 182 363 545

Ponderosa Pine Forest Residue 112.9 66.6 300 601 901 94.8 211 422 633
Poplar Forest Residue 111.4 65.7 304 609 912 93.6 214 427 641

Source: Mann and Bryan, 2001 
 

Recall that the national average of lignocellulosic composition in MSW generated 

estimated by the U.S. EPA is paper at 37.4%, wood 5.5%, yard trimmings 12.0%, and 

food scraps 11.2%, respectively by weight. Applying the moisture content assumption in 

Table 3.2 results in 27.9 gallons per ton of MSW by dilute acid hydrolysis, and 41.9 

gallons per ton by concentrated acid hydrolysis.  

More realistically, suppose a MSW-ethanol plant only utilizes landfilled MSW, 

and some fractions are recovered due to high value in salvage market. Recall again that 

the U.S. EPA’s estimate of lignocellulosic composition in MSW landfilled is paper 

29.2%, wood 7.5%, yard trimmings12.0%, and food waste 15.6%. This assumption leads 

to 23.4 gallons per ton of MSW by dilute acid hydrolysis and 35.3 gallons per ton by 

concentrated acid hydrolysis. Projected ethanol yield is lower in the case that landfilled 
                                                 
18 Data compiled by Quang Nguyen, National Renewable Energy Lab (NREL). 
19 Near-term yields are based on current NREL two-stage dilute acid experiments and models. 
20 Mid/long-term yields are based on NREL projections for performance of the SSCF. 
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MSW is converted to ethanol because lignocellulosic composition is lower in landfilled 

material due to the high recycling rate in paper and yard waste.  

 

Table 4.3 Estimated Ethanol Yield per Ton of MSW 

 
Theoretical 

yield 
(Gal/BDT) 

Dilute acid 
hydrolysis
(Gal/BDT)

Concentrated 
acid 

hydrolysis 
(Gal/BDT) 

Composition 
in MSW (%)

Moisture 
content (%)

Theoretical 
yield 

(Gal/T) 

Dilute acid 
hydrolysis

(Gal/T) 

Concentrated 
acid 

hydrolysis 
(Gal/T) 

Paper 127.8 63 95.3 37.4% 6% 44.9 22.2 33.5
Wood 108.2 45.6 66.6 5.5% 20% 4.7 2.0 2.9
Yard 91.8 45.6 66.6 12.0% 60% 4.4 2.2 3.2

MSW 
generated 

Food N/A 43.6 64.4 11.7% 70% N/A 1.5 2.3
Total Yield per Ton = >54.1 27.9 41.9

Paper 127.8 63 95.3 29.2% 6% 35.1 17.3 26.2
Wood 108.2 45.6 66.6 7.5% 20% 6.5 2.8 4.0
Yard 91.8 45.6 66.6 7.4% 60% 2.7 1.3 2.0

MSW 
landfilled 

Food N/A 43.6 64.4 15.6% 70% N/A 2.0 3.0
Total Yield per Ton = >44.4 23.4 35.2

 

4.4.2 Assumptions in the Field 

 There are wide ranges of variation in the estimates of ethanol yield per ton of 

MSW at front-line businesses. According to personal communication with Yaency in BBI 

International, Inc., ethanol yield can be 60 gallons per BDT of MSW biomass feedstock 

(Yaency 2004). He further stated that this was a conservative estimate and that it could be 

increased to 80 gallons in the future. Assuming moisture content is 30% and 

lignocellulosic composition in MSW is 55-70%, ethanol yield ranges from 23.1 gallons 

per ton to 39.2 gallons per ton.21 

According to a laboratory simulation of GeneSyst, yield with its GPV process 

may run as high as 100 gallons per BDT or as low as 35 gallons per BDT (Titmas 2004). 

Assuming again that moisture content is 30%, yield ranges from 24.5 gallons per ton to 

70 gallons per ton. GeneSyst uses an assumption that ethanol yield would be 50 gallons 
                                                 
21 Low end of estimate is 60*(1-30%)*55%. High end of estimate is 80*(1-30%)*70%. 30% is moisture 
content, 55%-70% is estimated lignocellulosic composition in MSW landfilled. 



 74

per ton of MSW fluff as their proforma that was presented to financial and permitting 

authorities.  

Estimated ethanol yield by Arkenol (2004), though it focuses on agriculture 

residues (i.e. rice straw) instead of MSW biomass feedstock, would be a good indicator 

since their technology is concentrated acid hydrolysis. This is used by both PMO and 

GeneSyst. Arkenol estimated 120 gallons of ethanol could be yielded per BDT of 

prepared feedstock.22 Derived ethanol yield per MSW would be 46.2 gallons to 58.8 

gallons.23 

Fox et al (1999) estimated the ethanol yield of a MSW-ethanol plant of Genahol-

Arizona, Inc with GPV acid hydrolysis in Maricopa County, Arizona to be approximately 

33.3 gallons.24 

This inconsistency largely comes from different technological efficiency 

assumptions. MSW-ethanol production requires innovative technology without a 

precedent operation. Processing steps, though fundamentally identical, may also be 

different by plants. Estimates are based on the MSW composition of the local community 

where the plant is supposed to be located. The richer the lignocellulosic composition in 

MSW, the higher the estimation. No two communities show the same material 

consumption pattern; therefore, it results in dissimilar ethanol yield estimations. In this 

sense, a prior material balance survey is vital to avoid potential loss of a raw material 

supply.  

                                                 
22 Arkenol estimates 500 tons of feedstock generates 60,000 gallons of ethanol daily. 
23 Low end of estimate is 120*(1-30%)*55%. High end of estimate is 120*(1-30%)*70%.  
24 Fox et al. (1999) mentions 150 tons MSW/day results with 300 days operation a year results in 1.5 
million gallon ethanol/year, and 250 tons MSW/day results in 2.5 million gallons ethanol/year. From this 
assumption, we can derive ethanol yield per ton (33.3 gallons). 
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Compared by NREL estimates, yield assumption of GeneSyst and Arkenol seems 

too bullish to be true. Their estimate is close to theoretical ethanol yield per ton of 

landfilled MSW. Taking the uncertainty inherent in technological possibility of MSW-

ethanol conversion on a commercial basis, yield assumptions between 25 gallons and 30 

gallons per ton of MSW are more reasonable for the base case economic analysis. In 

Chapter V, 25 gallons per ton is first used for the base case. This would be a conservative 

estimate since it is only half of GeneSyst’s estimate – 50 gallons per ton of MSW. Later 

in Chapter V, I conduct sensitivity analysis to see how profitability is vulnerable to 

assumed ethanol yield per ton of MSW.  

 

4.5 Potential By-Product Yield 

4.5.1 Assumption in the Field 

 Between the conversion of cellulose to sugars and then fermentation, several 

chemical by-products are produced that can be extracted and sold. For profitability 

analysis, yield of the by-product should be known. However, a set of by-products 

generated and their yield per ton of MSW also varies by technology and procession steps. 

Even though technology makes it possible to produce by-products, it is not always 

sellable unless a sufficient amount is produced and salvage price is high enough to offset 

extraction and marketing costs. Therefore, we cannot generalize by-product yield.  

 Table 4.4 illustrates by-product yield per ton of MSW by laboratory simulation of 

GeneSyst. Other than the by-products illustrated below, several other by-products 

including xylose, acetic acid, levulininic acid, glycol, and urea are produced (Titmas 

2004). However, these are not significant in total economic impact due to small their 
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quantities.  If marketing cost and extraction cost is unreasonable, it exceeds the revenue 

from these by-products. I use these by-product yield estimates for the base case in 

profitability analysis in the next chapter.  

 

Table 4.4 Yield of Marketable Chemical Product per ton of MSW by Material Balance 
Survey by GeneSyst 

  
  

Yield by one ton of 
MSW 

Furfural 20 lbs 
Yeast 12 lbs 
Gypsum 11 lbs 
CO2 50 lbs 

Source: Titmas, 2004 
 

4.5.2 Description of By-Products 

Furfural 

Xylose, the primary sugar in hemicellulose, can be further processed in the 

presence of acid to furfural and it is separated before the fermentation step (ARI 1999). 

Therefore, yield of furfural is dependent on the hemicellulose composition of incoming 

MSW. Furfural is a chemical intermediate that can be reacted to manufacture furfuryl 

alcohol and other specialty products used in foundry resins, urethanes, building materials, 

chemical intermediates, and refining solvents (Great Lakes Chemical Corporation 1987). 

It can also be used as a selective solvent for refining high quality lubricating oils (State of 

Hawaii 1994) and can be used as a substitute for formaldehyde (Fox et al. 1999). As long 

as the market is identified, furfural is valuable product.  

Furfural is usually produced from agricultural wastes that contain pentosans. The 

most common materials used for furfural production are corncobs, cottonseed hull bran, 

oat hulls (cleaned), cottonseed hulls, bagasse and rice hulls. U.S. furfural consumption in 
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2000 amounted to over 35 thousands MT. Between 1995 and 2003, four furfural plants 

were shut down, causing an annual capacity loss of 90 thousand MT. This is attributed to 

inexpensive furfural imports from China and the Dominican Republic.  

During the early 1990s, world furfural production shifted from developed 

countries to developing countries. The largest furfural producers today are China and the 

Central Romana Corporation in the Dominican Republic, while U.S., Europe (excluding 

Russia) and Japan are all net importers of furfural (Levy and Yokose 2004). It eventually 

resulted in the fact that there is only one U.S. producer, Quaker Oats-Pepsico, which uses 

oat by-products to make furfural. Overall, U.S. furfural consumption is expected to 

remain constant over the next five years.  

 

Carbon Dioxide 

 As noted in section 1, for every ton of ethanol produced, theoretically one ton of 

carbon dioxide is produced from the fermentation process. Carbon dioxide can also be 

recovered from combustion flue gases. It is a common practice for industrial gas 

companies to supply and install equipment to recover, purify, and liquefy the CO2 

produced during fermentation (Broder et al. 1993). Its major use is food freezing, chilling, 

and as a refrigeration agent after it is compressed to be dry ice. Another usage is for the 

carbonation of beverages. Both PMO and GeneSyst plants recover and sell carbon 

dioxide as a by-product of MSW-ethanol production.  
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Gypsum 

A certain amount of gypsum is produced as a salable by-product. It can be used in 

agriculture to raise the pH level of the soil. Also, lime and gypsum are demanded in the 

construction industry. There are plenty of other uses, including acid mine drainage 

neutralization, industrial applications, raw material for quick lime production, industrial 

waste pretreatment, landscaping, structural soil conditioning, electric utility and industrial 

steam emissions control, and steel making (Fox et al. 1999). Use of MSW by-product 

gypsum would provide several advantages to a cement plant. Cement plants using by-

product gypsum would be able to reduce operating costs, since no grinding or crushing 

would be required (Broder et al. 1993).  

 

Yeast 

 The metabolism of saccharine by yeasts (fungi) produces carbon dioxide, ethanol, 

and degraded protein, which end up as more yeast.25 Yeast contains rich protein. Protein 

is a valuable component of biomass that is currently neglected in fuels and chemicals 

from biomass schemes (Dale 1983). As long as extraction cost is reasonable, yeast is sold 

to the animal feed industry as a livestock or pet food protein enhancements, but can also 

be suitable for human consumption.  

  

                                                 
25 Yeast can be recycled; however, it is usually best to separately cultivate a pure strain desired by the 
process, then feed it into the fermentation tank (Titmas 2004). 
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4.6 Concluding Remarks 

 Chapter IV briefly describes technology applicable to MSW-ethanol production, 

operation structure, and potential ethanol and by-product yield. Main findings of this 

chapter are as follows.  

First, MSW-ethanol conversion is typically a four step process: MSW 

classification, hydrolysis, fermentation, and distillation. Since enzymatic process is not 

yet ripe technology and cost reduction is not yet achieved, taking this present state into 

consideration, acid hydrolysis is currently the most economically and technologically 

applicable hydrolysis process. GPV technology appears to have significant economic and 

environmental advantages in making commercial scale MSW-ethanol production feasible.  

Second, ethanol yield estimate is uncertain, but we can assume a potential yield 

between 20-50 gallons per ton of MSW. Inconsistency attributes to different technology 

and local variations in MSW composition. For the base case economic analysis, I used 25 

gallons per ton of MSW assumption. 

Finally, various salable chemical by-products can be produced from the MSW-

ethanol conversion process. Yield of these products cannot be generalized. Different 

technologies create different sets of by-products. Marketability of by-products is site 

specific. Even though yield is high, the by-product is not salable unless the market is 

identified. In Chapter V, I use the by-product yield assumption summarized in Table 4.2 

for profitability analysis and assume markets for these products are available.  
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CHAPTER V 

ECONOMICS OF MSW-ETHANOL PRODUCTION 
 
 

This chapter answers the key question of the thesis: is the MSW-ethanol 

production industry economically feasible? Since there are no commercial operating 

MSW-ethanol production plants in the U.S., or anywhere in the world for that matter, 

uncertainty is an inevitable problem. I cannot use econometric analysis to derive a firm’s 

profit function due to lack of historical/observational data. Instead, I use estimates from a 

real firm’s private cost of an ethanol plant with the best available technology. Throughout 

the chapter I evaluate profitability of plant economics over the plant’s economic life. 

Analysis is organized as follows.  First, I identify possible revenues and costs of ethanol 

plant.  Second, I estimate cash flow of a MSW-ethanol plant by processing available data.  

Third, partial sensitivity analysis is presented to analyze possible combination of input 

influencing profitability and robustness of profitability of plant economics.  Finally, I 

discuss the potential economic and political barriers a MSW-ethanol plant would face 

when it entered the SWM market.  

 

5.1 Data 

I obtained data on the estimated costs for a 500 TPD MSW-ethanol plant through 

personal communication with Mr. Titmas, the chief executive officer (CEO) of GeneSyst 

International, Inc. (Titmas 2004). These data are based on a preliminary profitability 

analysis of a 500 TPD plant. The yields of various kinds of by-products are based on 
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laboratory and pilot plant simulation of GeneSyst, which is summarized in Table 4.2 in 

Chapter IV.  The prices for several salable products are derived from miscellaneous 

literature. The sources are discussed in the following section.  

 

5.2 Estimate of MSW-Ethanol Plant Economics 

5.2.1 Net Profit Function Model 

First of all, the paper specifies the annual net profit function of the ethanol plant. 

Although there are some inconsistencies, previous studies identify three revenue sources: 

sales of ethanol, sales of recycled materials, and sales of chemical by-products. 

Recyclables include aluminum, ferrous, and plastic. Chemical by-products include 

furfural, yeast, lime/gypsum, and liquid carbon dioxide.   

Cost associated with MSW-ethanol production is divided into three prominent 

types. These are MSW biomass feedstock costs, plant operation costs, and overhead costs 

associated with general administration. The following model explains the economic 

structure of MSW-ethanol plant: 
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Profit function model, 
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5.2.2 Ethanol Sales 

The first term in the equation (5-1), )( MSWEE QQP indicates the revenue from 

ethanol sales. , offunction  is MSWE QQ  because a certain proportionate amount of ethanol 

is generated from a ton of MSW. As noted in the last chapter, I used a 25 gallons yield 

assumption in base-case analysis.   

The price of ethanol is listed in the Chemical Market Reporter. Currently, ethanol 

is priced around $1.30 per gallon, fluctuating between $1.00 and $1.50 per gallon for the 

last decade (Figure 2.5).  In the base case scenario, a ton of MSW yields  $32.50 from 

ethanol sales.  
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5.2.3 Sales of Recovered Material 

)( MSWRERE QQP indicates sales revenue of recovered material. REP  is the salvage 

value of material recovered by front-end MSW classification system. 

)( MSWRE QQ expresses that material recovered is dependent on the amount of MSW 

classified. In a social perspective, this can be regarded as “value of material recovered”, 

since these materials are normally dumped into landfill without recycling.  

All salvage values and possible yield of by-product a ton of MSW are presented 

in Table 5.1. Yield of aluminum, ferrous, and plastics in MSW were derived from the 

Solid Waste Handbook estimated by the U.S. EPA (1997). Prices for aluminum and 

ferrous were obtained from Waste News, for the Chicago market.  

Aluminum is the most valuable recyclable in market. It can be sold to sheet mills 

and secondary smelters. Aluminum is now worth 22.5¢ per pound. Ferrous metals also 

have huge markets in the steel and mining industries. Ferrous can be marketed for $30 a 

ton. 

Note that revenue from plastic sales is excluded in the base case because salvaged 

plastic has a very poor value. To market salvaged plastic, it must be sorted by type and 

color, chipped, masticated, and converted to palletized form to allow for bulk pneumatic 

handling. The end value, roughly $10 to $20 per ton in that form, is not a strong profit 

center. Hand sorted baled plastic has a value of about $8 per ton, but it costs $16 per ton 

to transport and $4 per ton to sort out from incoming miscellaneous MSW streams 

(Titmas 2004).  

In fact, the choice combination of material recycling is fairly site specific. Thus, a 

MSW classification system should be modified to match local market trends. If the 



 84

salvage value of plastic exceeds enough to offset separation costs, MSW-ethanol plants 

would count plastic as a revenue source. At this time, because of the current poor salvage 

value of plastic, it is not included in the profitability analysis. 

Other materials (e.g., glass) can be marketed but have limited market value and 

small yield. Moreover, purity is required for other materials to be marketed. Thus, the 

analysis includes only aluminum and ferrous metal as profitable recovered material.  

 

5.2.4 Chemical By-Product Revenue 

As described in Chapter IV, lignocellulosic biomass is converted into several 

chemical by-products besides ethanol. Yields of furfural, yeast, gypsum (lime), and CO2 

are based on the GeneSyst mass balance calculations (GeneSyst 2004). The market 

values of gypsum, yeast, and furfural are obtained from Chemical Market Reporter. 

Finally, market value assumptions for CO2 are based on the sales experience of GeneSyst 

(Titmas 2004). Table 5.1 summarizes the yield and value of by-products. The potential 

value of furfural, yeast, gypsum, and CO2 per ton is $5.00, $4.44, $0.06 and $0.75, 

respectively.  

 

Table 5.1 Summary of Market and Salvage Value of Products. 
  
  

Yield by one 
ton of MSW Price $ per one 

MSW ton 
Ethanol 25 gallon $1.30 per gallon $32.50 
Aluminum 28 lbs $450.00 per ton $6.30 
Ferrous 112 lbs $30.00 per ton $1.68 
Plastic 200 lbs - - 
Furfural 20 lbs $0.25 per lbs $5.00 
Yeast 12 lbs $0.37 per lbs $4.44 
Gypsum 11 lbs $10.00 per ton $0.06 
CO2 50 lbs $15.00 per ton $0.75 
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5.2.5 Feedstock Cost 

The first term in cost function, )( MSWTIPQPEF  is the MSW feedstock cost. The 

tipping fee is the price of the waste disposing service, or in other words, the cost for 

leaving the garbage on the tipping floor of the waste processing facility or landfill. This 

economic structure is opposite to ethanol plants in that it is based on corn-starch or other 

lignocellulose biomasses. Those plants must bear the cost for purchase input for ethanol 

production. The motivation of a MSW-ethanol plant is the negative feedstock cost. Waste 

itself becomes a revenue source for a MSW-ethanol plant.   

EF is technological efficiency, which describes the percentage of incoming MSW 

by weight converted into economically valuable goods. Normally 100% of waste cannot 

be destroyed, thus, the remaining fraction of MSW that is neither marketed nor reused 

should be shipped to a landfill, paying the same unit price per ton of MSW. A high 

efficiency factor implies the substantial amount of waste that can be processed to 

profitable material, while a low efficiency factor means a large percentage of incoming 

MSW needs to be landfilled. Waste disposal cost is expressed in the following way: 

 

)())(1()(cost feedstock net  Thus,   
)25......(..........).........)(1(cost disposal Waste

MSWTIPMSWTIPMSWTIP

MSWTIP

QPEFQPEFQP
QPEF

=−−=
−−=

 

 

Masada (2004) estimates 90% of incoming MSW streams can be used, so only 

10% is landfilled. This 90% assumption is the same as the estimate of GeneSyst (Titmas 

2004). Fox et al. (1999) estimates EF of MSW-ethanol plant by Genahol-Arizona Inc. is 

approximately 75%. I use 90% assumption as base case.  



 86

Recall that the range of variation of tipping fees is very large, as the average 

tipping fee is considerably different across the nation. Indeed, tipping fee revenues 

assumed by GeneSyst, PMO, and Genahol-Arizona are $20, $65, and $20-$30 a ton, 

respectively. The tipping fee at the base case in the TVA’s economic analysis is $45 a 

ton.  

It should be noted here that the currently proposed ethanol plant proffers a 

contract that would not charge full tipping fees, unlike conventional MSW dumping 

landfills. GeneSyst offers disposition in the municipality for those MSW collecting and 

hauling companies at 80% of its alternative, $20 per ton (Titmas 2004). Genahol-

Arizona, Inc. charges only half the amount of the tipping fee (Fox et al. 1999). Part of the 

reason is the reduction of waste transportation costs. As noted in Chapter IV, MSW-

ethanol plants can be located close to the center of residential area. Thus, waste 

transportation costs would be saved substantially as compared to landfill, which is 

normally located near a suburb or rural area (Fox 2004).  

For the analysis, I first used the national average tipping fee of $36 per ton, for the 

profitability analysis as base case (Chartwell Information 2003). Note that it is assumed 

that the ethanol plant is collocated with MRF or other sorts of waste processing facilities. 

Ethanol plants have to incur waste transportation costs if the plant is far from a landfill. 

Later in this chapter I analyze the impact of collocation on plant economics.  

  

5.2.6 Direct Cost 

There are two types of plant direct costs: MSW classification costs and plant 

operation costs.  MSW classification cost is the cost for storing, separating, and pre-
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treating MSW for further operation. Estimated classification cost is $3.85  a ton (Titmas 

2004).  Plant operation cost is the cost for raw materials, labor, or utilities required for 

acid hydrolysis and fermentation, product storage cost, and marketing cost. Electricity 

cost is $0.08 per kwh (kilowatt per hour) and this costs almost $2.13 per ton of MSW. 

Natural gas cost is $1.60 per MBTU (mega British thermal unit). Natural gas cost spent 

per ton of MSW is $1.24. Total plant operation cost is $0.46 per gallon of ethanol. Under 

the base case, ethanol yield assumption (25 gallons a ton) plant operation cost is about 

$11.50 a ton. Total direct cost is $15.10 a ton under the base case scenario (Titmas 2004).  

 

5.2.7 Indirect Cost 

Other than the costs above, several other indirect costs are estimated. These are 

fixed overhead expenses that are estimated on a per year basis. They include the 

following: administration expenses at $246,000, insurance costs at $80,000, royalty costs 

at roughly $389,000 (nearly 3% of annual revenue), contractual costs at $50,000, and 

labor training costs at $50,000 a year (Titmas 2004).  

 

5.2.8 Annual Net Profit 

The next step is to estimate EBITDA (earning before interest, taxes, depreciation 

and amortization) of a 500 TPD MSW-ethanol plant. It assumes the plant operates 312 

days a year (six days a week). The results are shown in Table 5.2. The revenue is huge 

enough to offset costs required for daily operation.  

Figure 5.1 shows the percentage of each revenue source against the total. When 

the tipping fee charge is considered to be revenue source, instead of negative feedstock 
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cost, it accounts for 39.0% of the total revenue source. This is identical to ethanol sales, 

at 39.1%. On the other hand, the sum of recyclables and chemical by-products sales 

revenue only accounts for 30%. Even without tipping fee revenue, profit is robustly 

positive ($4,626,392 a year) at the base case.  

 

Table 5.2 EBITDA of MSW-Ethanol Production in 500 TPD Case 
Categories U.S. dollar 

Ethanol Sales $5,070,000 
Recovered material Sales $1,244,880 
Chemical By-product Sales $1,598,454 
Feedstock Cost $5,054,400 
MSW Classification Cost ($600,000)
Plant Operation Cost ($1,794,000)
Administration Expense ($892,942)
EBITDA $9,680,792 

 

Figure 5.1 Pie Chart of Revenue Source of MSW-Ethanol Production in 500 TPD Case  
 

5.3 Cash Flow Analysis 

5.3.1 Methodology 
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In this section, the concept of time dimension is added to evaluate the desirability 

of an investment in MSW-ethanol production over time. It is important to consider the 

time dimension because both private and public decisions can have important 

consequences that extend over time. For the analysis of profitability of plant and return of 

capital investment, several economic concepts are provided. The model specified is as 

follows: 
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NPV is the net present value of the sum of the present value of all the benefits and 

costs of a project, including initial investment. Positive NPV indicates the project 

generates benefits greater than costs over time.  

Another economic concept used is internal rate of return (IRR). Given tN , IRR is 

the rate r, which when used as a discount rate, would reduce the present value of net 

benefits equal to zero. Thus, IRR must satisfy the following equation: 
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When using the IRR as an investment criterion, all independent projects with an 

IRR less than the cost of capital will be rejected. In other words, a project must satisfy the 

rule δ>r to justify initial investment (Conrad 1999). 

 

5.3.2 Capital Cost 

Now the research question is to figure out the cash flow a plant acquires during 

the entire plant life. This section describes capital costs and tax charges at first. Any 

kinds of projects incur opportunity cost. Opportunity cost theoretically is equal to the 

value of the goods and services that would have been produced had the resources used in 

carrying them out been used instead in the best alternative way. Opportunity cost of 

capital of MSW-ethanol plant is reflected in the interest rate of backs if market is 

efficient. Thus, again if IRR of MSW-ethanol project is greater than appropriate discount 

rate, one should proceed with it.  

The large portion of capital cost is devoted to facility construction cost expenses. 

These costs include construction, construction equipment and rentals, engineering, and 

other construction overhead. Overall construction cost estimated by GeneSyst is $20.1 

million. Of all, 25% is for construction building ($5 million), 50% is pipe, paving and 

electrical installment ($10 million), 15% is for pumps, vessel, and mechanical installment 

($3 million), and 10% is for computer and controls ($2 million). Table 5.3 summarizes 

estimated construction cost of each facility for a 300 TPD plant by GeneSyst. Table also 

presents rough estimate of facility construction cost of a 500 TPD plant.26  

                                                 
26 The detailed estimate of construction for each facility by GeneSyst is limited to a 300 TPD plant case. 
Note that capital cost in the analysis is neither the function of plant size nor the volume of daily waste but is 
assumed to be a fixed cost. Here I assume facility construction cost is a liner function of the volume of 



 91

Other than construction cost, $2.6 million is used for design, consulting, and 

permitting cost. This cost category covers all costs associated with construction design, 

drafting, purchasing, communication, consulting with professional engineers, and 

permitting.  Taking working capital and contingencies into account, a total of $3 million 

is roughly estimated by GeneSyst for initial capital investment. Contingency factor 

compensates for the uncertainty in the cost estimate resulting from unpredictable events 

such as price changes, design changes, estimating errors, unforeseen expenses, or 

uncertainty in the technical performance at the commercial scale.  

 
Table 5.3 Estimate of Facility Construction Cost 

Description 300 TPD plant Breakdown Estimate of a 500 
TPD plant 

Project Management $349,000 2.22% $445,590 
Sitework $678,000 4.30% $864,422 
Fluff Receiving Building $1,765,000 11.20% $2,251,917 
Plastic Separation System $597,000 3.79% $761,095 
Plastic pelletizing and storage $379,000 2.40% $483,154 
Sulfuric Acid System $48,000 0.31% $61,754 
Caustic System $300,000 1.90% $382,503 
Gravity Pressure Vessel $1,957,000 12.42% $2,496,868 
Lime Recovery System $913,000 5.80% $1,165,179 
Fermentation Facility $1,061,000 6.73% $1,353,428 
Distillation Facility $1,651,000 10.48% $2,106,160 
Denaturing Facility $56,000 0.36% $72,026 
Product Storage $600,000 3.81% $765,066 
Carbon Dioxide System $725,000 4.60% $924,575 
Office Building & Chattels $292,000 1.85% $372,582 
Wastewater Control $224,000 1.42% $285,720 
Process Support $489,000 3.10% $623,149 
By-product Extraction $159,000 1.01% $202,911 
Railroad siding w/ ethanol eq. $400,000 2.54% $510,244 
Truck scales $74,000 0.47% $94,749 
Certifications and Start-Up $642,000 4.07% $818,906 
Engineering $951,000 6.03% $1,212,467 
Permits & Contingency $1,796,000 11.40% $2,291,123 
Total $16,106,000 100.00% $20,100,000 

                                                                                                                                                 
daily waste. I estimated the percentage of each facility construction cost for total, and multiply it by total 
facility construction for a 500 TPD plant estimated by GeneSyst. Table 5.3 presents this rough estimate for 
a 500 TPD case.  
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Source: Titmas, 2004 
5.3.3 Capital Charges 

Capital charges are those costs incurred during construction of the facility that 

must be recovered during its life. These include the cost of debt (interest rate for loan), 

depreciation, and tax expenses. Income taxes are calculated after depreciation and interest 

payment are subtracted. The premise for estimating these values are as follows. 

 Depreciation is calculated under straight-line for 20 years of plant life. Annual 

depreciation costs are summarized in Table 5.3. 

 
 
Table 5.4 Annual Depreciation of Capital 

Description Percentage of 
construct cost 

Write-off 
period (year) 

Depreciation 
($k/year) 

Buildings = 25% 30 $168,000
Piping, Paving, & electrical = 50% 20 $503,000
Pumps, valves, mechanical = 15% 10 $302,000

Computers and controls = 10% 5 $402,000
Design, consulting, permitting = 10 $260,000

Total annual depreciation = - $1,634,000
Source: Titmas, 2004 
 
 

The loan interest rate (or bond interest rate) is assumed 7% amortized over 20 

years. Under this scenario, annual payment is roughly $2.8 million. The actual debt 

expenditures vary from year to year as the borrowed principle declines. The interest 

payment schedule is shown in Table D.3 in Appendix D. The average cost of debt over 

the life of the plant is approximately $1.3 million a year.  

There are three types of income taxes: Federal taxes, State taxes, and local taxes. 

Federal and state tax rates are assumed to be 32% and 8.5%, respectively. The local tax is 

$50,000 uniformly every year based on an assumption by GeneSyst. Thus, tax payments 

account for roughly 40% of pre-tax income.  
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5.3.4 Government Incentive 

Economic incentives, including tax credits or subsidies, are important institutional 

devices to attract niche players and to promote desirable industries. State governments 

have been forced to come up with alternatives to MTBE as an acceptable fuel oxygenate. 

Currently there are no Federal tax incentives available for the development of landfills, 

whereas systems that convert waste to usable products can receive Federal tax credits. 

State tax credits vary from county to county, but most of states in the U.S. usually 

provide tax credits for those who produce economically valuable goods from MSW. 

Long-term tax credits have been affirmed, and are now even broadening to include state 

subsidies (Masada 2004).  

Ethanol producers have been either wholly or partially exempted from motor 

vehicle excise taxes since 1978, the exemption having ranged from 40¢ to 60¢ per gallon 

during the following 20-year period. The Transportation Efficiency Act of the 21st 

Century (TEA 21) was first enacted in June 1998, and gave a 54¢ per gallon tax 

exemption to ethanol producers. Revenues from the excise tax were dedicated to the 

Highway Trust Fund, which provided assistance to eligible transportation projects 

involving construction or rebuilding of roads. This program extended the current tax 

credit for ethanol through 2007, but stipulated reductions from the current 54¢ per gallon 

to 53¢ in 2001, 52¢ in 2003, and 51¢ in 2005. The expiration date of the current 51¢ per 

gallon tax exemption is December 31, 2007.  

Additionally, small ethanol producers are eligible to get additional 10¢ per gallon 

credit on Federal income taxes. This program is called the Small Ethanol Producer 

Credit. In order to qualify for the credit, the alcohol, including ethanol, must be sold or 
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used by the producer for (1) the use in the production of a qualified fuel mixture in a 

trade or business, (2) the use as a fuel in a trade or business, and (3) the sale at retail and 

placed in the purchaser’s fuel tank. An eligible small ethanol producer is a producer of 

ethanol whose production of any type of ethanol does not exceed 30 million gallons per 

year. The maximum gallons applicable to 10¢ per gallon credit is 15 million gallons 

produced per year, resulting in a maximum annual credit of $1.5 million. Even under the 

assumption that 50 gallons of ethanol can be produced per ton of MSW, the annual yield 

of ethanol is less than $10 million.  Thus, the full small producer credit is included in the 

cash flow analysis.  

Although it is still continuation of the tax credit after 2008 is uncertain, Annual 

Energy Outlook 2000 (AEO2000) by EIA (2004a) assumed that the Federal subsidy 

would be extended at 51¢ per gallon through 2020, and defined this scenario as a 

reference case. In this paper, I assume three different scenarios in terms of the tax 

incentive program. I assumed a MSW-ethanol plant is set up in 2005, and this year is 

regarded as t=0. Then, each scenario is defined as follows: 

 
• Scenario 1 - no tax credit is available from an initial stage of operation.  
• Scenario 2  material recover facility (– status quo; both ethanol tax credits and 

small producer tax credits expire in 2007. Therefore, governmental incentives end 
in year 2.  

• Scenario 3 - both tax credits continue until 2010 as following the prediction by 
AEO 2000. Therefore, tax programs are available until year 15.  

 
Besides the Federal tax program, each state independently puts tax incentives into 

effect. Ethanol incentives by state are summarized in Table 5.4. No state tax incentive is 

included in the profitability analysis due to the broad range of applicability.  
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Table 5.5 Ethanol Incentives by State 
State Outline of program Remarks 

Alaska 4¢/gal Winter blends only 
Connecticut 1¢/gal Excise exemption 
Hawaii 4% Sales tax exemption
Idaho 2.1¢/gal Excise exemption 
Illinois 2% Sales tax exemption
Iowa 1¢/gal Excise exemption 
Minnesota 20¢/gal Producer payment 
Missouri 20¢/gal Producer payment 
Montana 30¢/gal Producer payment 
Nebraska 20¢/gal Producer payment 
Ohio 1¢/gal (Restrictions apply) 
South Dakota 20¢/gal Producer payment 
Wyoming 40¢/gal Producer payment 
Source: Oxy-fuel News, 2001 
 

5.3.5 Economic Premises 

Before moving on to the actual estimation, several assumptions are made in 

developing the base-case analysis that reflects the reality of plant economics.  

First, quantity of MSW handled by the plant, MSWQ , is assumed to increase over 

time. Due to little previous production experience, the plant is assumed to face 

uncertainty at the initial time, but it may improve operation methods over time by 

pursuing production efficiency. Moreover, MSW generated by the community is assumed 

to increase over time. Thus, 
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Equation (5-5) assumes that MSW generated increases at constant rate. MSWQ  is 

assumed to increase by 2% each year by following the assumption of GeneSyst (Titmas 

2004). Since both revenue and cost functions depend on MSWQ , revenues and costs 

change over time.  
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Second, the initial period, when 0=t , is only used for facility building. GeneSyst 

assumes it takes a year to establish facility and all equipments needed for production. On 

average, the period required to construct an ethanol plant is one to two years. TVA took 

one and one half years to construct a 400 TPD demonstration plant. For my analysis,  I 

assume regular operation starts from year 1.  

Third, I assume that computer equipment is reinvested every five years, and 

pumps, valves, and mechanical capital are reinvested every ten years, corresponding to 

estimated life for depreciation purposes. Note that the economic life of equipment has 

nothing to do with accounting depreciation largely determined by tax or reporting 

requirements. The depreciated accounting value may have little relationship to the 

reduced usefulness or the amount of wear and tear of the assets. However, I assume the 

plant reinvests capital along the lines of write-off periods, in order to simplify the 

analysis.  

Fourth, several assumptions about administration costs are made. According to 

GeneSyst, six months are needed for inventory of furfural and yeast to accumulate in the 

first year of operation, 1=t . Thus, during this period, only half the amount of furfural 

and yeast is sold. Next, GeneSyst estimates contractual costs allowing for engaging 

external consultant expertise to troubleshoot operations or to upgrade operations. I follow 

their assumption that the contractual cost increases over time by $25,000 per year, 

proportionately. Last, training expenses are high in the first year of operation, 1=t , but 

after that year training expenses will be less. I assume $150,000 is spent at 1=t , while 

only $50,000 is needed in the following years.  
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Fifth, perpetual maintenance of facilities (e.g., GPV) is possible (Titmas 2004). 

The advantage of MSW-ethanol with GPV process over landfill is that it can continue 

operating at the same place forever. I assume the time horizon of MSW-ethanol 

production is 20 years.27 While landfill needs a decade for monitoring processes without 

operation, a MSW-ethanol plant is not suspected to cause negative cumulative health 

effects on the neighborhood.  Thus, additional costs after 20=T are not considered.  

Sixth, there are several ways to estimate terminal value, the net present value of 

all benefits and costs that occurs after the discounting period. These include terminal 

values based on simple projection, on salvage value or liquidation value, on depreciated 

value, or on initial construction cost (Boardman et al. 2001).  The exact terminal value in 

20=T  is uncertain.28,29,30 In the base case analysis, no terminal value is considered for 

plant economics.  

Finally, I assume a 7% discount rate. For the plant to be profitable and 

economically feasible, projected IRR should exceed the discount rate of 7%.  

 

5.3.6 Base Case Economic Evaluation 

Both revenues and costs of a 500 TPD MSW-ethanol plant are summarized in 

Table D.1 and D.2 in Appendix D. NPV is shown in Table D.3. NPV before tax 

(EBITDA) is $87 million at a discount rate of 07.0=δ with a 20 year economic life. With 

                                                 
27 GeneSyst has several proposals in Europe that last for ten year. After ten years of operation, the city 
purchases (transfers) the facility for perpetual operation. Moreover, the physical life of a GPV was tested at 
Longmont Colorado by GeneSyst, and was not less than 20 years (Titmas 2004). 
28 Normally there may be some salvage value, if the plant is scrapped, but it would not amount to more than 
5% of the initial capital costs with inflation-enhanced correction (Titmas 2004).  
29 Projects by GeneSyst in Europe predetermined that a plant could be sold to the city with a predetermined 
sale price that amounts to 75% of construction price, albeit corrected to present worth.  Thus, terminal 
value is definitely more valuable if it is sold as a working facility on line. 
30 In the case of a Zimpro plant (high pressure - temperature wastes wet oxidation), it was entirely built of 
stainless steel, and actually sold at scrap for about 30 cents on the materials purchase price. 



 98

regard to tax effects, NPV of cash flow in scenario 1 is $52 million, in scenario 2 is $56 

million, and in scenario 3 is $74 million. NPV is positive even when no tax credit is 

provided, but the impact of a tax credit on profitability is huge.  A 15 year incentive 

program brings $18 million to the MSW-ethanol plant.  

Moreover, Table D.3 estimates that IRR of MSW-ethanol production at r=33.5% 

for EBITDA is much higher than %7=δ . IRR of cash flow without a tax credit case is 

still 24.5%. Thus, under the base case, MSW-ethanol production in the 500 TPD case 

provides strong incentive to invest today. 

 

5.4 Partial Sensitivity Analysis 

5.4.1 Methodology  

In the previous two sections, profitability of a MSW-ethanol plant is examined by 

using the concept of net present value and IRR from available information of current 

market price and material yield. In the following section, sensitivity analysis is performed. 

This method is a way of acknowledging uncertainty about the value of important 

parameters in the economic predictions.  

Since profit function (5-1) consists of many variables, conducting sensitivity 

analysis with regard to all variables would be very complicated. Instead, partial 

sensitivity analysis is provided by picking up some variables that are likely to influence 

the profitability of plants. As different factors and parameters are varied, the remaining 

factors and parameters are assumed to be held constant for the base case. 

Note that sensitivity analysis does not generally take into account the probability 

of any of the changes that would actually occur. However, we can still reach the 
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conclusion that our analysis is robust and can have greater confidence in its results if the 

sign of net benefits does not change when considering the range of reasonable 

assumptions. Thus, I also perform worst-and-best case analysis to see any combination of 

reasonable assumptions reverse the sign of net present value.  

 

5.4.2 Change in Ethanol Price and Tipping Fee 

As noted in Section 1, two major considerations of MSW-ethanol plant economics 

are ethanol sales and tipping fee revenue, which account for 78% of the revenue source 

when the ethanol price is $1.30 per gallon and the tipping fee is the national average of 

$36 per ton. Thus, the combination of these two variables is assumed to considerably 

change profitability.  

Partial sensitivity analysis is conducted with respect to ±10%change of ethanol 

price and tipping fee. The result of the sensitivity analysis is reported in Appendix D. The 

base case that is most plausible is reported as a 0% change. Figure 5.2 and 5.3 shows the 

effect of ethanol price and tipping fee on IRR, respectively. It is clearly seen that the 

sensitivity of these two parameters are quite similar and significant in determining plant 

economics. The effect of a 10% change in both tipping fee and ethanol price results in a 

1.8% change of IRR and $6.2 million change in NPV. Approximately 3.6 cents per gallon 

increase in ethanol value is equal to a $1 per ton change in the charge for MSW receipt.31 

However, given the reality of market trends, changeability of these two economic 

factors is completely dissimilar. The historical trend of ethanol price in Figure 2.5 in 

Chapter II shows ethanol price fluctuated between $1.10 per gallon to $1.40 in the last 

                                                 
31 A 36 cent increase in ethanol price changes the potential value of one MSW ton for ethanol sales, 
$0.036*25=$0.9. This is equal to a $1 per ton change in the tipping fee, $1*90%(efficiency factor)=$0.9.  
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decade. Thus, realistic ethanol price is confined to at most to a ±20% to 30% change; it is 

unlikely that ethanol price will fall below $0.9 per gallon or exceed $1.70 per gallon. On 

the other hand, the tipping fee is varied by region by a great deal. Even a free tipping fee 

is quite possible. Moreover, the tipping fee is changeable even in the same region because 

of landfill site scarcity or environmental regulations. Thus, a ±100% change of the 

tipping fee is highly probable in reality.  

The most important conclusion from the analysis is that the profitability of a 

MSW-ethanol plant is robustly positive.  An 80% reduction of each economic factor still 

shows positive NPV, even at the no tax incentive program scenario. However, for the 

region where MSW is accepted at a cheap rate, profitability of the plant is affected by 

availability of tax incentive programs. Under scenario 1, even a 10% reduction of ethanol 

price switches the sign of NPV when the tipping fee is $7.2 per ton. However, if tax 

incentives continue to 2020, estimated IRR with a $7.2 per ton tipping fee is still greater 

than 10%. Tax incentive programs are needed if the political goal is to encourage MSW-

based ethanol production.    
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Figure 5.2 Effect of Ethanol Price on IRR  
 

Figure 5.3 Effect of Tipping Fee on IRR 
 

5.4.3 Change in Capital Cost 
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presented in Figure 5.4. A 25% reduction of capital cost results in an 8, 9, and 10 

percentage point increase in IRR in the three scenarios. While a 25% increase in capital 

cost results in a 5-6 percentage point reduction of IRR, the outcome of a further 25% 

increase leads only to a 3-4 percentage point decrease of IRR. The sensitivity of IRR to 

changes in capital investment has marginal diminishing return characteristics.  

 

Figure 5.4 Effect of Capital Cost on IRR 
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ethanol plants producing more than 1.1 billion gallons of ethanol per year (including both 

wet and dry mills) in 1998 (Shapouri et al. 2002). The second and third row show the 

capital cost of corn starch to ethanol process and corn-stover to ethanol process, 

estimated in the joint project of USDA and U.S. DOE  (McAloon et al. 2000).  It is 

evident that the conventional corn-starch to ethanol process requires much less capital 

cost compared to lignocellulose-to-ethanol conversion. 

In terms of capital cost of MSW-ethanol conversion, there is a considerable 

variation in the estimates. It is evident that capital cost with GPV is much less than other 

processes. Compared to capital cost per gallon of ethanol by GeneSyst and Genahol-

Arizona, both of which use GPV, capital cost per gallon by PMO and TVA is far higher. 

The substantial variation in capital investment per gallon also can be attributed to the 

refinement of the design, use of used equipment, and age of the ethanol plant.  

Thus, even though it proves to be robustly profitable, investors might still hesitate 

to invest due to uncertainty of capital cost. Instead, they are able to invest in a 

conventional corn-starch to ethanol project with more confidence because much of the 

empirical data shows that capital cost is much less than that of MSW-ethanol process, 

and feedstock supplies are more reliable both in quality and quantity.  
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Table 5.6 Comparison of Capital Cost Estimate  

Sample Biomass 
resource 

Ethanol 
yield 

(Million 
gal/year)

Capital Cost 
(Million) 

Capital Cost per 
annual gallon 

capacity of ethanol  
(Adjusted to U.S. 2000 

dollar)32 
Survey of USDA33 Corn-starch - - $1.11-$2.49
Joint survey of USDA and DOE34 Corn-starch 25.00 $27.9 $1.16 
Joint survey of USDA and DOE Corn-stover 25.00 $136.1 $5.67 
GeneSyst MSW 3.90 $30.0 $7.69 
PMO35 MSW 7.10 $200.0-$285.0 $28.17-$40.14
Genahol-Arizona36 MSW 1.50 $5.00 $3.44 
TVA37 MSW 8.39 $200.9 $27.25 
 

5.4.4 Change in Technological Efficiency 

This section analyzes the sensitivity of profitability with regard to technological 

efficiency. One aspect of technological efficiency is gallons of ethanol produced from 

one ton of MSW. In the base case analysis above, I assume 25 gallons of ethanol can be 

made from a ton of MSW. Another technological consideration is the efficiency factor. A 

90% efficiency factor was assumed in the base case scenario. Sensitivity analysis, with 

regard to both ethanol yield and efficiency factor, is performed with respect to a ±10% 

change. 

The result of the analysis is shown in Figures 5.5 and 5.6. The horizontal axis 

indicates ethanol yield per gallon and efficiency factor, respectively, while the vertical 

axis of both figures indicates IRR. Two economic parameters have a significant effect on 

profitability. Ethanol yield has an especially remarkable effect. A 10% change in ethanol 

yield (a change of 10 gallons per ton) compared to a 25 gallons assumption results in a 

                                                 
32 Price is adjusted to U.S. 2000 dollar by deflating with producer price index (PPI) estimated by the U.S. 
Department of Labor, Bureau of Labor Statistics.  
33 Data taken by Shapouri et al. (2002) 
34 Data taken by McAloon et al. (2000) 
35 Data of capital cost is taken by the Times Herald-Record Online and data of ethanol yield is taken by 
Gray (1999) 
36 Data taken by Fox et al. (1999) 
37 Data taken by Broder et al. (1993) 
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3.5-4% change of IRR, while a 10% change in efficiency factor from the base case results 

in approximately a 2% change of IRR.  

Chapter IV provides several estimates for ethanol yield in the field and I found 

that the possible ethanol yield per ton of MSW under current technology lies in between 

20 and 50 gallons. Even when ethanol yield is 20 gallons per ton, IRR still exceeds 20%. 

In terms of efficiency factor, it is unlikely that it falls below 50%. As long as it is 

between 50 and 100 percent, profitability is positively robust. Thus, neither ethanol yield 

nor efficiency factor changes the sign of NPV independently.   

 

Figure 5.5 Effect of Ethanol Yield on IRR 
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Figure 5.6 Effect of Efficiency Factor on IRR 
 

5.4.5 Effect of Collocation 

In the base case scenario, it assumes that a MSW-ethanol plant is collocated with 
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assumption as base case and analyze the effect of waste transportation costs by varying 

wtC .  

The result is described in Figure 5.4. The horizontal axis is waste transportation 

cost ranging from $0 per ton, which is collocation with waste managing facility, to $30 

per ton. The vertical axis is IRR. Obviously, collocation has no significant effect on plant 

economics.  

The same is true for transporting ethanol from the plant to ethanol blending 

facilities. Collocation with an ethanol blending facility is able to reduce ethanol 

transportation cost (GeneSyst categorizes this cost into sales cost). Thus, 
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Fox et al. (1999) estimates ethanol transportation cost from seventeen selected 

sites to ethanol blending facilities, ranging from 1.39¢ to 3.20¢ per gallon. A 21.6¢ per 

gallon cost of ethanol transportation is equivalent to $6 per ton of waste transportation 

cost at the base case. Thus, it has little effect on profitability. A MSW-ethanol plant can 

be relocated, although it is not portable. Optimal location that can minimize the sum of 

waste transportation cost and ethanol transportation cost in the initial planning period 

results in cost saving over time. However, it is not significant in determining plant 

economics.  
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Figure 5.7 Effect of Waste Transportation Cost on IRR  
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5.5.1 Competition 

The first problem lies within the economic structure of the waste disposal 

industry. The collaboration between an ethanol plant and a landfill cannot be expected 

when MSW-ethanol plant and landfill are owned by different owners.38 Coexistence can 

extend landfill life and solve both landfill scarcity problems and interstate waste export 

problems.  

However, coexistence with a MSW-ethanol plant in the same region is not 

attractive to landfill operators because most of the landfill costs are up-front capital costs, 

which the landfill operators recover over time with tipping fee revenues and by-product 

sales (e.g., methane gas). The opening of a MSW-ethanol plant nearby results in the 

reduction of the daily waste stream into landfill, and also a reduction in annual revenue. 

This implies a decrease in present value of net benefits for the entire landfill life. Benefits 

created in the distant future are less attractive than benefits of the near future. The 

economic incentive for landfill operators is to fill landfill with garbage as early as 

possible to earn benefits quickly. Furthermore, the longer the landfill is operating the 

greater is its exposure to liability due to leakages, leaching, etc. Hence, MSW-Ethanol 

plants are opposed by landfill operators.  

This is true in the case of WTE, which is also willing to burn as much garbage as 

possible to raise net present value.  For sustainable operation, a certain amount of daily 

waste supply should be guaranteed. Coexistence threatens the capability of the incinerator 

to produce energy continuously.  

                                                 
38 In the case that ethanol plant and landfill is owned by the same owner, story could change. Under this 
scenario, the owner would have incentive to use more MSW for ethanol production if NPV of MSW-
ethanol process is higher than NPV of dumping MSW into landfill. The owners of GeneSyst, PMO, and 
Gehanol-Arizona, however, does not take ownership of a collocated landfill or other sorts of waste 
facilities.  
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A MSW-ethanol plant is therefore unfavorable to conventional waste facilities. At 

the present stage, a MSW-ethanol plant is not yet competitive with others. Conventional 

MSW dumping landfill has economies of scale. Landfill can manage waste with 

inexpensive cost as the scale of the landfill is enlarged. This results in a decrease in the 

number of landfills, and expansion of market share by large private waste management 

firms. Economies of scale of an incinerator are even greater than landfills; large facilities 

have lower net average total costs (Curlee et al. 1994).  

For now, it is not clear whether a MSW-ethanol plant has economies of scale. In 

the financial feasibility analysis of a 500 TPD plant, operation cost is a linear function of 

weight of waste. This is not based on experience at a commercial scale, but an estimate 

based on a pilot plant. Moreover, daily waste volume of the vast majority of landfill in 

the U.S. is greater than 500 tons, or even greater than 1,000 tons (Chartwell Information 

2003). Whether a plant has economies of scale would be found only after a large-scale 

plant starts to operate.  

It is also unforeseeable how capital cost reacts when plant size is enlarged. In the 

financial feasibility analysis above, capital cost is not a function of tonnage of waste. 

However, according to GeneSyst (2004), one GPV can cover all MSW in a community 

where its population is no greater than 300,000 residents. But another GPV needs to be 

established if population exceeds this limit. Thus, the increase in volume of waste would 

not necessarily result in a decrease in capital cost per ton of MSW. 

Another shortcoming of a MSW-ethanol plant is that it needs time and investment 

to conduct preliminary studies. A MSW composition survey, laboratory analysis, and 
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pilot plant operation are necessary before plant construction. A MSW composition survey 

is particularly vital.  

A plant must be designed carefully so that operation fits well with the waste 

characteristics of local community (GeneSyst 2004). Seasonality of waste also matters. A 

plant is carefully designed to be adaptable to fluctuation of MSW volume. If design 

capacity is too small, the excess amount of MSW cannot be processed. If design capacity 

is too big, plants operate with technical inefficiency and the capital costs are raised. (This 

is also true for the incinerator or other sorts of WTE.)  This implies that a plant cannot be 

simply duplicated from one area to another. In comparison for dumping MSW in a 

landfill, material composition or consumption pattern of the local community does not 

matter.  

 

5.5.2 Public Acceptance 

Establishing sound public relations is important when building new facilities 

(Broder et al. 2001). Historically, building a waste facility has been subjected to criticism, 

and some of proposed facilities have been cancelled because of public opposition. A 

MSW-ethanol plant would not be an exception. As a matter of fact, a project of PMO in 

city of Middletown in Orange County, New York, was delayed in its operation due to 

fierce opposition from local residents. Table E.1 in Appendix E illustrates the time line of 

a MSW-ethanol project of PMO from the initial stage. This section analyzes why the 

public may not support a MSW-ethanol plant based on the case study of PMO.  

First, state-of-the-art technology and innovative methods are difficult to accept, 

especially when local residents in the community are accustomed to solving waste 
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problem by extending landfill capacity. In this case, people can hardly conceptualize the 

new paradigm of SWM beyond the existing system. A series of public meetings are 

important to provide enough information for making a decision and to give confidence to 

the investor. However, it takes quite a while until the new concept is widespread.  

Second, even though people have enough information for making a decision, they 

occasionally oppose the location of a waste facility psychologically, especially when it is 

situated in the neighborhood. This is referred to as the “Not-In-My-Backyard (NIMBY)” 

syndrome. This syndrome blocks not only environmentally harmful projects, clean and 

sustainable projects as well. What is worse is that a waste facility is likely to be 

inherently stigmatized. People tend to regard it as unwanted as a knee-jerk reaction. Trust 

claims for acceptable and safe operation are easily deconstructed by worst-case scenarios.  

The final issue is the interference of political realities. The case of PMO is a good 

example. Orange county is controlled by the Republican Party, while Middletown is a 

Democratic bastion. It is suggested that the county politicians loathed to have the 

Middletown project succeed because their past policies had turned into a $52 million 

landfill debacle. They not only declined to adopt the project as the official county waste 

effort, but also refused to have any association with the project (Edelstein 2004). The 

anti-PMO advertising campaign, with support from one party, fiercely criticized a MSW-

ethanol plant. It repeatedly mentioned that the plant was experimental and the residents 

were “guinea pigs.” The risks were exaggerated and the benefits were ignored. Media is 

useful in letting the public know what the project is like; but if the media is controlled, 

the public can be incited to oppose waste facilities, despite their virtue. 
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Because it is unprecedented and inherently stigmatized, a MSW-ethanol plant is 

expected to face opposition by those who want to maintain the existing system. 

Moreover, public opinion is changeable. Without an understanding of life-style, 

economy, and the institutional structure of the local community, public relations would 

hardly be established.     

 

5.6 Concluding Remarks 

Throughout this chapter I analyzed the profitability of a 500 TPD MSW-ethanol 

plant, based on data of GeneSyst. In spite of several research limitations, the chapter 

reaches a solid conclusion. First, profitability of ethanol-MSW production is robust. Even 

under different market prices and different technologies, profitability proves to be robust. 

According to GeneSyst, the profit per ton of MSW is $50 with GPV, while landfill profit 

is less than $11 per ton of MSW (GeneSyst 2004). Thus, a MSW-ethanol plant creates 

more value on the same amount of MSW compared to conventional waste management. 

Second, tipping fee, ethanol price, technological efficiency, and capital cost are 

variables that affect the profitability of an ethanol plant.  But price of by-products and 

collocation with other SWM facilities would not be significant. Of all variables, the 

tipping fee is key when the plausibility of sensitiveness of each variable is taken into 

account. The range of the tipping fee can be a ±100% change from national average price 

by region.  Thus, this results in a huge difference in tipping fee revenue by location since 

it is correlated with population.  

Third, the sign of NPV is not likely to change, even at the absence of a tax 

program.  However, availability of tax incentives creates motivation for ethanol 
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producers. If the goal of governmental policy is for both clean energy and waste disposal, 

the extension of the current ethanol tax credit after 2007 is important.  

Finally, there are three big obstacles for MSW-ethanol production. First, data is 

limited and uncertainty is an inevitable problem. Capital cost is especially uncertain, as 

substantial variation exists in the estimate of capital cost in different studies. Further 

capital costs are much higher than those of conventional corn-ethanol facilities. This 

leads to investor hesitation in investing in such projects. Second, it is likely that the entry 

of a MSW-ethanol plant into the market would encounter fierce opposition by existing 

conventional waste facilities. To get public acceptance, there are many issues that plants 

need to overcome. Thus, even though it is potentially profitable, it is not easy to introduce 

MSW-ethanol conversion as an alternative policy to conventional SWM.   



 115

CHAPTER VI 

CONCLUSION AND RESEARCH RECOMMENDATION 
 
 

Throughout this the thesis the economic feasibility of a MSW-ethanol plant is 

analyzed. This chapter presents the summary of the research. 

First, currently most of MSW (55% of total MSW) is landfilled, while MSW 

generation has steadily increased. Thus abundant MSW biomass resource is available in 

the U.S. total. Of all MSW, paper products, food scraps, wood, and yard trimmings are 

lignocellulosic composition, which can be converted into ethanol. Lignocellulosic 

composition in MSW varies by region, however it is assumed to be between 55% and 

70%. MSW landfilled currently is 130 million tons according to U.S. EPA (2003), which 

can yield 3-4 billion gallons of ethanol, compared to current annual motor gasoline 

supply of 126 billion gallons in the US (EIA 2004c). Approximately, 2-4% of gasoline 

can be replaced with MSW-ethanol if all MSW biomass is dedicated to ethanol 

production.  

Second, MSW is abundant in populated regions where ethanol is mostly needed. 

County or metropolitan areas with a population greater than 100,000 can supply enough 

MSW for profitable ethanol production (GeneSyst 2004). There are 524 out of 3,141 U.S. 

counties with populations over 100,000 and most of metropolitan areas defined by U.S. 

Census Bureau have population greater than 100,000.  

Third, Chapter IV presents summary of technology of MSW-ethanol conversion. 

Usually, MSW is processed in the following order; (1) MSW classification, (2) 

hydrolysis, (3) fermentation, and (4) distillation. There are several technologies 

applicable to each step. Under the current available technology, acid hydrolysis is better 
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suited than enzymatic hydrolysis because of technological efficiency and economic 

reason. GPV is one of the best current available technologies. It can achieve high product 

yield with less reaction time; therefore economize plant economics. Conservative ethanol 

yield is 25 gal per ton of MSW with current technology, but it is predicted to be improved 

in mid and long term future.  

Fourth, the major conclusion is that MSW-ethanol production is economically 

feasible and profitable with currently available technology. Ethanol demand is projected 

to increase due to the phase out of MTBE, dependence on imported oil, and public 

interest in clean renewable energy. The significant variables determining plant economics 

are ethanol price, tipping fee, and technological efficiency. The tipping fee especially 

shows a wide range of variation across regions. Tipping fee is correlated with population. 

Thus, MSW-ethanol production is more economically feasible at a location where MSW 

biomass is abundant. MSW-ethanol process produces a set of recovered products and 

chemical by-products and its salability is site specific. However, by-product sales do not 

have significant effects on plant economics.  

Finally, although profitability is proved, there are several issues to be addressed in 

order for MSW-ethanol production to be a common approach toward waste management. 

First of all, there is a considerable variation in the estimates of the capital cost per gallon 

of ethanol as compared to capital cost estimate of conventional corn starch into the 

ethanol process.  Investors would invest in corn to ethanol project with more confidence 

rather than MSW-ethanol project due to proven lower capital cost. Besides, coexistence 

with a MSW-ethanol facility is not favorable to conventional landfilling/WTE facilities 

because the incentives for those facilities are for maximizing waste disposal in existing 
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facilities. Without public support, a MSW-ethanol process would be a stillborn approach. 

People should be fully informed of the usefulness of this new approach without political 

interference. If the goal is for a MSW-ethanol plant to be an alternative SWM approach, 

the government should play a key role to foster a favorable climate for future MSW-

ethanol producers. Tax credits are one of the examples of such governmental supports. 

Tax credit program would encourage MSW-ethanol producer to be a niche player in 

waste industry.  

Due to limited data there are several research limitations. First, material balance 

data was exclusively based on estimates by GeneSyst. Yield of ethanol, recovered 

material, and chemical by-product changes by MSW composition were also estimates.  

No same MSW composition is found in two municipalities, so that the results above 

cannot be generalized nationwide. Yield and composition is affected by economy, life 

style, and local industry composition rooted in community. For instance, wealthy 

communities can produce five times the waste per capita than poor communities 

(GeneSyst 2004). A careful material balance survey is required before public or private 

sector investment in a MSW-ethanol project for local waste management.  

Second, the analysis above simply multiplied 312 days operation a year by tons 

per day. However, the amount of waste and its composition has seasonality (and even 

varies from day to day). It is usually the case that the amount of MSW collected at the 

peak time is twice as much as the monthly average MSW collected. This is more so if 

agricultural residues or yard wastes for two to three months are incorporated into MSW 

from cities. In the case of GeneSyst, waste supplies were not stored and the tipping fee 

receiving basin was to be emptied every 24 hours and cleaned (Titmas 2004), so the 
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initial capital investment would be affected by peak capacity of plant. Thus, the initial 

survey must specify the seasonal MSW stream and identify the duration of peak 

periods.39 

Third, the analysis was based on the best available technology. However, different 

technology can be applied to MSW classification, hydrolysis, fermentation, and 

distillation step. Yield of product and cost-effectiveness would be inconsistent among 

firms of a like nature. Thus, the result of my analysis is not necessarily the case with 

other firms. The profitability analysis with alternative technology should be conducted to 

make comparisons of cost effectiveness and technological efficiency.  

Fourth, the result of the financial feasibility analysis above held plant size 

constant. Capital cost was based on GeneSyst’s estimate of a 500 TPD plant, and it was 

used as a baseline. How benefits and costs change in response to plant size is not yet 

known. I do recommend making a model in which capital cost is a function of plant size. 

By doing so, sensitivity of profitability with changing plant size becomes clear.  

Fifth, the analysis did not shed light on social cost. To gain public acceptance 

smoothly, social perspective should be incorporated into the analysis. For social cost-

benefit analysis, environmental impact should be known. To estimate the value of 

environmental impact is challenging area, though, and it would be more evident how a 

MSW-ethanol plant is sustainable and environmentally beneficial approach compared to 

landfilling and incineration.  

Finally, an initial survey is vital for the success of a MSW-ethanol plant. I 

recommend reviewing data periodically to improve accuracy. Additionally, keeping 

records of daily MSW streams and ex-post profitability analysis will generate more data 
                                                 
39 On the island of Malta, the peak endures for five months when the population triples (Titmas 2004).  
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for firms, public sectors, and researchers. This will result in deriving more appropriate 

supply and profit functions. 
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APPENDIX A 
 
 
Table A.1 Summary of Tipping Fee and Waste Volume by Region and Facility Type. 
   MSW damping landfill Transfer Station Waste-To-Energy facility 
   daily volume avg tip fee daily volume avg tip fee daily volume avg tip fee 
  Region/State (tons/day) ($/ton) (tons/day) ($/ton) (tons/day) ($/ton) 
Pacific Total 153,010 $34.60 71,320 $45.21 7,340 $58.79 
 Alaska 1,760 $46.41 80 $93.59 160 $140.91 
 California 120,860 $34.12 51,920 $40.46 3,430 $37.46 
 Hawaii 2,450 $60.59 450 $81.29 1,440 $81.27 
 Oregon 12,000 $31.71 7,410 $24.18 620 $64.96 
  Washington 15,940 $35.10 11,460 $78.60 1,690 $72.88 
Mountain Total 177,030 $20.48 33,700 $25.98 1,300 $42.15 
 Arizona 20,030 $24.49 11,080 $29.45 - - 
 Colorado 24,540 $19.59 4,450 $27.74 30 $25.00 
 Idaho 7,790 $19.45 1,220 $47.74 - - 
 Montana 2,430 $20.27 480 $41.39 50 $60.00 
 Nevada 8,330 $14.59 2,650 $22.13 - - 
 New Mexico 10,420 $18.37 2,630 $12.92 - - 
 Oklahoma 13,070 $22.05 1,250 $22.23 1,130 $42.00 
 Texas 77,570 $19.79 8,200 $21.67 80 $41.71 
 Utah 11,030 $25.06 1,240 $24.76 10 $25.00 
  Wyoming 1,820 $22.17 500 $37.91 - - 
Midwest Total 265,180 $31.67 79,090 $30.72 13,280 $48.98 
 Illinois 60,100 $33.64 21,740 $28.03 1,200 $59.00 
 Indiana 25,340 $28.41 8,280 $27.18 1,920 $25.96 
 Iowa 8,720 $33.14 1,100 $40.25 180 $45.00 
 Kansas 8,930 $29.31 3,020 $31.12 - - 
 Michigan 58,910 $31.95 6,480 $33.52 4,280 $54.76 
 Minnesota 7,420 $46.86 6,950 $44.65 5,280 $50.41 
 Missouri 16,250 $31.68 5,470 $28.93 - - 
 Nebraska 8,170 $24.82 1,170 $34.70 - - 
 North Dakota 1,930 $25.79 660 $34.55 - - 
 Ohio 47,840 $28.60 18,290 $27.16 - - 
 South Dakota 1,800 $25.65 230 $51.30 - - 
  Wisconsin 19,770 $35.06 5,700 $35.00 420 $50.36 
Southern Total 258,590 $30.48 71,970 $35.82 29,060 $51.98 
 Alabama 19,780 $25.70 1,930 $34.06 690 $39.90 
 Arkansas 8,250 $24.85 2,670 $24.32 70 $18.28 
 Dist of Columbia - - 5,200 $53.37 - - 
 Florida 38,560 $36.89 17,820 $41.19 17,700 $57.48 
 Georgia 21,830 $28.86 8,750 $33.66 100 $60.00 
 Kentucky 18,600 $30.64 2,420 $36.42 - - 
 Louisiana 13,790 $25.14 2,840 $30.84 - - 
 Mississippi 10,740 $24.35 2,010 $32.03 - 
 North Carolina 21,110 $30.86 7,940 $38.99 400 $34.00 
 South Carolina 20,320 $32.60 2,790 $28.91 620 $59.50 
 Tennessee 34,590 $23.31 4,550 $25.64 460 $16.45 
 Virginia 45,270 $35.70 12,240 $28.78 9,020 $44.37 
  West Virginia 5,750 $35.17 810 $51.42 - - 
Northeast Total 150,530 $53.56 77,740 $57.88 52,930 $62.55 
 Connecticut 670 $43.82 3,270 $68.36 7,270 $61.06 
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 Delaware 6,180 $55.38 980 $58.46 -  
 Maine 730 $45.97 390 $34.85 2,600 $71.38 
 Maryland 8,720 $48.47 4,740 $31.18 2,490 $65.17 
 Massachusetts 7,210 $51.93 12,880 $58.56 10,150 $68.20 
 New Hampshire 4,680 $74.80 1,460 $71.21 770 $84.77 
 New Jersey 13,350 $49.68 11,400 $72.27 7,780 $64.06 
 New York 23,200 $47.36 24,710 $50.92 11,480 $58.23 
 Pennsylvania 81,450 $55.14 14,400 $63.38 10,380 $57.22 
 Rhode Island 3,610 $57.76 800 $73.54 - - 
  Vermont 730 $66.97 2,710 $53.76 10 $42.83 
United States 1,004,340 $33.12 333,820 $40.76 103,910 $57.34 
Source: Chartwell Information, 2003 
 
 
Table A.2: Summary of 745 Landfill Data40 

Type of facility Region Volume of MSW  
All LF WTE TS Pacific Western Mid-

west South North-
east Small Medium Large 

N 745 524 63 154 102 98 184 203 158 25 368 352
Mean 38.2 33.7 60.2 43.9 42.7 22.0 31.2 33.8 59.1 43.5 36.7 39.4
STDV 21.5 16.6 19.4 26.5 23.5 7.8 14.6 16.1 22.9 21.3 23.6 19.0
Min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Max 180.0 104.0 100.0 130.0 180.0 50.0 73.0 91.3 130.0 92.0 180.0 110.0

Source: Chartwell Information, 2003 
 
 

Table A.2 summarizes 745 landfill data listed in Solid Waste Digest. Of all data, 
average tipping fee is $38.1741. Note that the standard deviation is $21.51. This indicates 
that tipping fees are widely distributed. Firstly, landfill is sorted by type of facility. LF 
indicates ordinal MSW dumping landfill, WTE is Waste-to-Energy facility including 
incinerators, and TS is transfer station including MRF. Second, data is sorted by region 
by referring Table A.1. Third, data is sorted by daily volume of MSW. If daily volume is 
101-500 TPD, it is small. Similarly 501-1000 daily volume is called medium, and 
exceeding 1000 TPD is coded as big. Note that there are 42 landfills that accept MSW 
without any charge, while maximum value tipping fee data is up to $180 per MSW ton. 

                                                 
40 Some of landfill tipping fee data is described as dollar per cubic yard. This is converted to dollar per ton 
based on assumption that 1 ton of waste is equal to 3 Cu.Yd. of waste. This assumption is used by some 
local government which require landfill operator to report waste volume by cubic yard.  
41 National average tipping fee by Solid Waste Digest is $36.00 per ton. Mean value of listed 745 data is 
slightly higher because Chartwell Institution (publishing Solid Waste Digest) estimates national average 
with including additional unlisted landfill data.  
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Figure A.1 Distribution of Tipping Fee Charged by MSW Disposing Facility 
Source: Chartwell Information, 2003 
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Regression Analysis 
 

Econometric analysis can be carried out with cross-sectional landfill data of Solid 
Waste Digest. Linear regression is useful tool to identify the factor affecting tipping fee 
price while controlling statistically for the effects of several explanatory variables. We 
utilize ordinary least square (OLS) for regression. The model specified is as follows; 
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 The first two explanatory dummy variables are incorporated into the model to see 
the effect of type of waste-disposing facility on tipping fee. Base case is ordinal MSW 
landfill. The second four dummy variables are used to indicate the effect of regional 
difference on tipping fee. Note that the dummy variable indicating Pacific region is the 
base case. Finally, the last two dummy variables are to analyze the effect of daily waste 
volume on tipping fee. If daily the volume MSW stream run into facility is less than 500t 
per day, we call it small volume. If daily volume is between 500t and 1000t, it is medium 
size. If volume exceeds 1000t per day, it is called big volume. Base case is medium. 
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Table A.3 OLS Regression Results 

Variable Coefficient Std. Error t-statistics p-value
WTE 17.332 2.369 7.316 0.000
TS 6.148 1.625 3.783 0.000

Mountain -18.892 2.489 -7.590 0.000
Midwest -10.544 2.135 -4.938 0.000

South -8.512 2.111 -4.032 0.000
Northeast 14.219 2.213 6.425 0.000

small_volume -1.772 3.595 -0.493 0.622
large_volume 0.133 1.326 0.100 0.920

Intercept 39.828 1.983 20.086 0.000
    N=745,  R-square=0.37  

 
 

The regression results reported in Table appendix 4.3 show that both type of 
facilities and regions have significant effects on tipping fee. Both WTE and TS charges 
higher tipping fee than ordinary MSW dumping landfill. F-statistics of these two dummy 
variables is 30.18 (p-value is 0.00), thus there is strong statistical evidence that tipping 
fee varies by type of facilities. F-statistics of regional four dummy variables is 68.61. 
Regional dummy variables are proxy to “population density indicators” or “landfill 
scarcity indicators”. For instance, Northeast region is heavily populated and has scarce 
landfill site, while in Mountain regions, population is scattered and landfill sites are 
abundant.  

On the other hand, daily MSW volume shows no statistical relation with tipping 
fee. F-statistics of two dummy variables is only 0.14 (p-value is 0.87). In conclusion, 
tipping fee is not dependent on facility size but more affected by regional effect and type 
of facility.
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APPENDIX B 
 
Table B.1 MSW Generation, Recycling, Landfilled by State in the U.S. in 200342 
 MSW 

generated 
(1000t) 

Population 
MSW per 

capita 
(ton) 

MSW 
recycled 
(1000t) 

MSW 
to WTE 
(1000t) 

MSW 
landfilled
(1000t) 

MSW 
recycled 

(%) 

MSW to 
WTE 
(%) 

MSW 
landfilled 

(%) 

Number 
of MSW 
landfill 

Number 
of WTE 
plants 

Landfill 
capacity 
(1000t) 

Capacity / 
landfilled

(year) 

Imported
MSW 

(1000t) 

Exported
MSW 

(1000t) 
West       38% 3% 59% 
Alaska n/a 643,786 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
California 54,430 35,116,033 1.550 21,902 887 31,640 40.2% 1.6% 58.1% 161 3 410,501 8 26 616
Hawaii 1,706 1,244,898 1.370 430 417 859 25.2% 24.4% 50.4% 9 1 n/a n/a n/a n/a
Nevada 3,366 2,173,491 1.548 532 0 2,834 15.8% 0.0% 84.2% 23 0 60,742 18 534 0
Oregon 4,735 3,521,515 1.345 1,987 201 2,547 42.0% 4.3% 53.8% 30 1 n/a n/a 1,626 19

 

Washington 8,667 6,068,996 1.428 2,960 489 5,218 34.1% 5.6% 60.2% 21 4 180,003 21 173 1,146
Mountain   9% 1% 90% 
Arizona 6,012 5,456,453 1.102 1,053 0 4,959 17.5% 0.0% 82.5% 41 0 n/a n/a 383 10
Colorado 5,051 4,506,542 1.121 142 0 4,909 2.8% 0.0% 97.2% 65 0 n/a n/a n/a n/a
Idaho 1,090 1,341,131 0.813 92 0 998 8.4% 0.0% 91.6% 29 0 n/a n/a n/a n/a
Montana n/a 909,453 n/a n/a n/a n/a n/a n/a n/a 30 0 32,727 n/a n/a n/a
New Mexico 2,095 1,855,059 1.129 135 0 1,960 6.5% 0.0% 93.5% 35 0 190,966 91 378 0
Utah 2,471 2,316,256 1.067 118 120 2,234 4.8% 4.9% 90.4% 38 1 n/a n/a 139 n/a

 

Wyoming 694 498,703 1.391 12 0 682 1.7% 0.0% 98.3% 53 0 n/a n/a n/a n/a
Midwest   25% <1% 75% 
Arkansas 3,838 2,710,079 1.416 1,392 56 2,390 36.3% 1.5% 62.3% 24 2 n/a n/a 168 370
Iowa 3,416 2,936,760 1.163 1,426 34 1,956 41.7% 1.0% 57.3% 59 1 40,183 12 403 128
Kansas 4,698 2,715,884 1.730 540 0 4,158 11.5% 0.0% 88.5% 51 0 n/a n/a 663 n/a
Missouri 7,257 5,672,579 1.279 2,823 20 4,413 38.9% 0.3% 60.8% 24 0 41,433 6 11 1,993
Nebraska 2,395 1,729,180 1.385 369 0 2,026 15.4% 0.0% 84.6% 24 0 n/a n/a n/a n/a
North Dakota 639 634,110 1.007 60 0 579 9.4% 0.0% 90.6% 14 0 n/a n/a 101 10
Okalahoma 4,489 3,493,714 1.285 45 0 4,444 1.0% 0.0% 99.0% 40 1 n/a n/a n/a n/a
South Dakota 518 761,063 0.681 15 0 503 3.0% 0.0% 97.0% 15 0 16,758 32 n/a n/a

 

Texas 28,532 21,779,893 1.310 7,107 0 21,425 24.9% 0.0% 75.1% 175 2 970,000 34 66 n/a
Great Lakes   27% 5% 68% 
Illinois 15,951 12,600,620 1.266 5,191 0 10,760 32.5% 0.0% 67.5% 51 0 212,394 13 5,801 n/a
Indiana 9,542 6,159,068 1.549 3,340 648 5,555 35.0% 6.8% 58.2% 35 1 52,232 5 1,574 n/a
Michigan 16,916 10,050,446 1.683 2,550 1,183 13,182 15.1% 7.0% 77.9% 52 4 143,939 9 3,831 n/a
Minnesota 5,044 5,019,720 1.005 2,301 1,266 1,477 45.6% 25.1% 29.3% 21 15 18,700 4 n/a 636
Ohio 16,211 11,421,267 1.419 3,808 0 12,403 23.5% 0.0% 76.5% 44 0 124,080 8 1,978 987

 

Wisconsin 5,593 5,441,196 1.028 1,378 188 4,027 24.6% 3.4% 72.0% 42 2 30,440 5 1,407 n/a

                                                 
42 Data of Oregon and Maryland was corrected by BioCycle itself three months after “The State of Garbage in America” for 2003 is issued. Data of Oregon and 
Maryland is taken from “Corrections to State of Garbage of Garbage” (BioCycle 2004).  
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South   19% 12% 69% 
Alabama n/a 4,486,508 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
Florida 19,707 16,713,149 1.179 4,722 5,564 9,421 24.0% 28.2% 47.8% 100 13 n/a n/a n/a n/a
Georgia 11,214 8,560,310 1.310 929 52 10,234 8.3% 0.5% 91.3% 60 1 135,349 12 963 n/a
Kentucky 5,466 4,092,891 1.335 625 2 4,838 11.4% 0.0% 88.5% 25 1 36,364 7 n/a 247
Louisiana 4,953 4,482,646 1.105 402 0 4,551 8.1% 0.0% 91.9% 24 0 n/a n/a n/a n/a
Mississippi 2,918 2,871,782 1.016 10 0 2,908 0.3% 0.0% 99.7% 17 0 n/a n/a 538 n/a
North 
Carolina 

8,981 8,320,146 1.079 992 121 7,869 11.0% 1.3% 87.6% 41 1 100,000 11 n/a 882

South 
Carolina 

5,973 4,107,183 1.454 1,698 231 4,044 28.4% 3.9% 67.7% 19 4 109,534 18 955 508

Tennessee 7,366 5,797,289 1.271 1,943 150 5,273 26.4% 2.0% 71.6% 34 1 n/a n/a n/a 549

 

Virginia 10,878 7,293,542 1.491 3,161 2,152 5,565 29.1% 19.8% 51.2% 67 5 251,810 23 4,509 n/a
Mid Atlantic   28% 14% 58% 
Delaware 1,069 807,385 1.324 218 0 851 20.4% 0.0% 79.6% 3 0 20,000 19 n/a n/a
Maryland 7,103 5,458,137 1.301 2,456 1,376 3,270 34.6% 19.4% 46.0% 20 3 n/a n/a 457 1,943
New Jersey 10,606 8,590,300 1.235 4,015 962 5,630 37.9% 9.1% 53.1% 12 5 40,000 4 576 3,500
New York 24,775 19,157,532 1.293 7,384 4,248 13,143 29.8% 17.1% 53.1% 26 10 90,000 4 568 5,400
Pennsylvania 12,676 12,335,091 1.028 3,399 2,095 7,182 26.8% 16.5% 56.7% 49 6 298,586 24 10,000 3,000

 

West Virginia 1,755 1,801,873 0.974 120 0 1,634 6.9% 0.0% 93.1% 18 0 5,674 3 204 432
New England   27% 34% 39% 
Connecticut 4,734 3,460,503 1.368 888 2,130 1,716 18.8% 45.0% 36.2% 2 6 n/a n/a 64 366
Maine 1,327 1,294,464 1.025 650 448 229 49.0% 33.8% 17.2% 8 4 3,030 2 219 78
Massachusetts 8,307 6,427,801 1.292 2,584 3,128 2,596 31.1% 37.6% 31.3% 19 7 n/a n/a 186 1,687
New 
Hampshire 

1,215 1,275,056 0.953 288 206 721 23.7% 17.0% 59.4% 10 2 15,000 12 746 33

Rhode Island 1,249 1,069,725 1.167 160 0 1,089 12.8% 0.0% 87.2% 2 0 n/a n/a n/a n/a

 

Vermont 612 616,592 0.992 183 56 373 29.8% 9.2% 60.9% 5 0 1,454 2 7 124
United States 368,240 287,797,800 1.310 98,675 28,480 242,227 26.7% 7.7% 65.6% 1,767

Source: Kaufman et al., 2004 
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Figure B.1 Distribution of the U.S. Population in 2000 
Source: U.S. Census Bureau, 2002 
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Figure B.2 Distribution of MSW in the U.S. in 2000 
Source: County population data taken by U.S. Census Bureau (2002). State average MSW generation data taken by Goldstein and 
Madtes (2001) 



 130

Table B.2 MSW Density of Top 20 U.S. Populated Metropolitan Area 

Metropolitan Area Population 
(million) 

Area 
(square 
mile) 

Population 
density 
(tons/ 

square mile)

State 
average 
MSW 

generation 
(tons/year) 

State 
average 
MSW 

generation 
(lbs/day) 

Annual 
MSW 

generation 
(1000 tons 

/year) 

Daily MSW 
generation 
(1000 tons 

/day) 

MSW 
density 

(tons/square 
mile 

MSW 
within 10 

radius 
(tons/100π s
quare mile)

Minimum 
radius 

supplying 
500 TPD 

(mile) 
New York--Northern New Jersey--Long Island 21.200 10,166 2,085 1.293 7.1 27,411        75.10       7.39          2,321        4.64 
Los Angeles--Riverside--Orange County 16.374 33,966 482 1.550 8.5 25,379        69.53       2.05             643        8.82 
Chicago--Gary--Kenosha 9.158 6,931 1,321 1.266 6.9 11,593        31.76       4.58          1,440        5.89 
Washington--Baltimore 7.608 9,578 794 1.301 7.1 9,898         27.12       2.83             889        7.50 
San Francisco--Oakland--San Jose 7.039 7,369 955 1.550 8.5 10,911        29.89       4.06          1,274        6.26 
Philadelphia--Wilmington--Atlantic City 6.188 5,936 1,043 1.028 5.6 6,362        17.43       2.94             922        7.36 
Boston--Worcester--Lawrence 5.819 6,450 902 1.292 7.1 7,518        20.60       3.19          1,003        7.06 
Detroit--Ann Arbor--Flint 5.456 6,566 831 1.683 9.2 9,183        25.16        3.83          1,204        6.44 
Dallas--Fort Worth 5.222 9,105 574 1.310 7.2 6,841        18.74       2.06             647        8.79 
Houston--Galveston--Brazoria 4.670 7,707 606 1.310 7.2 6,117        16.76       2.17             683        8.55 
Atlanta 4.112 6,126 671 1.310 7.2 5,387        14.76       2.41             757        8.13 
Miami--Fort Lauderdale 3.876 3,154 1,229 1.179 6.5 4,570        12.52       3.97          1,247        6.33 
Seattle--Tacoma--Bremerton  3.555 7,224 492 1.428 7.8 5,076        13.91       1.93             605        9.09 
Phoenix--Mesa 3.252 14,574 223 1.102 6.0 3,584          9.82       0.67             212      15.37 
Minneapolis--St. Paul 2.969 6,064 490 1.005 5.5 2,984          8.17       1.35             423      10.87 
Cleveland--Akron 2.946 3,613 815 1.419 7.8 4,180        11.45       3.17             996        7.09 
San Diego 2.814 4,205 669 1.550 8.5 4,361        11.95       2.84             893        7.48 
St. Louis 2.604 6,393 407 1.279 7.0 3,330          9.12       1.43             448      10.56 
Denver--Boulder--Greeley 2.582 8,496 304 1.121 6.1 2,894          7.93       0.93             293      13.06 
Tampa--St. Petersburg--Clearwater 2.450 2,555 959 1.179 6.5 2,889          7.91       3.10             973        7.17 

Data: Metropolitan population and area data is taken by U.S. Census Bureau. State average MSW generation data is taken by 
Kaufman et al. (2001)  



 131

APPENDIX C 

Figure C.1 Cellulose Conversion by GPV 
Source: GeneSyst, 2004
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APPENDIX D 
 
Table D.1 Revenue Schedule of a 500 TPD MSW-Ethanol Plant at the Base Case (U.S. Thousands Dollar) 
 

Recovered material sales Chemical By-product sales 
Year 

MSW 
volume 
(T/day) 

MSW 
volume 
(T/year) 

Ethanol 
sales Aluminum 

sales 
Ferrous 

sales 
Plastic 
sales 

Furfural 
sales 

Yeast 
sales 

Gypsum 
sales 

CO2 
sales 

Total 
revenue

0 0 0 0 0 0 - 0 0 0 0 0 
1 500 156,000 5,070 983 262 - 390 346 9 117 7,177 
2 510 159,120 5,171 1,002 267 - 796 706 9 119 8,072 
3 520 162,302 5,275 1,023 273 - 812 721 9 122 8,233 
4 531 165,548 5,380 1,043 278 - 828 735 9 124 8,398 
5 541 168,859 5,488 1,064 284 - 844 750 10 127 8,566 
6 552 172,237 5,598 1,085 289 - 861 765 10 129 8,737 
7 563 175,681 5,710 1,107 295 - 878 780 10 132 8,912 
8 574 179,195 5,824 1,129 301 - 896 796 10 134 9,090 
9 586 182,779 5,940 1,152 307 - 914 812 10 137 9,272 

10 598 186,434 6,059 1,175 313 - 932 828 11 140 9,457 
11 609 190,163 6,180 1,198 319 - 951 844 11 143 9,646 
12 622 193,966 6,304 1,222 326 - 970 861 11 145 9,839 
13 634 197,846 6,430 1,246 332 - 989 878 11 148 10,036 
14 647 201,803 6,559 1,271 339 - 1,009 896 11 151 10,237 
15 660 205,839 6,690 1,297 346 - 1,029 914 12 154 10,441 
16 673 209,955 6,824 1,323 353 - 1,050 932 12 157 10,650 
17 686 214,155 6,960 1,349 360 - 1,071 951 12 161 10,863 
18 700 218,438 7,099 1,376 367 - 1,092 970 12 164 11,081 
19 714 222,806 7,241 1,404 374 - 1,114 989 13 167 11,302 
20 728 227,263 7,386 1,432 382 - 1,136 1,009 13 170 11,528 
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Table D.2 Cost Schedule of a 500 TPD MSW-Ethanol Plant at the Base Case (U.S. Thousands Dollar) 
Total operation cost General Administration Overhead 

Year 
MSW 

volume 
(T/day) 

MSW 
volume 
(T/year) 

Capital 
Cost 

Feedstock 
cost 

MSW 
Classification 

cost 

Plant 
operation 

cost 

Admini-
stration 

cost 

Insurance 
cost 

Loyalty 
cost 

Contractual 
cost 

Training 
cost 

Total 
cost 

0 0 0 (30,000) 0 0 0 0 0 0 0 0 (30,000)
1 500 156,000 0 5,054 (600) (1,794) (246) (80) (367) (50) (150) 1,767 
2 510 159,120 0 5,155 (612) (1,830) (246) (80) (397) (75) (50) 1,866 
3 520 162,302 0 5,259 (624) (1,866) (246) (80) (405) (100) (50) 1,887 
4 531 165,548 0 5,364 (637) (1,904) (246) (80) (413) (125) (50) 1,909 
5 541 168,859 (402) 5,471 (649) (1,942) (246) (80) (421) (150) (50) 1,531 
6 552 172,237 0 5,580 (662) (1,981) (246) (80) (430) (175) (50) 1,957 
7 563 175,681 0 5,692 (676) (2,020) (246) (80) (438) (200) (50) 1,982 
8 574 179,195 0 5,806 (689) (2,061) (246) (80) (447) (225) (50) 2,008 
9 586 182,779 0 5,922 (703) (2,102) (246) (80) (456) (250) (50) 2,035 

10 598 186,434 (704) 6,040 (717) (2,144) (246) (80) (465) (275) (50) 1,360 
11 609 190,163 0 6,161 (731) (2,187) (246) (80) (474) (300) (50) 2,093 
12 622 193,966 0 6,285 (746) (2,231) (246) (80) (484) (325) (50) 2,123 
13 634 197,846 0 6,410 (761) (2,275) (246) (80) (493) (350) (50) 2,155 
14 647 201,803 0 6,538 (776) (2,321) (246) (80) (503) (375) (50) 2,187 
15 660 205,839 (402) 6,669 (792) (2,367) (246) (80) (513) (400) (50) 1,819 
16 673 209,955 0 6,803 (808) (2,414) (246) (80) (524) (425) (50) 2,256 
17 686 214,155 0 6,939 (824) (2,463) (246) (80) (534) (450) (50) 2,292 
18 700 218,438 0 7,077 (840) (2,512) (246) (80) (545) (475) (50) 2,329 
19 714 222,806 0 7,219 (857) (2,562) (246) (80) (556) (500) (50) 2,368 
20 728 227,263 0 7,363 (874) (2,614) (246) (80) (567) (525) (50) 2,408 
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Table D.3 Cash Flow of a 500 TPD MSW-Ethanol Plant under Different Tax Program Scenario (U.S. Thousands Dollar) 

Debt Schedule Tax description Scenario 1 
=No tax incentive 

Scenario 2 
=Tax program 
ends in Year 2 

Scenario 3  
= Tax program 
lasts by Year 15 

T Year EBITDA 
Annual 
depreci-

ation  Interest 
payment 

Principal 
payment 

Remaining 
Principal 

Federal 
tax (32%)

State 
tax 

(8.5%)

Local 
Tax 

($50,000 
a year) 

Tax 
imposed

Cash 
flow 

Tax 
imposed 

Cash 
flow 

Tax 
imposed 

Cash 
flow 

0 2005   (30,000) 0 0 0 (30,000) 0 0 0 0 (30,000) 0 (30,000) 0 (30,000)
1 2006      8,944 (1,634) (2,100) (732) (29,268) (1,668) (443) (50) (2,160) 6,784 (493) 8,452 (493) 8,452 
2 2007      9,937 (1,634) (2,049) (783) (28,485) (2,002) (532) (50) (2,583) 7,354 (582) 9,356 (582) 9,356 
3 2008    10,120 (1,634) (1,994) (838) (27,647) (2,078) (552) (50) (2,680) 7,441 (2,680) 7,441 (602) 9,518 
4 2009    10,307 (1,634) (1,935) (896) (26,751) (2,156) (573) (50) (2,779) 7,528 (2,779) 7,528 (623) 9,684 
5 2010    10,096 (1,634) (1,873) (959) (25,792) (2,237) (594) (50) (2,882) 7,214 (2,882) 7,214 (644) 9,452 
6 2011    10,694 (1,634) (1,805) (1,026) (24,765) (2,322) (617) (50) (2,988) 7,706 (2,988) 7,706 (667) 10,027 
7 2012    10,894 (1,634) (1,734) (1,098) (23,667) (2,408) (640) (50) (3,098) 7,795 (3,098) 7,795 (690) 10,204 
8 2013    11,098 (1,634) (1,657) (1,175) (22,492) (2,499) (664) (50) (3,212) 7,886 (3,212) 7,886 (714) 10,384 
9 2014    11,307 (1,634) (1,574) (1,257) (21,235) (2,592) (688) (50) (3,330) 7,977 (3,330) 7,977 (738) 10,569 

10 2015    10,817 (1,634) (1,486) (1,345) (19,889) (2,688) (714) (50) (3,452) 7,365 (3,452) 7,365 (764) 10,053 
11 2016    11,739 (1,374) (1,392) (1,440) (18,450) (2,871) (763) (50) (3,684) 8,055 (3,684) 8,055 (813) 10,926 
12 2017    11,962 (1,374) (1,291) (1,540) (16,909) (2,975) (790) (50) (3,815) 8,147 (3,815) 8,147 (857) 11,105 
13 2018    12,191 (1,374) (1,184) (1,648) (15,261) (3,083) (819) (50) (3,952) 8,239 (3,952) 8,239 (934) 11,256 
14 2019    12,424 (1,374) (1,068) (1,763) (13,498) (3,194) (848) (50) (4,093) 8,331 (4,093) 8,331 (1,015) 11,409 
15 2020    12,260 (1,374) (945) (1,887) (11,611) (3,310) (879) (50) (4,239) 8,021 (4,239) 8,021 (1,100) 11,160 
16 2021    12,906 (1,374) (813) (2,019) (9,592) (3,430) (911) (50) (4,392) 8,515 (4,392) 8,515 (4,392) 8,515 
17 2022    13,155 (1,374) (671) (2,160) (7,432) (3,555) (944) (50) (4,550) 8,606 (4,550) 8,606 (4,550) 8,606 
18 2023    13,410 (1,374) (520) (2,312) (5,120) (3,685) (979) (50) (4,714) 8,696 (4,714) 8,696 (4,714) 8,696 
19 2024    13,670 (1,374) (358) (2,473) (2,647) (3,820) (1,015) (50) (4,885) 8,785 (4,885) 8,785 (4,885) 8,785 
20 2025    13,936 (1,374) (185) (2,647) 0 (3,961) (1,052) (50) (5,063) 8,873 (5,063) 8,873 (5,063) 8,873 

  33.4%   IRR = 24.5% IRR = 26.8% IRR = 31.4%
  87,474   NPV = 52,291 NPV = 55,597 NPV = 74,072
  10.4   B/C = 2.2 B/C = 2.4 B/C = 4.3
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Table D.4 IRR Sensitivity with Changing Ethanol Price and Tipping Fee (EBITDA) 
Ethanol price ($/gallon) ±10% change 

-100% -90% -80% -70% -60% -50% -40% -30% -20% -10% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
 

0.00 0.13 0.26 0.39 0.52 0.65 0.78 0.91 1.04 1.17 1.30 1.43 1.56 1.69 1.82 1.95 2.08 2.21 2.34 2.47 2.60 
-100% 0.00 - - -4.5% -0.3% 3.0% 5.7% 8.1% 10.3% 12.4% 14.4% 16.3% 18.1% 19.9% 21.7% 23.4% 25.1% 26.8% 28.5% 30.2% 31.8% 33.5%
-90% 3.60 - -4.6% -0.3% 3.0% 5.7% 8.1% 10.3% 12.4% 14.4% 16.3% 18.1% 19.9% 21.7% 23.4% 25.1% 26.8% 28.5% 30.2% 31.8% 33.5% 35.1%
-80% 7.20 -4.6% -0.3% 2.9% 5.7% 8.1% 10.3% 12.4% 14.4% 16.3% 18.1% 19.9% 21.7% 23.4% 25.1% 26.8% 28.5% 30.2% 31.8% 33.5% 35.1% 36.8%
-70% 10.80 -0.3% 2.9% 5.7% 8.1% 10.3% 12.4% 14.3% 16.2% 18.1% 19.9% 21.7% 23.4% 25.1% 26.8% 28.5% 30.2% 31.8% 33.5% 35.1% 36.8% 38.4%
-60% 14.40 2.9% 5.7% 8.1% 10.3% 12.4% 14.3% 16.2% 18.1% 19.9% 21.6% 23.4% 25.1% 26.8% 28.5% 30.2% 31.8% 33.5% 35.1% 36.8% 38.4% 40.1%
-50% 18.00 5.6% 8.1% 10.3% 12.4% 14.3% 16.2% 18.1% 19.9% 21.6% 23.4% 25.1% 26.8% 28.5% 30.2% 31.8% 33.5% 35.1% 36.8% 38.4% 40.1% 41.7%
-40% 21.60 8.1% 10.3% 12.4% 14.3% 16.2% 18.1% 19.9% 21.6% 23.4% 25.1% 26.8% 28.5% 30.1% 31.8% 33.5% 35.1% 36.8% 38.4% 40.0% 41.7% 43.3%
-30% 25.20 10.3% 12.3% 14.3% 16.2% 18.1% 19.9% 21.6% 23.4% 25.1% 26.8% 28.5% 30.1% 31.8% 33.5% 35.1% 36.8% 38.4% 40.0% 41.7% 43.3% 44.9%
-20% 28.80 12.3% 14.3% 16.2% 18.1% 19.9% 21.6% 23.4% 25.1% 26.8% 28.5% 30.1% 31.8% 33.5% 35.1% 36.8% 38.4% 40.0% 41.7% 43.3% 44.9% 46.6%
-10% 32.40 14.3% 16.2% 18.1% 19.9% 21.6% 23.4% 25.1% 26.8% 28.5% 30.1% 31.8% 33.5% 35.1% 36.7% 38.4% 40.0% 41.7% 43.3% 44.9% 46.6% 48.2%
0% 36.00 16.2% 18.1% 19.9% 21.6% 23.4% 25.1% 26.8% 28.5% 30.1% 31.8% 33.4% 35.1% 36.7% 38.4% 40.0% 41.7% 43.3% 44.9% 46.6% 48.2% 49.8%
10% 39.60 18.0% 19.8% 21.6% 23.3% 25.1% 26.8% 28.4% 30.1% 31.8% 33.4% 35.1% 36.7% 38.4% 40.0% 41.7% 43.3% 44.9% 46.6% 48.2% 49.8% 51.4%
20% 43.20 19.8% 21.6% 23.3% 25.1% 26.8% 28.4% 30.1% 31.8% 33.4% 35.1% 36.7% 38.4% 40.0% 41.7% 43.3% 44.9% 46.6% 48.2% 49.8% 51.4% 53.1%
30% 46.80 21.6% 23.3% 25.1% 26.8% 28.4% 30.1% 31.8% 33.4% 35.1% 36.7% 38.4% 40.0% 41.6% 43.3% 44.9% 46.5% 48.2% 49.8% 51.4% 53.1% 54.7%
40% 50.40 23.3% 25.0% 26.7% 28.4% 30.1% 31.8% 33.4% 35.1% 36.7% 38.4% 40.0% 41.6% 43.3% 44.9% 46.5% 48.2% 49.8% 51.4% 53.1% 54.7% 56.3%
50% 54.00 25.0% 26.7% 28.4% 30.1% 31.8% 33.4% 35.1% 36.7% 38.4% 40.0% 41.6% 43.3% 44.9% 46.5% 48.2% 49.8% 51.4% 53.1% 54.7% 56.3% 57.9%
60% 57.60 26.7% 28.4% 30.1% 31.8% 33.4% 35.1% 36.7% 38.4% 40.0% 41.6% 43.3% 44.9% 46.5% 48.2% 49.8% 51.4% 53.1% 54.7% 56.3% 57.9% 59.6%
70% 61.20 28.4% 30.1% 31.8% 33.4% 35.1% 36.7% 38.4% 40.0% 41.6% 43.3% 44.9% 46.5% 48.2% 49.8% 51.4% 53.0% 54.7% 56.3% 57.9% 59.6% 61.2%
80% 64.80 30.1% 31.7% 33.4% 35.1% 36.7% 38.3% 40.0% 41.6% 43.3% 44.9% 46.5% 48.2% 49.8% 51.4% 53.0% 54.7% 56.3% 57.9% 59.6% 61.2% 62.8%
90% 68.40 31.7% 33.4% 35.1% 36.7% 38.3% 40.0% 41.6% 43.3% 44.9% 46.5% 48.1% 49.8% 51.4% 53.0% 54.7% 56.3% 57.9% 59.6% 61.2% 62.8% 64.4%
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100% 72.00 33.4% 35.0% 36.7% 38.3% 40.0% 41.6% 43.2% 44.9% 46.5% 48.1% 49.8% 51.4% 53.0% 54.7% 56.3% 57.9% 59.5% 61.2% 62.8% 64.4% 66.1%
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Table D.5 IRR Sensitivity with Changing Ethanol Price and Tipping Fee (After Tax; No Tax Incentive case) 

Ethanol price ($/gallon) ±10% change 
-100% -90% -80% -70% -60% -50% -40% -30% -20% -10% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 
0.00 0.13 0.26 0.39 0.52 0.65 0.78 0.91 1.04 1.17 1.30 1.43 1.56 1.69 1.82 1.95 2.08 2.21 2.34 2.47 2.60 

-100% 0.0 - - - - - - - - - -2.2% 2.1% 5.3% 8.1% 10.5% 12.8% 14.9% 17.0% 18.9% 20.8% 22.7% 24.6%
-90% 3.6 - - - - - - - - -2.2% 2.1% 5.3% 8.1% 10.5% 12.8% 14.9% 17.0% 18.9% 20.8% 22.7% 24.5% 26.4%
-80% 7.2 - - - - - - - -2.2% 2.0% 5.3% 8.0% 10.5% 12.8% 14.9% 17.0% 18.9% 20.8% 22.7% 24.5% 26.4% 28.1%
-70% 10.8 - - - - - - -2.2% 2.0% 5.3% 8.0% 10.5% 12.8% 14.9% 16.9% 18.9% 20.8% 22.7% 24.5% 26.3% 28.1% 29.9%
-60% 14.4 - - - - - -2.3% 2.0% 5.3% 8.0% 10.5% 12.8% 14.9% 16.9% 18.9% 20.8% 22.7% 24.5% 26.3% 28.1% 29.9% 31.7%
-50% 18.0 - - - - -2.3% 2.0% 5.3% 8.0% 10.5% 12.8% 14.9% 16.9% 18.9% 20.8% 22.7% 24.5% 26.3% 28.1% 29.9% 31.7% 33.4%
-40% 21.6 - - - -2.3% 2.0% 5.3% 8.0% 10.5% 12.8% 14.9% 16.9% 18.9% 20.8% 22.7% 24.5% 26.3% 28.1% 29.9% 31.7% 33.4% 35.1%
-30% 25.2 - - -2.3% 2.0% 5.2% 8.0% 10.5% 12.7% 14.9% 16.9% 18.9% 20.8% 22.7% 24.5% 26.3% 28.1% 29.9% 31.6% 33.4% 35.1% 36.9%
-20% 28.8 - -2.3% 2.0% 5.2% 8.0% 10.5% 12.7% 14.9% 16.9% 18.9% 20.8% 22.7% 24.5% 26.3% 28.1% 29.9% 31.6% 33.4% 35.1% 36.9% 38.6%
-10% 32.4 -2.3% 2.0% 5.2% 8.0% 10.5% 12.7% 14.9% 16.9% 18.9% 20.8% 22.7% 24.5% 26.3% 28.1% 29.9% 31.6% 33.4% 35.1% 36.8% 38.6% 40.3%
0% 36.0 2.0% 5.2% 8.0% 10.5% 12.7% 14.9% 16.9% 18.9% 20.8% 22.7% 24.5% 26.3% 28.1% 29.9% 31.6% 33.4% 35.1% 36.8% 38.6% 40.3% 42.0%
10% 39.6 5.2% 8.0% 10.4% 12.7% 14.9% 16.9% 18.9% 20.8% 22.7% 24.5% 26.3% 28.1% 29.9% 31.6% 33.4% 35.1% 36.8% 38.6% 40.3% 42.0% 43.7%
20% 43.2 8.0% 10.4% 12.7% 14.9% 16.9% 18.9% 20.8% 22.6% 24.5% 26.3% 28.1% 29.9% 31.6% 33.4% 35.1% 36.8% 38.6% 40.3% 42.0% 43.7% 45.4%
30% 46.8 10.4% 12.7% 14.8% 16.9% 18.9% 20.8% 22.6% 24.5% 26.3% 28.1% 29.9% 31.6% 33.4% 35.1% 36.8% 38.6% 40.3% 42.0% 43.7% 45.4% 47.1%
40% 50.4 12.7% 14.8% 16.9% 18.9% 20.8% 22.6% 24.5% 26.3% 28.1% 29.8% 31.6% 33.4% 35.1% 36.8% 38.5% 40.3% 42.0% 43.7% 45.4% 47.1% 48.8%
50% 54.0 14.8% 16.9% 18.8% 20.8% 22.6% 24.5% 26.3% 28.1% 29.8% 31.6% 33.3% 35.1% 36.8% 38.5% 40.3% 42.0% 43.7% 45.4% 47.1% 48.8% 50.5%
60% 57.6 16.9% 18.8% 20.8% 22.6% 24.5% 26.3% 28.1% 29.8% 31.6% 33.3% 35.1% 36.8% 38.5% 40.3% 42.0% 43.7% 45.4% 47.1% 48.8% 50.5% 52.2%
70% 61.2 18.8% 20.7% 22.6% 24.5% 26.3% 28.1% 29.8% 31.6% 33.3% 35.1% 36.8% 38.5% 40.2% 42.0% 43.7% 45.4% 47.1% 48.8% 50.5% 52.2% 53.9%
80% 64.8 20.7% 22.6% 24.5% 26.3% 28.1% 29.8% 31.6% 33.3% 35.1% 36.8% 38.5% 40.2% 42.0% 43.7% 45.4% 47.1% 48.8% 50.5% 52.2% 53.9% 55.6%
90% 68.4 22.6% 24.4% 26.3% 28.0% 29.8% 31.6% 33.3% 35.1% 36.8% 38.5% 40.2% 42.0% 43.7% 45.4% 47.1% 48.8% 50.5% 52.2% 53.9% 55.6% 57.3%
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100% 72.0 24.4% 26.3% 28.0% 29.8% 31.6% 33.3% 35.1% 36.8% 38.5% 40.2% 41.9% 43.7% 45.4% 47.1% 48.8% 50.5% 52.2% 53.9% 55.6% 57.3% 59.0%
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Table D.6 IRR Sensitivity with Changing Ethanol Price and Tipping Fee (After Tax; Tax Incentives Ends in Year 15) 

Ethanol price ($/gallon) ±10% change 
-100% -90% -80% -70% -60% -50% -40% -30% -20% -10% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

 

0.00 0.13 0.26 0.39 0.52 0.65 0.78 0.91 1.04 1.17 1.30 1.43 1.56 1.69 1.82 1.95 2.08 2.21 2.34 2.47 2.60 
-100% 0.0 - - - - - - -3.3% 3.0% 6.7% 9.6% 12.1% 14.4% 16.5% 18.5% 20.5% 22.4% 24.3% 26.1% 27.9% 29.7% 31.4%

-90% 3.6 - - - - - -3.3% 3.0% 6.6% 9.5% 12.1% 14.4% 16.5% 18.5% 20.5% 22.4% 24.3% 26.1% 27.9% 29.6% 31.4% 33.1%
-80% 7.2 - - - - -3.4% 3.0% 6.6% 9.5% 12.1% 14.4% 16.5% 18.5% 20.5% 22.4% 24.3% 26.1% 27.9% 29.6% 31.4% 33.1% 34.9%
-70% 10.8 - - - -3.4% 3.0% 6.6% 9.5% 12.1% 14.3% 16.5% 18.5% 20.5% 22.4% 24.2% 26.1% 27.9% 29.6% 31.4% 33.1% 34.9% 36.6%
-60% 14.4 - - -3.4% 2.9% 6.6% 9.5% 12.0% 14.3% 16.5% 18.5% 20.5% 22.4% 24.2% 26.1% 27.9% 29.6% 31.4% 33.1% 34.9% 36.6% 38.3%
-50% 18.0 - -3.5% 2.9% 6.6% 9.5% 12.0% 14.3% 16.5% 18.5% 20.5% 22.4% 24.2% 26.1% 27.9% 29.6% 31.4% 33.1% 34.9% 36.6% 38.3% 40.0%
-40% 21.6 -3.5% 2.9% 6.6% 9.5% 12.0% 14.3% 16.5% 18.5% 20.5% 22.4% 24.2% 26.1% 27.8% 29.6% 31.4% 33.1% 34.8% 36.6% 38.3% 40.0% 41.7%
-30% 25.2 2.9% 6.6% 9.5% 12.0% 14.3% 16.5% 18.5% 20.5% 22.4% 24.2% 26.0% 27.8% 29.6% 31.4% 33.1% 34.8% 36.6% 38.3% 40.0% 41.7% 43.4%
-20% 28.8 6.6% 9.5% 12.0% 14.3% 16.5% 18.5% 20.5% 22.4% 24.2% 26.0% 27.8% 29.6% 31.4% 33.1% 34.8% 36.6% 38.3% 40.0% 41.7% 43.4% 45.1%
-10% 32.4 9.5% 12.0% 14.3% 16.5% 18.5% 20.5% 22.4% 24.2% 26.0% 27.8% 29.6% 31.4% 33.1% 34.8% 36.6% 38.3% 40.0% 41.7% 43.4% 45.1% 46.8%

0% 36.0 12.0% 14.3% 16.4% 18.5% 20.4% 22.4% 24.2% 26.0% 27.8% 29.6% 31.4% 33.1% 34.8% 36.5% 38.3% 40.0% 41.7% 43.4% 45.1% 46.8% 48.4%
10% 39.6 14.3% 16.4% 18.5% 20.4% 22.3% 24.2% 26.0% 27.8% 29.6% 31.3% 33.1% 34.8% 36.5% 38.3% 40.0% 41.7% 43.4% 45.1% 46.8% 48.4% 50.1%
20% 43.2 16.4% 18.5% 20.4% 22.3% 24.2% 26.0% 27.8% 29.6% 31.3% 33.1% 34.8% 36.5% 38.2% 40.0% 41.7% 43.4% 45.1% 46.7% 48.4% 50.1% 51.8%
30% 46.8 18.5% 20.4% 22.3% 24.2% 26.0% 27.8% 29.6% 31.3% 33.1% 34.8% 36.5% 38.2% 40.0% 41.7% 43.4% 45.0% 46.7% 48.4% 50.1% 51.8% 53.5%
40% 50.4 20.4% 22.3% 24.2% 26.0% 27.8% 29.6% 31.3% 33.1% 34.8% 36.5% 38.2% 39.9% 41.6% 43.3% 45.0% 46.7% 48.4% 50.1% 51.8% 53.5% 55.2%
50% 54.0 22.3% 24.2% 26.0% 27.8% 29.6% 31.3% 33.1% 34.8% 36.5% 38.2% 39.9% 41.6% 43.3% 45.0% 46.7% 48.4% 50.1% 51.8% 53.5% 55.2% 56.9%
60% 57.6 24.2% 26.0% 27.8% 29.6% 31.3% 33.1% 34.8% 36.5% 38.2% 39.9% 41.6% 43.3% 45.0% 46.7% 48.4% 50.1% 51.8% 53.5% 55.2% 56.8% 58.5%
70% 61.2 26.0% 27.8% 29.6% 31.3% 33.1% 34.8% 36.5% 38.2% 39.9% 41.6% 43.3% 45.0% 46.7% 48.4% 50.1% 51.8% 53.5% 55.2% 56.8% 58.5% 60.2%
80% 64.8 27.8% 29.6% 31.3% 33.1% 34.8% 36.5% 38.2% 39.9% 41.6% 43.3% 45.0% 46.7% 48.4% 50.1% 51.8% 53.5% 55.2% 56.8% 58.5% 60.2% 61.9%
90% 68.4 29.5% 31.3% 33.0% 34.8% 36.5% 38.2% 39.9% 41.6% 43.3% 45.0% 46.7% 48.4% 50.1% 51.8% 53.5% 55.1% 56.8% 58.5% 60.2% 61.9% 63.6%
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100% 72.0 31.3% 33.0% 34.8% 36.5% 38.2% 39.9% 41.6% 43.3% 45.0% 46.7% 48.4% 50.1% 51.8% 53.5% 55.1% 56.8% 58.5% 60.2% 61.9% 63.6% 65.2%
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Table D.7 NPV Sensitivity with Changing Ethanol Price and Tipping Fee (EBITDA; U.S. Million Dollar) 
Ethanol price ($/gallon) ±10% change 

-100% -90% -80% -70% -60% -50% -40% -30% -20% -10% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
 

0.00 0.13 0.26 0.39 0.52 0.65 0.78 0.91 1.04 1.17 1.30 1.43 1.56 1.69 1.82 1.95 2.08 2.21 2.34 2.47 2.60
-100% 0.0 (33.52) (27.46) (21.40) (15.34) (9.28) (3.22) 2.84 8.90 14.95 21.01 27.07 33.13 39.19 45.25 51.31 57.37 63.43 69.48 75.54 81.60 87.66 

-90% 3.6 (27.48) (21.42) (15.36) (9.30) (3.24) 2.82 8.88 14.94 20.99 27.05 33.11 39.17 45.23 51.29 57.35 63.41 69.47 75.52 81.58 87.64 93.70 
-80% 7.2 (21.44) (15.38) (9.32) (3.26) 2.80 8.86 14.92 20.98 27.03 33.09 39.15 45.21 51.27 57.33 63.39 69.45 75.51 81.56 87.62 93.68 99.74 
-70% 10.8 (15.40) (9.34) (3.28) 2.78 8.84 14.90 20.96 27.02 33.08 39.13 45.19 51.25 57.31 63.37 69.43 75.49 81.55 87.60 93.66 99.72 105.78
-60% 14.4 (9.36) (3.30) 2.76 8.82 14.88 20.94 27.00 33.06 39.12 45.17 51.23 57.29 63.35 69.41 75.47 81.53 87.59 93.65 99.70 105.76 111.82
-50% 18.0 (3.32) 2.74 8.80 14.86 20.92 26.98 33.04 39.10 45.16 51.21 57.27 63.33 69.39 75.45 81.51 87.57 93.63 99.69 105.74 111.80 117.86
-40% 21.6 2.72 8.78 14.84 20.90 26.96 33.02 39.08 45.14 51.20 57.25 63.31 69.37 75.43 81.49 87.55 93.61 99.67 105.73 111.78 117.84 123.90
-30% 25.2 8.76 14.82 20.88 26.94 33.00 39.06 45.12 51.18 57.24 63.29 69.35 75.41 81.47 87.53 93.59 99.65 105.71 111.77 117.82 123.88 129.94
-20% 28.8 14.81 20.86 26.92 32.98 39.04 45.10 51.16 57.22 63.28 69.34 75.39 81.45 87.51 93.57 99.63 105.69 111.75 117.81 123.87 129.92 135.98
-10% 32.4 20.85 26.90 32.96 39.02 45.08 51.14 57.20 63.26 69.32 75.38 81.43 87.49 93.55 99.61 105.67 111.73 117.79 123.85 129.91 135.96 142.02

0% 36.0 26.89 32.94 39.00 45.06 51.12 57.18 63.24 69.30 75.36 81.42 87.47 93.53 99.59 105.65 111.71 117.77 123.83 129.89 135.95 142.00 148.06
10% 39.6 32.93 38.98 45.04 51.10 57.16 63.22 69.28 75.34 81.40 87.46 93.51 99.57 105.63 111.69 117.75 123.81 129.87 135.93 141.99 148.04 154.10
20% 43.2 38.97 45.02 51.08 57.14 63.20 69.26 75.32 81.38 87.44 93.50 99.55 105.61 111.67 117.73 123.79 129.85 135.91 141.97 148.03 154.08 160.14
30% 46.8 45.01 51.07 57.12 63.18 69.24 75.30 81.36 87.42 93.48 99.54 105.60 111.65 117.71 123.77 129.83 135.89 141.95 148.01 154.07 160.13 166.18
40% 50.4 51.05 57.11 63.16 69.22 75.28 81.34 87.40 93.46 99.52 105.58 111.64 117.69 123.75 129.81 135.87 141.93 147.99 154.05 160.11 166.17 172.22
50% 54.0 57.09 63.15 69.20 75.26 81.32 87.38 93.44 99.50 105.56 111.62 117.68 123.73 129.79 135.85 141.91 147.97 154.03 160.09 166.15 172.21 178.26
60% 57.6 63.13 69.19 75.24 81.30 87.36 93.42 99.48 105.54 111.60 117.66 123.72 129.77 135.83 141.89 147.95 154.01 160.07 166.13 172.19 178.25 184.30
70% 61.2 69.17 75.23 81.29 87.34 93.40 99.46 105.52 111.58 117.64 123.70 129.76 135.81 141.87 147.93 153.99 160.05 166.11 172.17 178.23 184.29 190.34
80% 64.8 75.21 81.27 87.33 93.38 99.44 105.50 111.56 117.62 123.68 129.74 135.80 141.86 147.91 153.97 160.03 166.09 172.15 178.21 184.27 190.33 196.39
90% 68.4 81.25 87.31 93.37 99.42 105.48 111.54 117.60 123.66 129.72 135.78 141.84 147.90 153.95 160.01 166.07 172.13 178.19 184.25 190.31 196.37 202.43
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100% 72.0 87.29 93.35 99.41 105.46 111.52 117.58 123.64 129.70 135.76 141.82 147.88 153.94 159.99 166.05 172.11 178.17 184.23 190.29 196.35 202.41 208.47
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Table D.8 NPV Sensitivity with Changing Ethanol Price and Tipping Fee (Scenario 1; U.S. Million Dollar) 
Ethanol price ($/gallon) ±10% change 

-100% -90% -80% -70% -60% -50% -40% -30% -20% -10% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
 

0.00 0.13  0.39 0.52 0.65 0.78 0.91 1.04 1.17 1.30 1.43 1.56 1.69 1.82 1.95 2.08 2.21 2.34 2.47 2.60

-100% 0.0 (72.44) (66.20) (59.95) (53.70) (47.46) (41.21) (34.96) (28.72) (22.47) (16.23) (9.98) (3.73) 2.51 8.76 15.01 21.25 27.50 33.74 39.99 46.24 52.48 
-90% 3.6 (66.22) (59.97) (53.72) (47.48) (41.23) (34.98) (28.74) (22.49) (16.25) (10.00) (3.75) 2.49 8.74 14.99 21.23 27.48 33.72 39.97 46.22 52.46 58.71 
-80% 7.2 (59.99) (53.74) (47.50) (41.25) (35.00) (28.76) (22.51) (16.26) (10.02) (3.77) 2.47 8.72 14.97 21.21 27.46 33.71 39.95 46.20 52.44 58.69 64.94 
-70% 10.8 (53.76) (47.52) (41.27) (35.02) (28.78) (22.53) (16.28) (10.04) (3.79) 2.46 8.70 14.95 21.19 27.44 33.69 39.93 46.18 52.43 58.67 64.92 71.16 
-60% 14.4 (47.53) (41.29) (35.04) (28.80) (22.55) (16.30) (10.06) (3.81) 2.44 8.68 14.93 21.17 27.42 33.67 39.91 46.16 52.41 58.65 64.90 71.14 77.39 
-50% 18.0 (41.31) (35.06) (28.81) (22.57) (16.32) (10.08) (3.83) 2.42 8.66 14.91 21.16 27.40 33.65 39.89 46.14 52.39 58.63 64.88 71.13 77.37 83.62 
-40% 21.6 (35.08) (28.83) (22.59) (16.34) (10.10) (3.85) 2.40 8.64 14.89 21.14 27.38 33.63 39.87 46.12 52.37 58.61 64.86 71.11 77.35 83.60 89.85 
-30% 25.2 (28.85) (22.61) (16.36) (10.11) (3.87) 2.38 8.62 14.87 21.12 27.36 33.61 39.86 46.10 52.35 58.59 64.84 71.09 77.33 83.58 89.83 96.07 
-20% 28.8 (22.63) (16.38) (10.13) (3.89) 2.36 8.61 14.85 21.10 27.34 33.59 39.84 46.08 52.33 58.58 64.82 71.07 77.31 83.56 89.81 96.05 102.30
-10% 32.4 (16.40) (10.15) (3.91) 2.34 8.59 14.83 21.08 27.32 33.57 39.82 46.06 52.31 58.56 64.80 71.05 77.29 83.54 89.79 96.03 102.28 108.53
0% 36.0 (10.17) (3.93) 2.32 8.57 14.81 21.06 27.31 33.55 39.80 46.04 52.29 58.54 64.78 71.03 77.28 83.52 89.77 96.01 102.26 108.51 114.75
10% 39.6 (3.94) 2.30 8.55 14.79 21.04 27.29 33.53 39.78 46.03 52.27 58.52 64.76 71.01 77.26 83.50 89.75 96.00 102.24 108.49 114.73 120.98
20% 43.2 2.28 8.53 14.77 21.02 27.27 33.51 39.76 46.01 52.25 58.50 64.74 70.99 77.24 83.48 89.73 95.98 102.22 108.47 114.71 120.96 127.21
30% 46.8 8.51 14.76 21.00 27.25 33.49 39.74 45.99 52.23 58.48 64.73 70.97 77.22 83.46 89.71 95.96 102.20 108.45 114.70 120.94 127.19 133.43
40% 50.4 14.74 20.98 27.23 33.47 39.72 45.97 52.21 58.46 64.71 70.95 77.20 83.45 89.69 95.94 102.18 108.43 114.68 120.92 127.17 133.42 139.66
50% 54.0 20.96 27.21 33.46 39.70 45.95 52.19 58.44 64.69 70.93 77.18 83.43 89.67 95.92 102.16 108.41 114.66 120.90 127.15 133.40 139.64 145.89
60% 57.6 27.19 33.44 39.68 45.93 52.18 58.42 64.67 70.91 77.16 83.41 89.65 95.90 102.15 108.39 114.64 120.88 127.13 133.38 139.62 145.87 152.12
70% 61.2 33.42 39.66 45.91 52.16 58.40 64.65 70.89 77.14 83.39 89.63 95.88 102.13 108.37 114.62 120.87 127.11 133.36 139.60 145.85 152.10 158.34
80% 64.8 39.64 45.89 52.14 58.38 64.63 70.88 77.12 83.37 89.61 95.86 102.11 108.35 114.60 120.85 127.09 133.34 139.58 145.83 152.08 158.32 164.57
90% 68.4 45.87 52.12 58.36 64.61 70.86 77.10 83.35 89.60 95.84 102.09 108.33 114.58 120.83 127.07 133.32 139.57 145.81 152.06 158.30 164.55 170.80
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100% 72.0 52.10 58.34 64.59 70.84 77.08 83.33 89.58 95.82 102.07 108.31 114.56 120.81 127.05 133.30 139.55 145.79 152.04 158.29 164.53 170.78 177.02
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Table D.9 NPV Sensitivity with Changing Ethanol Price and Tipping Fee (Scenario 3; U.S. Million Dollar) 
Ethanol price ($/gallon) ±10% change 

-100% -90% -80% -70% -60% -50% -40% -30% -20% -10% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%  
0.00 0.13 0.26 0.39 0.52 0.65 0.78 0.91 1.04 1.17 1.30 1.43 1.56 1.69 1.82 1.95 2.08 2.21 2.34 2.47 2.60 

-100% 0.0 (50.66) (44.42) (38.17) (31.92) (25.68) (19.43) (13.18) (6.94) (0.69) 5.55 11.80 18.05 24.29 30.54 36.79 43.03 49.28 55.53 61.77 68.02 74.26 
-90% 3.6 (44.43) (38.19) (31.94) (25.70) (19.45) (13.20) (6.96) (0.71) 5.54 11.78 18.03 24.27 30.52 36.77 43.01 49.26 55.51 61.75 68.00 74.24 80.49 
-80% 7.2 (38.21) (31.96) (25.71) (19.47) (13.22) (6.98) (0.73) 5.52 11.76 18.01 24.26 30.50 36.75 42.99 49.24 55.49 61.73 67.98 74.23 80.47 86.72 
-70% 10.8 (31.98) (25.73) (19.49) (13.24) (7.00) (0.75) 5.50 11.74 17.99 24.24 30.48 36.73 42.97 49.22 55.47 61.71 67.96 74.21 80.45 86.70 92.95 
-60% 14.4 (25.75) (19.51) (13.26) (7.01) (0.77) 5.48 11.72 17.97 24.22 30.46 36.71 42.96 49.20 55.45 61.69 67.94 74.19 80.43 86.68 92.93 99.17 
-50% 18.0 (19.53) (13.28) (7.03) (0.79) 5.46 11.71 17.95 24.20 30.44 36.69 42.94 49.18 55.43 61.68 67.92 74.17 80.41 86.66 92.91 99.15 105.40
-40% 21.6 (13.30) (7.05) (0.81) 5.44 11.69 17.93 24.18 30.42 36.67 42.92 49.16 55.41 61.66 67.90 74.15 80.39 86.64 92.89 99.13 105.38 111.63
-30% 25.2 (7.07) (0.83) 5.42 11.67 17.91 24.16 30.41 36.65 42.90 49.14 55.39 61.64 67.88 74.13 80.38 86.62 92.87 99.11 105.36 111.61 117.85
-20% 28.8 (0.85) 5.40 11.65 17.89 24.14 30.39 36.63 42.88 49.13 55.37 61.62 67.86 74.11 80.36 86.60 92.85 99.10 105.34 111.59 117.83 124.08
-10% 32.4 5.38 11.63 17.87 24.12 30.37 36.61 42.86 49.11 55.35 61.60 67.84 74.09 80.34 86.58 92.83 99.08 105.32 111.57 117.81 124.06 130.31
0% 36.0 11.61 17.86 24.10 30.35 36.59 42.84 49.09 55.33 61.58 67.83 74.07 80.32 86.56 92.81 99.06 105.30 111.55 117.80 124.04 130.29 136.53
10% 39.6 17.84 24.08 30.33 36.57 42.82 49.07 55.31 61.56 67.81 74.05 80.30 86.55 92.79 99.04 105.28 111.53 117.78 124.02 130.27 136.52 142.76
20% 43.2 24.06 30.31 36.56 42.80 49.05 55.29 61.54 67.79 74.03 80.28 86.53 92.77 99.02 105.26 111.51 117.76 124.00 130.25 136.50 142.74 148.99
30% 46.8 30.29 36.54 42.78 49.03 55.28 61.52 67.77 74.01 80.26 86.51 92.75 99.00 105.25 111.49 117.74 123.98 130.23 136.48 142.72 148.97 155.22
40% 50.4 36.52 42.76 49.01 55.26 61.50 67.75 73.99 80.24 86.49 92.73 98.98 105.23 111.47 117.72 123.97 130.21 136.46 142.70 148.95 155.20 161.44
50% 54.0 42.74 48.99 55.24 61.48 67.73 73.98 80.22 86.47 92.71 98.96 105.21 111.45 117.70 123.95 130.19 136.44 142.68 148.93 155.18 161.42 167.67
60% 57.6 48.97 55.22 61.46 67.71 73.96 80.20 86.45 92.70 98.94 105.19 111.43 117.68 123.93 130.17 136.42 142.67 148.91 155.16 161.40 167.65 173.90
70% 61.2 55.20 61.44 67.69 73.94 80.18 86.43 92.68 98.92 105.17 111.41 117.66 123.91 130.15 136.40 142.65 148.89 155.14 161.39 167.63 173.88 180.12
80% 64.8 61.43 67.67 73.92 80.16 86.41 92.66 98.90 105.15 111.40 117.64 123.89 130.13 136.38 142.63 148.87 155.12 161.37 167.61 173.86 180.10 186.35
90% 68.4 67.65 73.90 80.15 86.39 92.64 98.88 105.13 111.38 117.62 123.87 130.12 136.36 142.61 148.85 155.10 161.35 167.59 173.84 180.09 186.33 192.58

Ti
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ha
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100% 72.0 73.88 80.13 86.37 92.62 98.86 105.11 111.36 117.60 123.85 130.10 136.34 142.59 148.83 155.08 161.33 167.57 173.82 180.07 186.31 192.56 198.80
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Figure D.1 Effect of Furfural Price on IRR 
 
 

Figure D.2 Effect of Aluminum Price on IRR 
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APPENDIX E 
 
 

Table E.1 Time Line of MSW-Ethanol Project of PMO in the City of Middletown, NY 

Source: Times Herald-Record 2004

Date Event 

February 1994 Pencor, a Baltimore development agency, says it wants to build a 
recycling and manufacturing plant in Middletown. 

December 1994 
Pencor Orange Corp. proposes designing, building and operating a waste-
ethanol facility in Middletown. The proposal is in reply to a city request 
for a company to handle its MSW. 

January 1995 Pencor is named joins with Masada OxyNol Inc., a subsidiary of Masada 
Resource Group, to form Pencor-Masada OxyNol LLC. (PMO).  

January 1996 

The city’s Common Council gives then-city Public Works Commissioner 
authority to solicit trash from neighbors to make a plant viable. The goal is 
700 TPD. Middletown generates 50 TPD. The promise of a long-term, 
fixed price on tipping fees is attractive to many communities.  

September 1997 
Middletown officially signs on to the project as a customer. Five other 
Orange County communities already are signed on to deliver their trash to 
PMO. 

August 1998 Orange County lawmakers reject PMO’s offer to take county garbage. 

March 1999 
25 municipalities or garbage districts sign up to pay PMO to haul and 
process garbage. The city Planning Board approves PMO’s plan to build 
on a former city landfill. 

December 1999 
Nearly 500 people cram a public hearing on the PMO’s proposal. Many 
are concerned about the potential for the plant to pollute the city’s south 
end. 

July 2001 Middletown asks Kroll Associates, an international risk management firm, 
to review PMO. 

November 2001 Kroll requests documents from PMO. PMO provides some material but 
refuses or fails to turn over much of the requested information.  

October 2002 
After reading the Kroll report, the Common Council agrees to spend 
$50,000 to hire a Long Island law firm that specializes in complex 
contracts and limiting risk. 

November 2003 
The common Council receives a copy of the final draft of a contract 
between the city and PMO. Thy mayor says all questions raised by the 
Kroll report have been satisfied.  

December 8th 2003 
The Common Council votes on whether to authorize the mayor to sign a 
contract with PMO. Finally Mayor is allowed to make a contract with 
PMO.  
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