
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


 
 
 
 
 
 
 
 

WHAT CAN WE INFER ABOUT FARM-LEVEL CROP YIELD PDF’s FROM 

COUNTY-LEVEL PDF’s? 

By 

Zhiying Xu 

 

 
 
 
 
 
 
 
 
 
 
 

A PLAN B PAPER 
 

Submitted to 
Michigan State University 

in partial fulfillment of the requirements  
for the degree of 

  
Master of Science 

 
Department of Agricultural Economics 

 
2004 



ABSTRACT 

WHAT CAN WE INFER ABOUT FARM-LEVEL CROP YIELD PDF’s FROM 

COUNTY-LEVEL PDF’s? 

By  

Zhiying Xu 

 

Accurate estimates of farm-level crop yield probability density functions (PDF’s) are 

crucial for studying various crop insurance programs and production under risk and 

uncertainty. Unfortunately, farm-level crop yield PDF’s are difficult to estimate due to 

the lack of sufficient farm yield data. County yield data cover much longer time periods 

than farm yield data, but using county yield distributions to conjecture about farm yield 

distributions is dangerous. The theoretical reason is that county yield is the average of 

correlated farm yields, for which there is no recognizable probability density function 

(PDF). This paper investigates the relationship between farm and county yield 

distributions using both statistical theory and the Monte-Carlo simulation method. 

Results show that under suitable farm yield correlation and density structures, the shape 

of yield distribution at the farm level is similar to that at the county level. A method is 

then developed for estimating and simulating farm yield distributions based on county 

yield PDF estimates and information contained in farm yield data.  

 

Six candidate yield models: normal, beta, Weibull, inverse hyperbolic sine transformation, 

a mixture of normals, and kernel density estimators are applied to Branch County corn 

yields after detrending nonstationary yield data. Goodness-of-fit results for normal, beta 

and Weibull distributions show that Weibull best fits county yields.  The method for 

simulating farm yields is illustrated using kernel density estimates.  
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CHAPTER 1 

INTRODUCTION 

 

Producers of field crops are confronted with relatively high production risk compared to 

industrial manufacturers. Risk and uncertainty in crop yields stems from several sources. 

First, production of most crops often takes several months and yield is highly sensitive to 

many uncontrollable factors such as weather, pests and diseases. Second, varying crop 

management practices that can be controlled by farmers – adoption of new production 

techniques, input (for example, fertilizer) application level, timing of input application, 

and choice of varieties – is likely to result in high yield volatility. In addition, human and 

asset risks such as illness or death of a farm operator, loss or damage to the farm 

machinery and livestock may have significant impacts on crop yields.  

 

Yield risk for a given crop can differ systematically over space due to changing 

agroecological conditions, mainly climate and soil type. Studies by Economic Research 

Service (ERS), USDA found that corn yield volatility1 tends to be lowest in irrigated 

areas (such as Nebraska) and in the central Corn Belt (Iowa and Illinois) where climate 

and soils are ideal for corn production. It is typically higher outside the Corn Belt and in 

areas where corn acreage tends to be low.  

 

A wide array of risk management tools and strategies are available for managing farm 

income risk which stems from yield and price risks, such as crop insurance, forward 

                                                 
1 It is often measured by coefficient of variation (CV) indicator. 
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contracts, futures, options and crop diversification. Accurate characterizations of farm-

level yield distributions, especially their lower tails, are important to many parties 

including farmers, insurance companies, lenders and the federal government: they are 

necessary for farmers to make sensible risk-management decisions, for insurance 

companies to precisely rate insurance premiums, and for lenders and the federal 

government to devise and provide farm risk management products.  

 

Modeling and estimation of farm-level crop yield distributions is difficult for several 

reasons. First, historical farm yield data are available for at most 20 years and generally 

much less (Ker and Coble), which makes it difficult to estimate yield probability density 

function (PDF). Most studies resorted to county level or higher levels of aggregate time-

series data that cover longer time periods, which may lead to improper representation of 

farm-level yield distributions. Yield volatility is likely to be lower at the county, district, 

state and national levels than at the individual farm level due to the averaging effect over 

the region of aggregation. Farm-level yield risk can be seriously underestimated with 

county-level or higher levels of data. Second, time-series crop yield data are usually 

found to be nonstationary, i.e., they are not the outcome of the same data generating 

process.  Potential upward trend and increase in yield variance over time further 

complicates the estimation of yield PDF. Third, it has been recognized that crop yields 

may not be normally distributed in the relevant production range. However, there is little 

theoretical guidance regarding the most appropriate representation for the shape of the 

crop yield distribution.  
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The overall purpose of this paper is to investigate and simulate crop yield distributions at 

the farm level, expanding the existing literature by suggesting methodological 

improvements in assessing and simulating farm-level yield distributions when farm-level 

yield data are not sufficient.  Specifically, the objectives of this paper are to: (i) apply 

multiple candidate yield models to assess yield distributions and compare these models; 

(ii) investigate the relationship between farm-level and county-level yield distributions 

using both statistical theory and Monte-Carlo simulation analysis; (iii) develop a new 

method for simulating farm-level yield distributions.  

 

This paper is organized into eight chapters. Chapter 2 is literature review. Six candidate 

models are discussed in Chapter 3: normal, beta, Weibull, inverse hyperbolic sine 

transformation, a mixture of two normals, and nonparametric kernel estimators. Chapter 4 

deals with detrending time-series yield data. The relationship between county-level and 

farm-level yield distributions is investigated in Chapter 5. Chapter 6 is a case study 

applying multiple candidate models. A new method for simulating farm-level yield 

distributions is developed in Chapter 7. Chapter 8 concludes with summary of the major 

results.  
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CHAPTER 2 

LITERATURE REVIEW 

 

The issue of modeling crop yield distributions has received attention in the agricultural 

economics literature since the 1960s. Day (1965) estimated yield distributions using 

Mississippi experimental data with seven nitrogen levels for cotton, corn and oats. He 

argued that crop yield distributions are nonnormal and positively skewed because 

excellent weather condition must prevail throughout the entire growing season if high 

yields are to be obtained while bad weather during any critical period can significantly 

reduce yields. However, positive skewness was found only for cotton and no significant 

skewness or negative skewness was found for corn and oats. Lognormality test results 

suggest that lognormal cannot be used for representing yield distributions in most cases. 

Day employed the Pearson system of density functions2 to approximate unknown yield 

distributions. Despite its flexibility in representing various shapes of yield distributions, 

this system is restrictive for stochastic processes that have strongly skewed PDF’s or 

PDF’s with multiple modes.     

 

Gallagher (1987) found negative skewness for U.S. average soybean yields and he 

reasoned, “Yield cannot exceed the biological potential of the plant, yet it can approach 

zero under blight, early frost or extreme heat”. He also found that “soybean yield 

variability has changed systematically over the past five decades” and “the variance of 

U.S. soybean yields has been increasing”.  He modeled skewness and changing variance 

                                                 
2 It was developed by Karl Pearson(1895). The Pearson system is determined by its first four moments.  
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of soybean yields using a gamma distribution function3. Norwood et al. (2004) pointed 

out that it is difficult to identify the maximum yield needed to implement the GAMMA 

model when conducting forecasts. 

 

Nelson and Preckel (1989) used a conditional beta distribution as a priori assumption to 

model the distribution of farm-level corn yields in five Iowa counties and confirmed 

negative skewness. They estimated the maximum attainable yield by maximum 

likelihood and modeled deviations of yield from its maximum value as a conditional beta 

distribution. The beta distribution has the flexibility of fitting skewness in either direction 

and may have the bell-shape suggested by Day. Their analysis did not consider 

correlation of yields between farms in the same county when pooling farm-level data to 

estimate corn yield response to fertilizer applications.  

 

Moss and Shonkwiler (1993) estimated a stochastic trend model with possible nonnormal 

disturbances for U.S. corn yields. They found negative skewness using an inverse 

hyperbolic sine transformation (IHST) of residuals. IHST simultaneously shrinks large 

residuals toward zero and parameterizes residual skewness and kurtosis within the 

stochastic trend framework. Homoskedasticity has to be imposed because the Kalman 

filter loses tractability under heteroskedasticity.  

 

Goodwin and Ker (1998) used a flexible nonparametric kernel method to model county-

level crop yield distributions in their study of rating group-risk crop insurance contracts. 

                                                 
3 The density function of a gamma distribution can be expressed by two parameters.  
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Nonparametric kernel models make no explicit assumption about the functional form of 

the yield probability density function. They commented that, because kernel density 

estimation techniques require the choice of a kernel function and bandwidth, and the rate 

of convergence to the true density is relatively slow, a parametric specification would be 

more desirable if one knows the true functional form of the density.  

 

Just and Weninger (1999) challenged the predominant view that crop yield distributions 

are nonnormal by arguing that rejection of normality may be the result of methodological 

and data limitations and the normal distribution should remain a reasonable candidate for 

modeling yield densities. They found that normality is difficult to reject when flexible 

polynomial trends are used for mean yield and yield variance.   

 

Ramirez et al. (2003) addressed the procedural issues raised by Just and Weninger by 

using improved model specifications, estimation and testing procedures. Their findings 

reaffirmed nonnormality and left skewness of Corn Belt corn and soybean yields. They 

emphasized that because the type-two errors in the normality tests are unknown, 

nonrejection does not prove yield normality.  

 

Ker and Coble (2003) proposed a semiparametric method for modeling yield distributions. 

Normal and beta distributions were used first to estimate corn yield densities and 

nonparametric kernel estimator was employed to correct the estimates. Their simulation 

results indicated that the semiparametric estimator with a normal distribution is more 

efficient than the competing parametric models (Normal and Beta) and the standard 
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nonparametric kernel estimator. 

 

Sherrick et al. (2004) compared the beta, Weibull, logistic, normal and lognormal 

distributions in estimating farm corn and soybean yield densities and found that the 

Weibull and beta distribution ranked highest based on the goodness-of-fit measures. They 

also calculated the expected payouts to APH insurance with results suggesting significant 

differences across distributions in the expected value of APH insurance due solely to 

distributional assumptions.  

 

Using the Ramirez data, Norwood et al. (2004) applied a new method of model 

evaluation based on the out-of-sample log-likelihood function values to six popular yield 

models and found that a model developed by Goodwin and Ker outperforms the 

competing models in forecasting out-of-sample county average yields. 
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CHAPTER 3 

CANDIDATE YIELD MODELS 

 

Various approaches to representing yield distributions can be segmented into two primary 

groups: parametric and nonparametric, depending on whether they appeal to a known 

parametric distribution or, alternatively, whether they use nonparametric techniques. 

Most yield distribution models are of a parametric nature. Under this approach, a specific 

parametric distribution is selected a priori and parameters of the distribution are estimated 

using observed yield data. The entire yield distribution is fully represented by the 

parameter estimates. Past parametric approaches to estimating yield distributions used the 

normal, lognormal, the Pearson system, beta, gamma, logistic, Weibull, inverse 

hyperbolic sine transformation (IHST) of normality, and a mixture of normal 

distributions. Some yield models used nonparametric/semiparametric approaches based 

on kernel estimating technique. Nonparametric kernel methods do not make any explicit 

assumption about the functional form of the yield probability density function (PDF) and 

thus “distribution free”.  

 

In this chapter, six candidate distributions are discussed including the normal, beta, 

Weibull, IHST, a mixture of normals, and kernel methods. Recently, the normal 

distribution has been frequently examined in agricultural risk management and crop 

insurance literature owing to Just and Weninger’s strong defense. Beta, Weibull, IHST, 

and kernel methods all have their support in the literature, but no consensus has been 

reached regarding the most appropriate characterization of crop yield distributions. Bi-
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polarity of crop yields was proposed recently by Goodwin and Ker, but few studies have 

examined a mixture of two normal distributions which could be a potential candidate for 

modeling crop yields.  

 

3.1 Normal (Gaussian) Distribution 

Just and Weninger argued that since normality can’t be easily rejected under correct 

model specification and normality tests, normal distribution should remain a reasonable 

candidate for yield models.  

 

The density function of a normal distribution with mean µ and standard deviation σ 

(where ∞<<∞− µ , 0>σ ) is 

( ) 22 2/

2
1)( σµ

πσ
−−= xexf ,  ∞<<∞− x  

The entire distribution depends on two parameters, µ and σ. The normal distribution is 

symmetric, bell shaped, and unbounded in the real number line R. Generally the 

likelihood of predicting a crop yield being less than zero is negligible.  

 

3.2 Beta Distribution 

Most studies used the beta distribution as a priori distribution when sufficient evidence of 

skewness and/or kurtosis was found in their yield data.   

 

The density function of the beta distribution is 
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( )
1

11

))(,(
)()( −+

−−

−
−−

= qp

qp

abqpB
xbaxxf , ,bxa ≤≤  0, >qp  

where a and b are the lower and upper bounds of the distribution respectively,  p and q 

are the shape parameters,  B(p,q) is the beta function. The beta function has the fourmula: 

∫ −− −=
1

0

11 )1(),( dtttqpB qp  

 

Beta distribution allows a wide range of skewness and kurtosis, and can be symmetric as 

well. The upper and lower bounds of the distribution are either specified or estimated in 

yield modeling applications. 

 

3.3 Weibull Distribution 

Weibull distribution has been proposed recently for modeling yields with very few 

applications in the agricultural economics literature. 

 

The density function of the 2-paramer Weibull distribution has the form: 

( )( ),/exp)(
1

γ
γ

α
αα

γ xxxf −⎟
⎠
⎞

⎜
⎝
⎛=

−

 ,0≥x  0, >αγ  

where γ  is the shape parameter and α is the scale parameter. 

 

Weibull distribution has many appealing properties, such as being bounded by zero and 

allowing for a wide range of skewness and kurtosis. 
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3.4 IHST Model  

Moss and Shonkwiler applied inverse hyperbolic sine transformation technique in 

modeling U.S. corn yields. Their approach allows flexible specifications of yields and 

simultaneous estimation of central tendency and nonnormality. A standard stochastic 

trend model (Kalman filter) was used to estimate the central tendency (or the mean) of 

the distribution, and nonnormality within the stochastic trend was estimated by IHST that 

corrects both skewness and kurtosis. A limitation of this model is that Kalman filter loses 

tractability under heteroskedasticity.  

 

Wang et al. (1998) proposed another method which is a variation of the model developed 

by Moss and Shonkwiler: 

ttt uyty +++= −1210 lnln βββ , 

                                                       
θ

δθ ))(sinh( +
= t

t
vu                                            (1) 

                                                       vt ~ N(0,ς2). 

where lnyt is the logarithm of yield at time t; ut is the non-normal error; vt is an 

independently and identically distributed (i.i.d) normal disturbance with mean zero and 

variance ς2; sinh( ) is the hyperbolic sine transformation; δ and θ measure skewness and 

kurtosis respectively. The lagged term lnyt-1 captures autocorrelation so that ut is i.i.d. If 

δ>0 (δ<0), the distribution is skewed to the right (left) and if δ=0 the distribution is 

symmetric. If 0≠θ , the distribution is kurtotic. 
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The first equation in (1) is a time-series econometric model using observations on yield 

itself. It describes that the mean of the current yield might have relation with time and 

last period’s yield. The observed or realized yield yt is a sum of the mean yield and the 

stochastic nonnormal shock, ut. The second equation transforms the nonnormal shock ut 

into normal shock vt by the modified IHST.  

 

Because the model is nonlinear in parameters, maximum log likelihood is used to 

estimate the parameters. The maximum log likelihood function is given in equation (2): 

   
δθςβββ ,,,,, 2

210

MAX  L = ∑
=

+++−
T

t
t

t uv
1

22
2

2
2 )]1ln([ln

2
1 θ

ς
ς ,                                                 (2)      

   vt = δ
θ
θ

−
− )(sinh 1

tu  

= δθθ
θ

−++ )1)(ln(1 2
tt uu ,                                                                                             

ut= 1210 lnln −−−− tt yty βββ  

Six parameters β0, β1, β2, ς, θ and δ are chosen to maximize the log likelihood function. 

 

3.5 A Mixture of Normals   

Few empirical applications used a mixture of normal distributions to model yields. Ker 

and Goodwin (2000) argued that it is possible for the unknown yield distribution to be bi-

modal and negatively skewed due to the effects of catastrophic events such as drought, 

flood and freeze. Observed yields can be seen as drawn from one of two distinct sub-

populations: a catastrophic sub-population and a non-catastrophic sub-population. That 

is, if a catastrophic event occurs in a particular year, yields are drawn from the 
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catastrophic sub-population; if no such an event occurs in a year, yields are drawn from 

the non-catastrophic population. The distribution from catastrophic years (secondary 

distribution) lies on the lower tail of the distribution from non-catastrophic years (primary 

distribution) and has considerably less mass, which leads to negative skewness of yields.  

The secondary distribution lies to the left of the primary distribution because yields tend 

to be much lower in catastrophic years. It would also be expected that the secondary 

distribution has less mass since catastrophic events occur with much less frequency than 

their complement. Therefore, yield distribution could be negatively skewed and bi-modal 

if the mass of catastrophic distribution is non-negligible and the catastrophic distribution 

is relatively peaked.   

 

Above structure proposed by Ker and Goodwin seems reasonable in terms of assuming 

the existence of two distinct sub-populations of yields. They considered yield distribution 

as being formed by primary distribution from non-catastrophic years and secondary 

distribution from catastrophic years, one on the right and the other on the left. This might 

cause confusion because given the two sub-populations the entire yield distribution is not 

a simple connection of the two distributions at some point. Instead, it is a mixture of the 

two distributions. In other words, density of any particular yield level is an expected 

density or, a mixture of the densities from two distributions.  

 

The probability density function of a mixture of normal distributions has the following 

form:                          
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 f(y; p, µ, σ)=∑
=

k

i
iii ygp

1

),;( σµ  

( )
⎥
⎦

⎤
⎢
⎣

⎡ −
−= 2

2

2 2
exp

2

1),;(
i

i

i

ii
y

yg
σ
µ

πσ
σµ  

         1
1

=∑
=

k

i
ip  

where y is the variable of interest; g(y; µi, σi) is the normal density function with mean µi 

and standard deviation σi; p1, …, pk are the mixing probabilities. The parameters µ1,…,µk , 

σ1,…,σk and p1,…,pk, are estimated by maximum likelihood along with standard errors 

obtained from the observed information matrix, i.e., the inverse of the Hessian matrix.  

 

3.6 Kernel Density Estimator  

Parametric approaches assume that yield distribution follows a known functional form, 

but specific functional form assumptions about crop yield distributions may not be well 

justified. Contrary to parametric estimators, nonparametric estimators do not assume any 

particular functional form for yield PDF.  

 

Nonparametric kernel density estimators approximate the PDF from observations on the 

variable of interest and therefore are fully flexible in capturing local idiosyncrasies in 

yield distributions that may not be properly reflected in parametric specifications. In 

addition, kernel density estimators are mathematically tractable and easy to implement.  

 

The nonparametric kernel density estimator is the vertical sum of densities placed over 

each observation. Unlike histograms, the individual kernel intervals, or windows, are 



 15

allowed to overlap. Rather than merely counting the number of observations in a window 

as in a histogram, a weight between 0 and 1 is assigned to each value based on its 

distance from the center of the interval and it is the weighted values that are summed. 

The kernel is a function determining these weights. A kernel density estimator has the 

form: 

∑
=

⎥⎦
⎤

⎢⎣
⎡ −

×
=

n

i

i

h
Xx

K
hn

xf
1

1)(  

where K is a symmetric probability density function satisfying the condition: 

[ ] 1=∫
∞

∞−
dzzK , Xi is the observation, n is the number of observations, and h is the 

window-width or the smoothing parameter. Kernel functions can be Gaussian, 

Epanechnikow, triangular, biweight, cosine, or rectangular density.  

Silverman(1986) evaluated the efficiency of many potential kernels in terms of mean 

integrated squared error and concluded that, while there is little difference between the 

potential kernels, the Epanechnikov kernel is the most efficient in  minimizing the mean 

integrated squared error. The Epanechnikov kernel that has the form: 

⎪⎩

⎪
⎨
⎧ ≤−

=
.,0

5),
5
11(

54
3

)(
2

otherwise

zifz
zK  

 

The choice of window-width or smoothing parameter, h, controls the amount by which 

the data are smoothed in a kernel density estimate. The smoothing parameter is similar to 

the inverse of the number of bins in a histogram; smaller widths mean more detail.  
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The choice of the value of h is essentially a compromise between smoothing enough to 

remove insignificant bumps and not smoothing too much to smear out real peaks. 
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CHAPTER 4 

STATIONARY YIELD DATA 

 

Time-series crop yield data may be nonstationary, i.e., not generated by the same data 

generating process (DGP) due to technologic, economic, and behavioral changes. The 

trend component, in any (either deterministic or stochastic), must be controlled for before 

assessing the yield distribution at a point in time.  In this chapter, trend estimation 

methods are discussed and two approaches for deriving stationary yield data are proposed.  

 

4.1 Detrending Yield Data  

Many studies have used a deterministic trend (for example, a simple linear trend) to 

model the growth path of average yield assuming that mean yield increases at a 

deterministic rate due to technology developments. However, technology 

generating/adopting function is not necessarily deterministic, or in other words, crop 

yield may grow at a random rate over time. If yield series has a stochastic trend, 

regressing yield against time functions would result in spurious parameter estimates. 

Therefore, stochastic trend should be tested before identifying any potential deterministic 

trend in the yield series. Augmented Dickey Fuller (ADF) and Phillips-Perron (PP) tests 

are the most common approaches for testing for the existence of a stochastic trend. The 

ADF test is used in this paper. If the unit root hypothesis can’t be rejected, we should 

difference the yield series.  
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After controlling for the stochastic trend component (or passing the unit root test), 

deterministic trend should be examined. Just and Weninger suggested polynomial time 

functions for estimating deterministic trends. Some studies regressed yields against a 

polynomial time function and tested down towards the linear trend based on F-tests.  

Specifically, t
n

nt ttty εββββ +++++= ...2
210  

is assumed by arbitrarily choosing n and tested down based on F-tests. 

 

This paper proposes a model that nests both trend and autocorrelation possibilities within 

a time-series model specification: 

ttt uytty ++++= −13
2

210 ββββ  

where yt is the yield (or differenced yield if there is a unit root) at time t, yt-1 is the one-

period lagged yield, and ut is the disturbance. Quadratic trend is assumed because 

empirical studies in this research area found evidence for at most quadratic trend and 

generally linear trend (Sherrick et al.). Yield data are fitted to above model and t-tests are 

used to determine the appropriate time-series model.  

 

Next, adequacy of the estimated time-series model is investigated using diagnostic tests 

including tests for the presence of heteroskedasticity and serial correlation. Specifically, 

the presence of heteroskedasticity is assessed using White test and serial correlation using 

general regressors (Wooldridge).  

 

After obtaining evidence of adequacy to the time-series model, yield data are detrended 

to a base year before assessing yield distributions.  Two methods can be used to detrend 
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yield data based on different assumptions. If constant Coefficient of Variation (CV) is 

assumed, yield data are detrended to the base year according to:    

t

t
baseyeart y

y
yy

ˆ
ˆ ×=′  

where baseyearŷ  is the predicted yield for the base year from the time-series model,  
t

t

y
y
ˆ

 is 

the ratio of observed yield to predicted yield for period t, and ty′  is the detrended yield. If 

no assumption about the CV is made, yields are detrended using )ˆ(ˆ ttbaseyeart yyyy −+=′ .  

Through these methods, all yields are converted to the base year equivalents which are 

used to estimate candidate yield distributions. 

 

Some studies employed IHST models to simultaneously capture yield trend and estimate 

the distribution of the residuals derived from the yield trend estimation. This paper 

applies IHST to a case study as one of the candidate yield models. ARIMA was used by 

Goodwin and Ker to model yield trends.  Generally large samples are required for 

ARIMA model estimation. This paper does not apply this method to the case study due to 

the limited sample size. 
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CHAPTER 5 

FARM-LEVEL AND COUNTY-LEVEL YIELD DISTRIBUTIONS 

 

Yield volatility at the farm level is crucial for studying various crop insurance programs 

and production under risk and uncertainty. Unfortunately, historical farm-level yield data 

are available for relatively short time horizons (at most 20 years and generally much less), 

which poses a major obstacle in identifying the shape of farm-level yield distributions. 

Most studies resorted to county-level yield data and conjectured about farm-level yield 

distributions using county-level yield distributions. This method may lead to serious 

mischaracterization of farm-level yield risk due to the averaging effect. We investigate 

the relationship between farm- and county-level yield PDF’s using both statistical theory 

and Monte-Carlo simulation study in this chapter.  

 

5.1 Averaging Effect 

Very few farm yield modeling applications estimated county-level yield PDF and 

converted it into the farm-level PDF using a mean preserving spread technique. These 

studies conjectured that yield distribution at the county level might be similar to that at 

the farm level as geographical conditions in a given county are similar across farms while 

the variance at the county-level is smaller than at the farm-level due to the averaging 

effect. Most research on crop yield distributions either just estimated county-level yield 

PDF’s or implicitly assumed that farm-level yield PDF’s can be represented by county-

level yield PDF’s. Surprisingly, the relationship between farm- and county-level yield 

PDF’s has never been formally investigated in the literature.  This chapter seeks to fill 
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this research gap. 

 

Data generating process (DGP) for crop yields at the farm level is different from that at 

the county level. County yield is the average of correlated farm yields, for which there is 

no recognizable PDF as indicated by statistical theory. Thus using county-level yield 

PDF to conjecture about farm-level yield PDF is dangerous. It might lead to serious 

mischaracterization of farm-level yield distributions.  

 

Farm-level and county-level yield PDF’s do not share the same distributional form except 

for an extreme case when farm yields in a given county are independent and normally 

distributed. That is, if farm yields ),(~ iii Normaly σµ , i=1,…, n, and  yi are 

independent , then the county yield,  ∑
=

n

i
iy

n 1

1 , is also normally distributed with mean 

∑
=

n

i
in 1

1 µ  and standard deviation ∑
=

n

i
in 1

21 σ , where n is the number of farms in the county, 

yi is the yield for farm i, µi and σi are the mean and standard deviation for farm i 

respectively. Another important statistical theory, central limit theorem, indicates that 

county yields are approximately normally distributed if there is sufficient number of 

farms in a given county and farm yields are independent (they can have any PDF). Under 

central limit theorem county and farm yield distributions may have very different shapes, 

so inferring about farm-level distribution based on county-level distribution can be 

misleading if conditions for the central limit theorem are met. Nevertheless, these 

theorems regarding independent random variables are generally not applicable to the real 
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world because farm yields in a given county are often correlated due to similar weather 

conditions and soil types.  

 

As long as farm yields in a county are correlated, there is no recognizable PDF for the 

county yields. However, we suspect that the structure of yield PDF’s at the farm and 

county levels may be similar in some cases when non-systemic randomness is relatively 

weak compared to systemic randomness. We use Monte-Carlo simulation method to 

investigate the relationship between farm- and county-level yield distributions when farm 

yields are correlated.  

 

5.2 Monte-Carlo Simulation Analysis 

A simple Monte-Carlo simulation is conducted using @Risk software as follows: 

(1) Set the number of farms in a county: n=5 

(2) Specify the functional form of farm-level yield PDF’s: BetaGeneral(22.5, 2.5, 0, 

200) is chosen for all the farms for simplicity, where 22.5 and 2.5 are the shaper 

parameters, 0 is the lower bound and 200 is the upper bound. The PDF graph of 

this distribution is given in Figure 1. 
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Figure 1: Beta Distribution 
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(3) Specify the correlation matrix between farm yields:  

  Farm A Farm B Farm C Farm D Farm E 

Farm A 1 0.8 0.8 0.8 0.8 

Farm B 0.8 1 0.7 0.7 0.6 

Farm C 0.8 0.7 1 0.6 0.7 

Farm D 0.8 0.7 0.6 1 0.7 

Farm E 0.8 0.6 0.7 0.7 1 

 

(4) Set county yield as the average of farm yields and run the simulation  

(5) Obtain ranking of candidate fits for the simulated county yield data based on Chi-

square, Anderson-Darling and Kolmogorov-Smirnov statistics. 

 

The beta distribution is ranked highest among common parametric distributions. Test 

statistics for the first three best fits are presented below in Table 1. 
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Table 1: Distribution Fits for Simulated County Yields 

  Beta Logistic Normal 
 Test Value 34.47 754.38 793.98 

Chi-Sq P Value 0.99 0 0 
 Rank 1 2 3 
 Test Value 0.25 46.02 64.17 

A-D P Value not available < 0.005 < 0.005 
 Rank 1 2 3 
 Test Value 0.01 0.06 0.07 

K-S P Value not available < 0.01 < 0.01 
 Rank 1 2 3 

 
      
Fitted distributions are plotted in Figures 2 – 4. 
 
Figure 2: Fitted Beta Distribution 
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Figure 3: Fitted Logistic Distribution 
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Figure 4: Fitted Normal Distribution 
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Above simulation results indicate that a Beta distribution fits the simulated county yield 

data very well and much better than other functional forms (based on P-values) although 

theoretically county yields can not be strictly characterized as a Beta distribution. Hence 

we might be able to conclude that county-level and farm-level yield distributions are 

similar in shape under some circumstances such as high yield correlations and similar 

structure of yield PDF’s across farms.   

 

Ker and Coble stated in their footnote, “Our results are with respect to county crop-yield 

distributions and using them to conjecture about farm-level distributions is dangerous. 

Having given sufficient warning, we feel there are cases where these conjectures are 

more reasonable than others. As spatial area increases, spatial averaging reduces the 

effect of non-systemic or local randomness while the systemic or area randomness 

remains. However, depending on the degree of systemic randomness versus non-systemic 

randomness for the crop-farm combination, the structure of yield densities at the county 

and farm level may be quite similar. In instances where the non-systemic randomness is 

relatively weak, for example, where GRP is in demand, our results could shed light on the 

structure of farm-level yield distributions.”  Their statement is supported by the formal 

simulation analysis of this chapter. 

 

This section examines the relationship between county- and farm-level yield distributions 

under one Monte-Carlo simulation setting. Future research in this area would investigate 

broader scenarios including alternative number of farms, multiple candidate functional 

forms and correlation structures.   
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CHAPTER 6 

A CASE STUDY OF CORN YIELDS IN BRANCH COUNTY, MICHIGAN 

 
In this chapter, we conduct a case study of estimating corn yield PDF for Branch County, 

Michigan. Section 1 detrends corn yield data; Section 2 fits Normal, Beta, and Weibull 

distributions to the detrended yield data and compares these distributions using goodness-

of-fit results; Section 3, 4, and 5 estimate IHST, a mixture of two normals and kernel 

density respectively. 

 

6.1 Detrending Yield Data  

Annual corn yield data for Branch County, Michigan were collected from the National 

Agricultural Statistics Service (NASS) of the United States Department of Agriculture. 

 

Historical corn yields are plotted in Figure 5. 

Figure 5: Branch County Average Corn Yields (1965-1998) 
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Summary statistics are given in Table 2. 

Table 2: Summary Statistics for Branch County Corn Yields (1965-1998) 

Variable    Mean    Standard Deviation 
 
Minimum

                 
Maximum 

Corn yield    93.03            22.74 49.00          125.11 

    Number of Observations=34     
 

Figure 5 suggests an upward trend in the average corn yields. Dickey-Fuller unit root test 

was conducted first to examine if there is any stochastic trend component in the yield 

series. The following model was estimated for the augmented Dickey-Fuller test: 

t
i

ititt ucornyieldcornyieldtcornyield +∆⋅+⋅+⋅+=∆ ∑
=

−−

2

1
1210 γβββ , 

where ∆cornyieldt is the first difference of cornyieldt , t is the time trend, cornyieldt-1 is 

the lagged cornyieldt , and ∆cornyieldt-i is the ith lag of  ∆cornyieldt.  

 

The two lags of ∆cornyieldt  were both individually and jointly insignificant at the 5% 

level, so they were dropped from the model and the Dickey-Fuller test was conducted 

again for  

ttt ucornyieldtcornyield +⋅+⋅+=∆ −1210 βββ  

The estimate of β2, coefficient on cornyieldt-1, is –1.01 and the test statistic is –5.498, so 

we reject the null hypothesis unit root at the 5% level. OLS results of the two regressions 

are presented in Table 3. 
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Table 3: OLS Results 
Dependent Variable: ∆cornyieldt 
 
t 

2.001 
(0.714) 
[0.525] 

1.80 
(0.43) 

 
cornyieldt-1 

-1.22 
(0.347) 
[0.274] 

-1.01 
(0.18) 

 
∆cornyieldt-1 

0.147                 
(0.276) 
[0.227] 

 
___ 

 
∆cornyieldt-2 

0.097 
(0.205) 
[0.101] 

 
___ 

 
constant 

79.2 
(20.84) 
[16.2] 

62.26 
(12.11) 

Observations 
R-squared 
Adj. R-squared 

31 
0.5505 
0.4813 

33 
0.5023 
0.4691 

Note: The quantities in parentheses below the estimates are the standard errors, and in brackets are the 
robust standard errors. 
 

Now we can safely use the yield data to estimate the following time-series model: 

ttt ucornyieldttcornyield +⋅++⋅+= −13
2

210 ββββ  

The estimated equation is: 

1
2 08.005.074.392.54ˆ −−−+= tt cornyieldttyieldncor  

                                                   (12.69)  (1.29)  (0.03)   (0.18)                                                         
                              n=33    R-squared=0.6331     Adj. R-squared=0.5951 
 
Coefficient estimate on cornyieldt-1 has a t statistic of –0.438, which is statistically 

insignificant at the 5% level, so cornyieldt-1 was dropped from the model.  The equation 

is estimated to be: 

   204.0296.347.52ˆ ttyieldncor t −+=                                              
(7.55)  (0.994)  (0.03) 

                          n=34     R-squared=0.6534   Adj. R-Squared=0.6310 
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For the above model, we conducted diagnostic tests, i.e., we tested for heteroskedasticity 

and serial correlation. The F statistic from the White test for the heteroskedasticity is 0.25 

and the p-value is 0.78, so we can’t reject the null hypothesis of homoskedasticity. The 

test for serial correlation with general regressors gives the t statistic of -0.44 and the p-

value of 0.67, which implies no serial correlation in the residuals. The results from 

diagnostic tests indicate that the above time-series model is adequate. 

 

The model was re-estimated using robust regression method4 that weights observations 

automatically so that the influence of outliers can be reduced.   

 

Table 4 shows the robust regression result of the model: 

tt uttcornyield ++⋅+= 2
210 βββ  

Table 4: Robust Regression Results 
 Coefficient Std. error t statistic P-value 
t 
 

3.73 0.63 5.88 0.000  

t2 -0.052 0.018 -2.94 0.006  
      
Constant 52.34 4.81 10.88 0.000  
      
Number of obs.=34, F(2,31)=82.37, Prob>F=0.0000 

 

Next yield data were detrended to the base year of 1998 using    

)ˆ(ˆ 1998 ttt ieldycorncornyieldieldycorndcornyiel −+=′  

Histogram of the stationary yield data is displayed in Figure 6. 

                                                 
4 See appendix. 
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Figure 6: Histogram of Branch County Corn Yields under 1998 Technology 
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6.2 Normal, Beta and Weibull Estimates and Goodness-of-fit Tests 

Using the detrended yield data from section 6.1, this section estimates Normal, Beta and 

Weibull distributions by maximum likelihood estimation method and compares these 

distributions by goodness-of-fit results including Chi-square, Anderson-Darling and 

Kolmogorov-Smirnov statistics5.  

 

Figures 7 – 9 display the parameter estimates and PDF plots for the estimated 

distributions.  

 
 
 
 
 
 

                                                 
5 @RISK software is used to estimate candidate distributions in this section. 
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Figure 7: Normal Estimates 
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Figure 8: Beta Estimates 
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Figure 9: Weibull Estimates 
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Goodness-of-fit tests for Normal, Beta, and Weibull distributions are reported in Table 5. 

Table 5: Goodness-of-Fit Tests of Candidate Distributions 
    Normal Beta Weibull 

Chi-Sq Test Value 14.18 8.41 4.71 
  P Value 0.0277 0.2095 0.5821 

A-D Test Value 1.65 Infinity 0.98 
  P Value < 0.005 N/A 0.01 <= p <= 0.025

K-S Test Value 0.18 0.11 0.12 
  P Value < 0.01 N/A > 0.1 

 

Normality of yield distribution is strongly rejected by Chi-square, Anderson-Darling (A-

D) and Kolmogorov-Smirnov (K-S) tests, which indicates that the corn yield distribution 

is very unlikely to be normal. Weibull distribution is rejected by A-D test, but not 

rejected by Chi-square and K-S tests at the 5% level; Beta distribution is not rejected by 

the Chi-square test, but the P-values of A-D and K-S tests for Beta distribution are not 
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available. The results from Chi-square tests suggest that the Weibull distribution fits the 

data best compared to the normal and beta distributions because it has the largest P-value.  

 

 6.3 IHST Estimates 

This section estimates the IHST model which has the form: 

tt uttcornyield ++⋅+= 2
210)log( βββ , 

                                 
θ

δθ ))(sinh( +
= t

t
vu                                             

                                 vt ~ N(0,ς2) 

where ut is the non-normal disturbance; sinh( ) is the hyperbolic sine transformation 

(HST); vt is an i.i.d normal disturbance with mean zero and variance ς2; δ and θ are 

parameters measuring skewness and kurtosis respectively. Generally, when δ is positive 

ut is skewed to the right, if it is negative ut is skewed to the left, and if it is zero ut is 

symmetric. When θ is zero, ut is as kurtotic as the normal distribution (the limit of ut is 

vt+δ as θ approaches zero) and ut becomes more and more kurtotic as the magnitude of θ 

increases either positively or negatively.  

 

The first equation is the trend equation, which describes the central tendency of the 

current yield as being determined by time. The transformed stochastic variable, ut, has a 

non-zero mean which is determined by the three parameters of the transformation. 

Although still deterministic, the central tendency of cornyieldt is the sum of the first three 

terms and E(ut) in the equation. The realized yield is a combination of the deterministic 

central tendency and a stochastic non-normal shock. The second equation converts the 
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non-normal shocks to normal shocks by the modified HST. Because the model is 

nonlinear in parameters, maximum log likelihood estimation method is used for 

estimating the parameters6. The maximum log likelihood function is: 

MAX L= ∑
=

+++−
T

t
t

t uv
1

22
2

2
2 )]1ln([ln

2
1 θ

ς
ς  

vt= δ
θ
θ

−
− )(sinh 1

tu = δθθ
θ

−++ )1)(ln(1 2
tt uu  

ut=
2

210)log( ttcornyield t βββ −⋅−−  

 

Estimation results are displayed in Table 6. 

Table 6: IHST Model Estimates 
 
Coefficient 

 
Estimates and Standard Errors

 
t-statistic 

 
P-value 

 
β0 

4.0 
(0.09) 

 
42.85 

 
0.00 

 
β1 

0.044 
(0.012) 

 
3.55 

 
0.001 

 
β2 

-0.0007 
(0.0003) 

 
-1.93 

 
0.063 

 
θ 

7.46 
(3.66) 

 
2.04 

 
0.041 

 
δ 

0.014 
(0.02) 

 
0.718 

 
0.472 

 
ς 

0.11 
(0.02) 

 
4.868 

 
0.000 

 
 

Kurtosis parameter θ is estimated to be positive and significant at 5% level. The estimate 

of the skewness parameter δ is positive and statistically insignificant. Other parameter 

estimates are significant at the 1% level except for β2 estimate which is significant at 10% 

                                                 
6 STATA software is used to estimate IHST in this section. 
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level. Insignificant skewness parameter estimate might be the consequence of applying 

MLE method to a small sample. It is know that although maximum likelihood estimators 

have many desirable large sample properties7, they can be heavily biased for small 

samples. That is, using small samples for maximum likelihood estimation can result in 

convergence failures, improper solutions and low accuracy of parameter estimates and 

standard errors. 

 

6.4 A Mixture of Two Normals Estimates  

The probability density function of a mixture of two normal distributions has the form: 

f(yieldi; p, µ, σ)=p1g(yieldi; µ1, σ1)+ p2g(yieldi; µ2, σ2)  

where ( )
⎥
⎦

⎤
⎢
⎣

⎡ −
−= 2

2

2 2
exp

2
1),;(

σ
µ

πσ
σµ yieldyieldg , and p1,p2 are the mixing 

probabilities.  

 

Using the stationary yield data, the parameters p1, p2, µ1, µ2 and σ1, σ2 are estimated by 

maximum likelihood method. Standard errors are obtained from the observed information 

matrix, i.e., the inverse of the Hessian matrix8.   

 

Parameter estimates are reported in Table 7.  

Table 7: A Mixture of Two Normals Estimates 
                  Number of observations=34             Log Likelihood =-134.33 

Coefficient    Standard Error 
  µ1    94.41       13.13       

                                                 
7 The estimators are asymptotically consistent, unbiased and efficient, and the estimates are normally 
distributed if the sample is large enough 
8 STATA is used to estimate a mixture of two normals and simulate yields in this section. 
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  µ2   122.07     1.75 
  σ1    17.84     6.67   
  σ2     6.97     1.49 
  p1     0.256     0.15  
     

 All parameter estimates are statistically significant at 5% level.  

 

Histogram of simulated yields using these parameter estimates is shown in Figure 10. 

Figure 10: Histogram of Simulated Corn Yields Using a Mixture of Two Normal 
Estimates 
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6.5 Kernel Density Estimates 

Using the stationary yield data, kernel density estimates of the yield distribution were 

obtained with STATA software. The graph of kernel density estimates with the default 

width in STATA is displayed in Figure 11. 

 
 
 



 38

Figure 11: Kernel Density Estimate of Branch County Corn Yields with Default Width 
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It is known that the default width is not necessarily the best. Multiple widths were 

specified and corresponding density graphs were inspected. Figures 12 and 13 display 

two of them.  

 

Figure 12: Kernel Density Estimate of Branch County Corn Yields with 1.5×Default 
Width 
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Figure 13: Kernel Density Estimate of Branch County Corn Yields with 2×Default Width 
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The window-width of 1.5×default width might be more appropriate compared to other 

widths that seem to either undersmooth or oversmooth the density graph.  

 

The lower and upper bounds of yield distributions can be estimated from the kernel 

function. Epanechnikov kernel function is used in this section and its upper bound is 

Xn+ h5  and lower bound is X1- h5 , where Xn and X1 denote respectively the maximum 

and minimum observed yields, and h is the window width.  For the Branch corn yields,  

h=1.3×r(width)=1.3×4.82=6.27 and the end points are 62.79− 5 ×6.27=48.78 and 

138.48+ 5 ×6.27=152.5.  
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CHAPTER 7 

SIMULATING FARM-LEVEL CORN YIELDS 

 
This chapter proposes a new method for simulating farm-level yields using both county-

level yield distribution estimates and information contained in farm-level yield data. The 

method is illustrated using a specific example.   

 

7.1 Simulation Procedure 

Results from Chapter 5 of this paper indicate that farm-level and county-level yield 

distributions can have similar structure, justifying the use of county yield PDF for 

assessing the shape of farm yield PDF when farm yield sample is not large enough. To 

derive farm yield PDF, some adjustments to the county yield PDF is warranted because 

of the potential differences in moments of farm- and county-level yield distributions such 

as mean and variance. This paper proposes that sample mean and variance of stationary 

farm yield data be used to adjust county-level PDF in estimating farm-level PDF. The 

same method is used to simulate farm-level crop yields in this section9.  

 

The simulation procedure is illustrated using kernel density estimates of Branch County 

corn yield distribution. First, the density estimates are converted to cumulative 

probabilities. Table 8 shows the data points, kernel density estimates, and cumulative 

probabilities which can be calculated in @RISK by the formula shown in Table 8.   

                                            
 
 
                                                 
9 @RISK software is used for the simulation. 
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Table 8:@RISK Data Inputs 
               A                 B                C 

 Point Density 
Cumulative
Probability Formula for CDF 

1 48.78 0 0  
2 56.52111 0.001259 0.004872 =1/2*(A2-A1)*B2 
3 59.19473 0.00147 0.008519 =C2+1/2*(B2+B3)*(A3-A2) 
4 61.86835 0.001567 0.012578 =C3+1/2*(B3+B4)*(A4-A3) 
5 64.54196 0.002031 0.017387  
     
… … … …  
35 144.7505 0.001259 0.993859  
36 152.5 0 0.998736 =C35+1/2*(A36-A35)*B35 
 

Next, the mean and standard deviation (SD) of stationary farm yields for a farm in 

Branch County are assumed to be 76% of the county mean and 157% of the county SD10.  

Let Y denote the farm yield random variable and X denote the county yield random 

variable, then we have the equation Y=0.76µ x+1.57(X-µ x), where µ x is the expected 

value of X, which is set to be the sample mean of stationary county yields, 114.99 for 

Branch County. The above equation satisfies E(Y)= 0.76µ x and Var(Y)=1.572Var(X), 

where E(Y)  is the expected value of Y, Var(Y) is the variance of Y, and Var(X) is the 

variance of X. 

 

Using @RISK, The simulation input is specified as 

0.76×114.99+1.57×(RiskCumul(A1,A36,A2:A35, C2:C35)-114.99).  

 

The histogram of simulated farm corn yields is displayed in Figure 14. 

 

                                                 
10 These values can be calculated using stationary farm and county yield data if farm data are available.  
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Figure 14: Histogram of Simulated Farm Corn Yields 
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CHAPTER 8 

CONCLUSION 

 

This paper expands the existing literature by suggesting methodological improvements in 

estimating and simulating farm-level yield distributions when farm-level yield data are 

insufficient.  The results from Monte-Carlo simulation study of the relationship between 

farm-level and county-level yield distributions suggest that the yield density structure at 

the county level is similar to that at the farm level when farm yields are highly correlated 

and the yield density structure is similar across farms. However, enough caution should 

be exercised when inferring about farm-level yield distributions from county-level yield 

distributions because there are cases when the yield density structures at the farm level 

and county level can be quite different.  

 

The results from the case study suggest that Branch County corn yields covered by the 

estimation period do not have a stochastic trend component; corn yields are adequately 

represented by a quadratic trend. There is no evidence of heteroskedasticity and serial 

correlation from the diagnostic tests.  

 

The goodness-of-fit results indicate that normality of detrended yields is strongly 

rejected. Weibull distribution fits the data best compared to the normal and beta 

distributions based on the Chi-square statistics. Parameter estimates of a mixture of two 

normals are statistically significant and the model fits the data well, but bi-polarity of 

crop yield distributions needs to be further investigated in future study when more yield 
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data are available. The skewness parameter estimate of the IHST model is insignificant, 

which might be the consequence of applying MLE to a small sample size. The method for 

simulating farm-level yield distribution is illustrated using kernel density estimates. 

Future research would assess the economic importance of alternative yield distribution 

specifications on crop insurance policy rating and farm risk management decisions.  
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APPENDIX 

 ROBUST REGRESSION 

 

Robust estimation is one that is insensitive to violations of any of the assumptions made 

about the way in which the data are generated. A lot of robust regressions were developed 

to deal with outliners included in the observations. STATA provides one version of 

robust regression using rreg command. It uses the iterated MAD1 scale estimates, firstly 

performing an initial screening based on Cook’s distance >1 to estimate gross outliers 

prior to calculating starting values and then performs Huber iterations followed by 

biweight iterations. Iterations stop when the maximum change in weights drops below the 

tolerance or the default value 0.01. Weights are derived from Huber weights function and 

Biweight function. Huber weights are used firstly until convergence and then biweights 

are used based on the result until convergence. 

 

In Huber weighting, cases with small residual receive weights of 1 while those with 

larger residuals receive gradually smaller weights. Huber estimation obtains case weights 

by: 
⎩
⎨
⎧ <

=
otherwisec

cuif
w

h

hi
i ,

,1
, where ch is 1.345. So downweighting begins with cases whose 

absolute residual exceed (1.345/0.6745)MAD about or 2MAD. While, in biweights, all 

cases with non-zero residuals receive some downweighting, according to the smoothly 

decreasing biweight function: 

                                                 
1  Let e1=yi-xib represents the ith-case residual. The ith scaled residual ui=ei/s calculated, where 
s=MAD/0.6745 is the residual scale estimate and MAD=median(abs(ei-median(ei)) is the median absolute 
deviation from the median residual. 
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⎩
⎨
⎧ <−

=
otherwise

cuifcu
w bibi

i ,0
,))/(1( 22

, where cb=4.685/7*biweight tuning constant. The 

default value for biweight tuning costant is 7, which means in default, cases with absolute 

residuals of (4.685/0.6745)MAD or more are assigned to 0 wieghts and thus efficiently 

dropped.  
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