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ABSTRACT
FORECASTING AGRICULTURAL COMMODITY PRICES WITH LIMITED DATA SETS
By

Andrew Eliel Jacque

Many developing countries wish to, but do not publish
forecasts of commodity prices. One difficulty often cited is
the length (shortness) of the data series. This study tried
to determine whether this was a valid reason.

Price data for two commodities in a specific country,
where the problem is acknowledged were utilized in a case
study approach. Existing models were ‘evaluated for
applicability to the data series. The identified models were
estimated with estimation data and then while keeping the
model parameters constant, prices were forecasted in the out-
of-sample period. The error associated with the forecast of
each model was calculated and the relationship between
gquantity of data and model accuracy evaluated.

The error values of all the models were high. The
results of the analyses were inconclusive in terms of the

study objectives.
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CHAPTER 1

INTRODUCTION AND PROBLEM DEFINITION

1.1 PROBLEM STATEMENT

The five-year National Agricultural Development Plan
(NADP) of Trinidad and Tobago (accepted in 1990) provided a
rationale and guidelines for the reorganization and
refocussing of the Ministry of Agriculture and several major
agricultural institutions in the country. One such
institution, the Central Marketing Agency (CMA), had until
then functioned as a marketing board for several agricultural
commodities. The NADP mandated a radical transformation of
the CMA, with its new role emphasizing responsibility for the
provision of market information to market participants.

In order to meet the new expectations the CMA has
reorganized and established a specialized Market Information
Unit (MIU). The MIU has been in operation for the past three
years, providing mainly  historical market analysis
information. It is yet to produce published forecasts. One
difficulty often quoted is the relatively short data series on
prices. Six years of monthly prices are available for the
agricultural commodities of interest. This is perceived as
insufficient to allow the generation of accurate forecasts.

This predicament is not unique to Triniaad and Tobago.
Many developing countries, including those of Eastern Europe,

face the same challenge. Specifically, the desire to forecast
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prices where the length of the data series is perceived as a
major limiting factor.

The existence within a country of very short data-series
can be attributed to either nonexistent/poor d;ta collection
efforts (which is the case in many developing countries) or
changes in the price determination process. 1In the latter
situation, two general cases can be distinguished. The change
may affect all commodities within the country. This is the
situation in many countries of Eastern Europe, where movement
from command to market economy has caused tremendous upheavals
in the prices of all commodities. Alternatively, the change
may affect only one or a few commodities. This can occur with
the removal of price controls on a specific commodity in an
otherwise essentially market-oriented economy. This is the

situation in many developing countries.

1.2 ANALYSIS OF THE PROBLEM

The problem addressed in this research is the inability
of countries to publish to market participants, the forecasted
prices of agricultural bommodities even though there is a
desire so to do. The four factors that can cause this problen
are highlighted and then individually discussed. They are:

- inadequate data, or conversely inadequate models;

inadequately trained professional staff;

expectations of forecast accuracy:

limitations associated with the use of the existing models.




1.2.1 Inadequate data/models

Forecasting models are classified as either qualitative
or quantitative. A wide range of both types of models exist
for use in forecasting.

Qualitative models can operate with little or no recorded
data, since "experts" subjectively generate forecasts. They
may thus prove invaluable in situations where very little or
no data exists, or extensive changes are occurring in the
price determination process. Quantitative models use
historical guantitative data to generate forecasts.
Generally, they operate under the assumption that the future
will be like the past. Quantitative models are classed as
either explanatory or extrapolative depending on the method
used in analysis. Explanatory models include the single and
multiple equation regression models. Three types of
extrapolative models can easily be identified, based on the
technique used. These are decomposition models, models using
the smoothing technique and those using the Box-Jenkins
methodology. More complete descriptions and working details
of these models are provided in chapters 2 and 4.

Quantitative models provide better forecasting accuracy,
given the availability of adequate data. Each has particular
data needs. In general, extrapolative models require less
data than explanatory models. The lower limit of data
required by any model, in order to obtain accurate forecasts,

would specify the minimum data requirement of that model.
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4
This 1is a critical factor in model selection and
applicability. Thus, a short data-series restricts model
choice. If the data-series is very short, it may restrict the
set of applicable models to include only qualitative models.
But as the data-set expands extrapolative and explanatory

models become applicable.

1.2.2 Training of the professional staff

The ability of staff to generate useful forecasts is
closely related to training received and the ease with which
the various models can be understood. The tf%ining of most
professionals provides extensive practice in the concepts and
practice of regression analysis, but 1ittle‘if any, in time-
series methods. This situation may reflect perceptions about
the relative applicability of time-series methods in data
analysis. Additionally, time-series methods, particularly

Box-Jenkins methodology, are more difficult to understand.

1.2.3 Expectations of forecast accuracy
All forecasts despite the quantity of data used as input,
carry with them the possibility of error. The issues thus
are: |
- how accurate is the forecast, in terms of its variability
from the true data points?
- whether the amount of associated error is acceptable to

the users and forecasters; and

-




- whether the amount of error deemed acceptable is
reasonable.

These issues highlight the subjectivity associated with
acceptance of the point forecast. If unacceptable, the
forecast can be modified or its publication withheld.
Modification of the model-generated forecast is widely viewed
as the art (as against science) of forecasting. Suppression
of the forecast can be done by the forecaster or at any point
along the decision chain. Thus it 1is possible that
forecasting institutions in developing countries (e.g. the
CMA) produce but do not publish forecast information, because
the associated error may be unacceptable to the forecaster,
politician or at some other point in the decision chain.
1.2.4 Model-associated Inadequacies

Limitations associated with use of the existing models
include:

- the ease with which the models can be understoocd:

- the appropriateness of assumptions of normality,
stationarity etc.

- accessibility to user-friendly software packages, such as
menu driven as against command driven packages or
packages that run the more complex methods, (e.g. Box-

Jenkins) in an automatic mode; and

e g
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6
- accessibility to comprehensive forecasting software
packages that allows the beginning forecaster to evaluate
the output of a range of applicable models.

The last two points highlight the importance of the
software selection process to the successful forecasting
enterprise. An extensive selection of software packages is
available. To select the one that best matches the situation
and characteristics of the forecaster requires a process that
aims to evaluate rather than arbitrarily select. The
International Journal of Forecasting and books such as Compton

and Compton (1990) can be of great assistance in this regard.

Inadequacies due to staff and model-associated factors
reduce the analytical capacity within the country. Thus in
any given situation the range of models considered and applied
is reduced. Indeed it ties model selection and choice to the
knowledge/skill level of the forecaster and to the models on
the available software. This situation wiil be further
worsened if the forecaster is biased toward or against
particular models. As a consequence, the minimum data
requirements of a wide range of models do not assume their
critical role as a factor in model selection.

Thus short data-series, staff and model-associated
deficiencies and accuracy expectations can affect a country's

ability to forecast prices. The relative importance of these

T
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four factors within the problem set, will affect and define

the solution strategy for each situation.

1.3 PURPOSE OF THE STUDY

This research is an exercise in applied short-term price
forecasting. 1Its purpose is to determine whether accurate
short term price forecasts can be obtained under the
limitation of a short data-series. A case study approach is
utilized. Data for two commodities from a specific country,
Trinidad and Tobago, are used in the analyses.* Trinidad and
Tobago is a market-oriented economy. The study is exploratory
in nature, in part because of the lack of research specific to
this general problem.

Both gqualitative and quantitative models can be
applicable with short data-series. Indeed, qualitative models
may hold an advantage if the data-set is very small. However
qualitative models cannot be included in the study because of
the constraint of time. Their inclusion would require at
least a one-year period of research to ensure adequate field
testing of the model and its output. Thus only quantitative
models are applied in this study.

The unavailability of data on relevant exogenous
variables excludes explanatory models from the study. Thus the
class of extrapolative quantitative models are the focus of

investigation.
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The effect of the data limitation constraint on forecast
accuracy can be evaluated by comparing, under varying
quantities of data, the forecasting accuracf of applicable
existing ﬁodels. Use of a model selection method that allows
evaluation of a wide range of existing models is emphasised.
Hence a decision framework for model selection is presented
and used in the analysis.

In this research effort applicable models are those that
both satisfy an objective model-selection framework and are
available in the MicroTSP and SPSS software packages. A
review of relevant literature (e.g. Compton and Compton, 1990
and Rycroft, 1989) indicates the existence of a large
selection of forecasting software. However few of these are
comprehensive with respect to the forecasting models included.
More importantly only a few of these are available on the
Michigan State University (MSU) campus and in the Lansing
area. The combination of MicroTSP and SPSS gives good
coverage of the major forecasting models, and both are
available in the Department of Agricultural Economics'
computer room. These two software packages are not overly

restrictive on the model selection process.

1.4 ETUDY DEFINITIONS
Accuracy - model and forecast accuracy are both judged in a
relative rather than absolute sense. The literature does

not indicate the existence of an absolute measure or

R e e g e
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absolute values of the existing accuracy measures. 1In
this study relative accuracy specifies accuracy relative
to other models or forecasts in terms of minimizing
forecasting errors, in the out-of-sample period. The
magnitude of the forecasting error is measured by
accuraéy measures such as the Mean Absoluté Percent Error
(MAPE) .

Applicable models - forecasting models which satisfy both an
objective selection framework and are available in the
MicroTSP and SPSS software packages.

Short-term forecast - given the use of monthly price-data in
the analysis, this refers to forecasts extending up to
three months ahead.

Short data-series - for this study a short data-series is a
time-series with monthly observations and of length

shorter than five vyears.

1.5 RESEARCH OBJECTIVES

The major objective of the study is to determine whether
any applicable existing models can provide accurate forecasts
given a short data-series. A secondary objective is to
determine whether ARIMA models provide more accurate forecasts

than other extrapoclative models, given a short data-series.
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1.6 SIGNIFICANCE OF THE STUDY
Many countries view the provision of forecast information
as an important strategy for improving market transparency and
stimulating improved market performance. But forecasting has
much wider applicability. "Predictions provided by the various
forecasting methods are used as inputs for all types of
planning, strategy formulation, policy making, scheduling,
purchasing, inventory control and a great majority of decision
making activity. There is no question that the role of
forecasting 1is becoming central and its necessity,
indisputable" (Makridakis, 1984). Hopefully this study will
aid in the achievement of forecasting objectives in countries

desirous of so doing.

1.7 ASSUMPTIONS AND LIMITATIONS

Accuracy measures are used to identify the Dbest
applicable forecasting models based on the accuracy of
forecasts in the out-of-sample period. Accuracy measures,
however do not carry any information on the economic
value/cost associated with using the best model as against one
that is inferior in terms of accuracy. Thﬁs use of the
accuracy measures to select or rank models, in effect implies
an assumption that economic value/cost does not constitute an
important factor in model selection.

The accuracy definition, in effect, equates an accurate

forecast and model, to the forecasts or applicable model with
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the lowest value of the accuracy criterion. As a consequence
a major limitation of the study is the inability to determine
whether the error associated with the forecast of the most
accurate model is acceptable to the users and forecasters.
Focussing the analyses on the data limitation constraint,
implies assumptions that:
- staff can be trained to interface effectively with
whichever method is selected; and
- forecaster and user accuracy expectations are in line
with the measures used to evaluate forecast accuracy in

this study.

1.8 ORGANIZATION OF THE 8TUDY o

Some important issues and concepts were raised in this
chapter. Many of these are expanded and further developed in
the literature review conducted in chapter 2. The methodology
that guides the analyses and assures achievement of the study
objectives 1is detailed in the third chapter. Chapter 4
contains preliminary analyses aimed at identifying the set of
forecasting models appropriate for the case being studied.
This chapter also contains equations for the identified
models.

The results of the study are presented in chapter 5. The
final chapter is dedicated to concluding, ‘examining the

implications and making recommendations.
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CHAPTER 2

LITERATURE REVIEW

2.1 TAXONOMY OF FORECASTING MODELS

Three major forecasting approaches can be identified.
These are qualitative, quantitative, and' technological
(Makridakis and Wheelwright, 1989, pp 13).

Technological methods "address long-term issues of a
technological, societal, political or economic nature"
(Wheelwright and Makridakis, 1985). There are four

subcategories of technological methods; extrapolative,

analogy-based, expert-based, and normative. Extrapolative
technological methods "use historical patterns and
relationships as a basis for forecasts." Analogy-based

methods use historical and other analcogies to make forecasts,
while expert-based methods use the knowledgg of experts.
Normative-based methods use objectives, goais and desired
outcomes as the basis for forecasting (Makridakis and
Wheelwright 1989, pp 13).

Qualitative methods "generally use the opinion of
experts to subjectively predict future events" (O'Donovan,
1983). These models can provide forecasts in situations where
data are extremely limited or for the very long-run horizon
where the existing data pattern is of limited applicability.

Delphi is one well-known gqualitative model. It is an

12
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iterative process wherein "experts" provide forecasts and
receive feedback on its performance before the next forecast
is made. More detailed discussions of this method can be
found in Wright and Ayton (1987) and Stewart (1987).

Quantitative methods "involve the analysis of historical
quantitative data in an attempt to predict future values of a
variable of interest" (0O'Donovan, 1983). These can be
categorized into extrapolative, explanatory and monitoring
methods. |

Extrapolative methods analyze historical patterns and
then forecast using a time-based extrapolation of these
patterns, Based on the techniques used, four types of
extrapolation models can be identified. These are naive,
smoothing, decomposition and Box-Jenkins type.

Explanatory methods forecast, based on past relationships
identified between the endogenous and exogenous variables. In
forecasting it 1is assumed that these relationships will
continue to held. Explanatory models can be classified as
single or multiple equation regression or vector
autoregressive models (Makridakis and Wheelwright, 1989).

Extrapolation and (to a 1lesser extent) explanatory
methods operate with the assumption that existing data
patterns will continue into the future. This assumption is
clearly more realistic in the short and medium term than in

the very long tern.
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Monitoring methods "seek to identify changes in patterns
and relationships to indicate when extrapolation of the past
patterns or relationships is not appropriate" (Wheelwright and
Makridakis, 1985).

"Each major approach includes several types of methods,
many individual techniques and a number of variations of each
technique," (Wheelwright and Makridakis, 1989, p 13). In
addition, some forecasters emphasize techniques which combine
the output from one or more models (composite forecasts).

This study focuses on the class of extrapolative
quantitative models. The range of models within this class is

highlighted in the next section.

2.2 EXTRAPOLATIVE OUANTITATIVE MODELS

2.2.1 Naive models
These models utilize simple rules, eg., forecast equals
most recent actual value (random walk model). Some data

patterns are best described by the naive model.

2.2.2 Decomposition models

In this approach a time series is thought of as having
four components; trend, cyclical, seasonal and a residual
random component. Usually a multiplicative felationship is
assumed between these four components. Once the systematic

compcnents are identified and separated, they can be
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reintegrated to generate forecasts (Makridakis and
Wheelwright, 1982). The major models in this group are the
Classical and Census II decomposition models. Both are
similar in principle. One important use is in estimating
seasonals (ﬁheelwright and Makridakis, 1985): The entire
historical data series is used each time computations are
performed (Chambers et al, 1974). Decomposition models are
good for intermediate range forecasting (three months to one

year ahead) (Wheelwright and Makridakis, 1985).

2.2.3 8Smoothing models

The method of smoothing is based on taking either
averages or combinations of the past values or past errors of
a time series. A formula is used to specify the weight of
each data point within the smoothing segment. New data values
are added into the computation as they become available and
the oldest value simultaneously dropped. Thus the smoothing
segment moves as new data is added.

Smoothing models can be further classified into Moving
Average or Exponential Smoothing. The smoothing segment in
the moving average models have a fixed number of equally
weighted data points within them. The data points within the
smoothing segment of the exponential smoothing models have
exponentially decreasing weights assigned to them. The most
recent data point is assigned the highest weight. The number

of points within the smoothing segment of the exponential

-
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smoothing model is related to the weight assigned to the most
recent data point. The higher the weight assigned to the most
recent data point the shorter the smoothing segment of the

exponential smoothing model.

2.2.3.1 Moving average models

The major use of moving averages is to smooth the data
thus reducing fluctuations (random or systemati¢) in the data.
This ability is used in time series analysis to eliminate
trend and seasonality from the data. Seasonality is removed
with a moving average of length equal to the length of the
seasonal cycle.

Moving average models are poor at identifying turning
points or forecasting seasonal data, but they are extremely
low cost to operate (Makridakis and Wheelwright, 1985).
However with seasonal data better results are obtained if the
data used as input is seasonally adjusted. The single moving
average models can be applied to data which contains no
significant trend. Data exhibiting a significagt linear trend
are best analysed with a double moving averaée. The double
moving average is in effect the single moving average twice
applied. While only a few bits of data are required to
forecast using these models, a larger data set is required in
model-fitting to determine the optimal length of the moving

average.
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2.2.3.2 Exponential smoothing models

These models provide forecasts which are based on a
weighted sum of the past observations and/or errors. The
weights sum to one and their distribution depends on the value
placed on the smoothing constant, alpha (Compton and Compton,
1990).

There are many variations of exponential smoothing.
These differ on the method of weighting the data points and
the mathematical form used to fit the trend, if it exists.
These include single, double, and triple models. 1In addition
there are several variations within each type.

The single exponential smoothing model can provide good
results when applied to data not containing any significant
trend (Chambers, Mullick and Smith, 1974). Double and triple
exponential smoothing models can be applied to data exhibiting
linear and quadratic trend respectively. Single, double or
triple exponential smoothing models give poor forecasts when
directly applied to seasonal data. However use of seasonally
adjusted data and its accompanying seasonal index, allows
fairly accurate forecasts.

Winter's exponential smoothing model can handle seasonal
data. It uses three parameters, one each for trend (Gamma),
seasonality (Beta) and the smoothing constant (alpha).

Exponential smoothing models use only a few data points
to forecast. However a much larger data set is required in

model-fitting. They are good for short term forecasting.
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2.2.3.3 Adaptive response rate exponential smoothing

The adaptive models automatically specifies the value of
the smoothing constant alpha, as the data changes. "When the
forecast error increases, (i.e. forecasts are consistently
under or over the actual values) a smaller or larger value of
alpha respectively is specified. In this manner the
forecasting method is truly responsive to changes in the
pattern of the data and completely automatic, requiring no
input from the user. The disadvantage is that they might
over-react to changes in the data in such a w;y that random
fluctuations are mistakenly identified as changes in the
pattern of the data giving poor performance" (Makridakis and
Wheelwright, 1978). These models are good for short-term

forecasting.

2.2.4 Adaptive filtering models

These are an extension of exponential smoothing.
Forecasts are expressed explicitly as functions of past actual
values and/or errors. However no fixed weighting scheme is
assumed. Three variations of adaptive filtering are Adaptive
Estimation ?rocedure (AEP), Generalized Adapiive Filtering
(GAF) and Kalman filters. In all these techniques, the
weights are not arbitrarily chosen as in exponential
smoothing, but instead are determined by some iterative
procedure that tries to optimize them (Makridakis Wheelwright

and McGee, 1983)
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2.2.5 ARMA models

This is the most comprehensive time series extrapolation
technique. "The method is popular because it provides a wide
choice of forecasting models that can theoretically fit any
type of data" (Makridakis and Wheelwright, 1989). Basically
the forecaster fits a time series with a mathematical model.

Essentially three different categories of time-series
regression models are assumed to exist. Autoregressive (AR)
models are essentially regression models which explore the
correlation relationships between successive values of the
data. Moving Average (MA) models explore correlation
relationships between successive values of the error tern.
Combination AR and MA (ARMA) models are used when the data is
best fit by a model that specifies a relationship between past
successive values and past successive error terms of the
series. The parameter p is used to note the order of the AR
model. That is the number of past terms of the series
included in the equation. The parameter g denotes the order
of the moving average model.

ARMA models assume that the data are generated by a
stationary process. Stationarity in the data is obtained when
all means, variances and covariances are time-invariant. If
a data-series is non-stationary, stationarity can sometimes be
achieved by differencing the data one or more times. The
differenced series can then be used in analysis. The order of

differencing required is noted by the parameter d. Models
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using either stationary or differenced data are referred to as
integrated(I). Integrated versions of the AR, MA and ARMA
models are termed ARI, IMA and ARIMA models. The ARMA models
allow use of seasonal data through seasonal differencing of
the data. That is, the data are differenced at a length equal
to the length of the seasonal cycle.

Given all this flexibility, basically the task of the
forecaster is to fit the appropriate mathematical model to the
time series. This model will be optimal, in the sense that it
will have smaller errors or variability than any other model
fitted to the data.

In addition to the univariate ARMA type model described
above, there are also multi-variate models. Multi-variate
ARMA models incorporate historical data on variables other
than the variable being forecasted, thus providing some
explanatory_power. Like regression models, they are single
output multiple input, in which the added variaﬁles are highly
correlated with the variable being forecasted. Multivariate
ARMA models are referred to as transfer functions.

ARMA models are computationally complex, and relatively
difficult to relate to. They are good for short-term and

medium-term forecasting.

2.3 DECISION FRAMEWORK FOR MODEL SELECTION.

"The person desiring to make a forecast can choose from

a large number of forecasting models, but not all of them are

e S
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equally effective for a given situation. Thus'éo maximise the
success of a forecast it is usual that the forecaster select
the most appropriate method" (Kress, 1985).

Cleary and Levenbach (1981), suggests use of a two-step
process in model selection. First is a model identification
phase aimed at pinpointing the set of appfopriate models that
can be applied to the problem. Then, the models so identified
are subject to an evaluation phase, which aims to select the

most appropriate model from this set.

2.3.1 Model identification phase
The following six decision criteria are highlighted by

Cleary and Levenbach (1981):

pata Characteristics: identify any data patterns, such as
trends, cycles, seasonality and randomness.
- Data Requirements: minimum needs of applicable models.
-~ Forecast horizon: immediate, short, medium or long term.
- Accuracy: of each model given the time horizon of interest
and the data characteristics.
- Applicability: to the needs of users.

- cost: primarily of data collection and analysis.

To theée six we can add:
~ Availability of data: particularly on exogenous variables.
- capabilities of professional staff

- Availability of computer software
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These nine criteria establish a framework for the a-
priori evaluation of the many models that exist. Cleary and
Levenbach describe their first two criteria as relating to the
"characteristics of the data," while the latter four "relate
to the inherent characteristics of the various techniques and
models." In their opinion the two groups can be distinguished
because the latter four are "influenced by the requirements,
resources and objectives of the project" while the former two
"are influenced by the nature of the data." The three
additional criteria can be included in the latter group.

Levenbach and Cleary highlight that in the process of
model identification, little control can be exercised over the
first group of criteria. Thus the "characteristics of the
data" in effect prescribe use of specific approaches, models
and techniques. The second group of criteria can then be
applied to this specified group to identify further the set of

appropriate models.

2.3.2 Model evaluation phase

nThe ultimate test of any forecast is whether or not it
is capable of predicting future events accurately" (Makridakis
and Hibon, 1979). Thus accuracy can be used as the sole
performance criterion of the identified models.

The above suggests need for an out-of-sample rather than
in-sample evaluation process. Makridakis (1984) supports

this: "Ample evidence exist to suggest that a model which fits
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historical data does not necessarily forecast well.™ To
implement this, the available data set must be split into
estimation and prediction data (Steece, 1982). The estimation
data is used to estimate the model coefficients. Forecasting
accuracy is evaluated using a second set of data not used in
model estimation. Thus the prediction data is used for out-
of-sample fprecasting.

"Phe most common accuracy measures are tﬁé Mean Squared
Error (MSE), the Mean Absolute Percent Error (MAPE) and
Theil's inequality coefficient (Makridakis and Hibon, 1979).
With the MSE and Theil accuracy measures, the effect of an
error is proportional to the square of the error. This is
referred to as a quadratic error loss function (Makridakis and
Hibon, 1979). The MAPE assumes a linear error loss function.
Thus measures built on the quadratic error loss function
penalize techniques that make sizeable forecasting errors.
"consequently, they should be used when the forecaster wants
a model that provides reasonable accuracy for each period",

(Kress, 1985; p 32).

2.4 ACCURACY OF FORECASTING MODELS

There are conflicting results about the relative
accuracies of the various models. Most studies indicate
general agreement that "quantitative models are more accurate
than qualitative in short-term forecasting". (Makridakis,

1984; p 4).
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The issue of "the best quantitative model" does not bring
such agreement (Makridakis and Hibon, 1979; p 37). In fact
this issue seems to be clouded in a lot of erroneous
perceptions and beliefs. Armstrong (1978), after a study of
econometricians and economic methods concluded that the belief
of "more complexity, greater the accuracy", was without
empirical support.

The erroneous belief that "more complex is more accurate"
is prevalent in the selection of extrapolative models.
Wheelwright and Makridakis (1985; p 371) contend "empirical
evidence does not support the assumption that~sophisticated
methods outperform simple ones",

Makridakis and Hibon (1979) used 111 time series and 22
methods to study the accuracy of various forecasting methods.
In general, they found that the simpler methods performed as
well as the more sophisticated methods. Specifically,
deseasonalised exponential smoothing was the "best method
overall", and "exponential smoothing methods are at least as
good as the Box-Jenkins methodology" (p 41).

Makridakis et al (1982), report the results of a
ncompetition" that involved the evaluation of 1001 time series
and 24 methods. This study was a follow-up on the study by
Makridakis and Hibon. Specifically the stﬁdy showed that
rdeseasonalised single exponential smoothing when used on

monthly data," does relatively better than Holt-Winter's,
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Automatic adaptive exponential smoothing, Bayesian, Box-
Jenkins and Landowski" (p 127).

Both studies tried to determine the factors affecting
forecasting accuracy of the models evaluated. Identifiable
factors were the length of the forecasting horizon, the
accuracy measure applied and the type of series. The type of
series relates to the extent of trend, seasonality and
randomness within the data. In particular "the greater the
randomness of the data the less important is the use of
statistically sophisticated methods" (Wheelwright and

Makridakis, 1985).

2.5 MINIMUM DATA REQUIREMENTS

Quantitative models operate with the assumption that the
future is not too unlike the past. Thus the minimum quantity
of data used must capture this representative pattern. This
quantity will be greater when seasonal data is used.

The nature of +the model, whether mathematical or
statistical, greatly affects its minimum data needs. The
moving average and exponential models are mathematical in
nature. These require sufficient data to estimate the model
coefficients. Often much less data is required to generate a
specific forecast.

statistical models have additional requirements associated

with the assumptions on which they are built. These

assumptions for example require adequate degrées of freedom
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and the absence of small-sample bias. The explanatory methods
and the Box-Jenkins models are statistical in nature.

Table 2.1 provides information on the minimum data
requirements of the various forecasting methods. Column 7
presents the information provided in Makridakis and
Wheelwright (1978, pp 295). Column 8 contains data gleaned

from a number of sources.

2.6 HUMAN AND MODEL DEFICIENCY

Table 2.1 shows that the simple extrapolative methods can
operate with much less than one year's data. However these
models (eg. moving average or single exponential smoothing) do
not forecast well with seasonal data. Deseasonalizing the
data removes this difficulty. However,
to provide one season of deseasonalized data requires at
least two seasons of data. This with the least demanding
technique of centered moving average.

Models that can handle seasonal data patterns generally
require more than two years of data. The explanatory and more
complex extrapolative methods, however, require much more
data.

Literature reviewed in the previous section suggests that

the simple models are at least as accurate as the more

complex, when used in short-term forecasting.
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Table 2.1 Characteristics of alternative forecasting models

IuiihaiIllllllllllllllllllllllllIrlllllllllllIllllllllIlllllll*IllllllIIIIIIIIIIIIIIIIIIIIIIIII
: Type {Pattern) of Data Horizon Min. Data
No Trend | Trend Seafona Short " Medium I 11

Seasonal Naive X X L

single Moving Average X X 5p

Double Moving Average X X 10p

single Exponential Smoothing X X 2p

Linear Exponential Smoothing X X 3p

Winters' Exponential Smoothing X X X X 2L

Adapt ive Exponential smoothing X X 3p

Classical Decomposition X X X X 5L

Harrison's Harmonic Smoothing X X X X 3L

Generalised Adaptive Filtering X X X X 5L

Univariate Box-Jenkins X X X X 7L 3 yrs

Multivariate Box-Jenkins X X X X oL

simple Regression X X X X X 20p 4 yrs

Econometric X X X X 6L 4 yrs

Columns 1-7; Source - Makridakis and wheelwright (1978; pp 295}
cColumn 8; Source - Cleary and Levenbach (1981)
where:

L - length of seasonality

p - data points

short-term - 1-3 months ahead

medium-term - 4-12 months ahead

This study does not investigate reasons for the inability
to forecast if it can be shown that the available data is
adequate. However potentially, staff deficiencies can be a
key factor.

These deficiencies can be caused by:

- Erroneous Perceptions and Beliefs
The belief that more complex means more* accurate adds

bias to the model identification process, which may

e A A A




28
result in the simple models being overlooked. 1In this
situation the forecaster operates under the belief that
the minimum data requirements of the more complex models,
is the quantity of data required for accurate forecasts
to be obtained. |
-Unrealistic Expectations about Accuracy.

Makridakis (1984; pp 2 & 3) makes th; point well.
"Forecasting is not a substitute for prophesy.
Forecasters unfortunately do not have crystal balls
allowing them to look into the future. Forecasting
errors are inevitable." While the user of forecast
information was the subject of these comments, they are
equally valid when applied to the beginning forecaster.
If a forecaster expects to be precise with his forecasts,

none of the available models will be applicable.

- Insufficient Training and Knowledge
Lack of awareness of the full range and cépabilities of
forecasting methods and models increases bias in the
model selection process.

- Inaccessibility to Comprehensive Forecasting Software
The availability of a comprehensive forecasting software
package would allow the forecaster to evaluate all models
identified as appropriate. This would reduce bias in the

model selection process.




CHAPTER 3

METHODOLOGY

3.1 INTRODUCTION

The methodology must be guided by the objectives of the
study. In effect we need to evaluate the effectiveness of the
models to forecast with limited data and of specific models to
do so more effectively than others.

A case study approach is used. The unavailability of
data on relevant exogenous variables excludes explanatory and
multivariate autoregressive techniques. Thus, the set of
quantitative extrapolative models are investigated for
applicability to two gpecified data-series. Accuracy of the
out-of-sample forecast of each model is measured.

The two data-series are the price series for two
vegetable commodities in Trinidad and Tobago. Six years of
monthly, current and unadjusted price data (quoted in Trinidad
and Tobago dollars (TT $)) are available for cabbage and
tomatoes. The country has been unable to provide published
forecasts. One reason advanced is the limitation imposed by
the length of the data series. Thus, use of these data sets
provide an opportunity to investigate length of the data
series as a valid explanatory factor in the country's

inability to forecast prices.

29
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3.2 ESBSENTIALS OF THE METHODOLOGY
In brief, the methodology identifies‘ the set of
extrapolative guantitative models applicable'to each of the
two data sets, then evaluates the performance of these methods
given the study objectives. The tdecision framework for model
selection", adapted from Cleary and Levenbach, which directs

use of model identification and evaluation phases, is used in

this process.

3.2.1 Model Identification Phase

Some of the nine decision variables in this phase will be
explicitly taken account of, while the effect of others will
be assumed away. To some degree the assumptions reflect the
extent to which we are removed from the role Sf actual price
forecaster with its very specific constraints.

Six variables are explicitly taken into account in the
analyses. These variables and the specific aspects
considered, are:

- characteristics of the data: price-data are available at
monthly intervals and are soO forecasted. The data are

evaluated to determine the significance of seasonality,

trend and stationarity:;

minimum data requirements: five years of estimation data

are available for each commodity:

forecast horizon: short-term (one, two and three steps

(months) ahead) forecasts are required;
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- accuracy: this variable is explicitly considered to the
extent that it qualifies a method as being applicable to

a specific horizon;

exogenous data: none was available, consequently the

explanatory models are not included in the analyses;

computer software availability: the statistical software
packages SPSS and MicroTSP and the spreadsheet Quattro
Pro are used to analyse the data.

For this study the other three variables are assumed to have

neutral effects in the process of model choice. Specifically

we assume that:

- all models equally fulfill the needs of users;

- cost associated with each model is equally burdensome or
insignificant;

- staff capability is egqual for each model.

The analyses necessary for model identification are

conducted in the next chapter of this report. -

3.2.2 Model Evaluation

The evaluation decision criterion is, accuracy of the
out-of-sample forecast. Three measures are used to evaluate
accuracy. These are the MAPE, MSE and percentage turning
point errors (3TPE).

Use of the out-of-sample forecasting procedure requires
separation of each data-series into estimation and prediction

data. The study objectives are evaluated by evaluating for

S T ——




32

each identified model, changes in the accuracy measures as the
data limitation condition is progressively relaxed. Three,
four and five years of estimation data are used when
evaluating the models. In all cases one years prediction data
is utilized. Consequently three data-sets were created from
each of the data-series. Each data-set so developed consists
of estimation data plus one year of prediction data. The
characteristics of these data-sets are detailed in Table 3.1
below.

Thus the accuracy of each identified model will be
evaluated: | )

- over varying forecasting horizons (1-3 steps ahead};

with varying quantities of estimation data (3-5 years) and

using one year of prediction data.

Table 3.1 The six primary data sets
#

NAME CHARACTERISTICS

Estimation period Prediction period
Cabb3 1985.01 - 1987.12 1988.01 - 1988.12
Cabb4 1985.01 - 1988.12 1989.01 - 1989.12
Cabb5 1985.01 - 1989.12 1990.01 - 1990.12
To3 1685.01 - 1987.12 1988.01 - 1988.12
Tok 1985.01 - 1988.12 1989.01 - 1989.12

To5 1985.01 - 1989.12 1990.01 - 1990.12
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The hypotheses will be tested by comparing for each
forecasting horizon and across (the average of) forecasting
horizons the MAPEs, MSEs and %TPEs of all modgls as the data
limitation condition is progressively relaxed.
The above outlines the primary analysis conducted in this
study. Possible weaknesses of this analysis include:

- use of a varying (1988, 1989 and 1990 are used) as
opposed to a fixed prediction period. This may affect
the results of the evaluation phase.

- use of forecasting periods containing varying numbers of
months. As is shown later, the one, two and three steps
ahead forecasts contain twelve, eleven and ten forecasted
values respectively. This may affect the ability to
compare forecasts for different steps ahead.

- use of additive as opposed to multiplicative seasonals in
the model estimation and forecasting phases. This may
decrease the accuracy of forecasts for the Winter's,
Single Exponential smoothing (SES), Naive and Moving
Average models, if the process generating the data is

petter modelled with the use of multiplicative seasonals.

Thus a secondary analysis was conducted using a fixed
prediction peried (1990), each with twelve forecasted values,
and analyzing with multiplicative seasonals where applicable.
The secondary analysis is intended simply as a check on the

primary analysis. A subset of the applicable'models are used
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in this secondary analysis. These are the Winter's, SES and
Naive models. The characteristics of these data-sets are

detailed in Table 3.2. %

Table 3.2 The six secondary data gets

#

NAME CHARACTERISTICS ;
Estimation period Prediction period }

M-Ca3 1987.01 - 1989.12 1990.01 - 1990.12

M-Cak 1986.01 - 1989.12 1990.01 - 1990.12

M-Ca5 1985.01 - 1989.12 1990.01 - 1990.12

M-To3 1987.01 - 1989.12 1990.01 - 1990.12

M-Tok 1986.01 - 1989.12 1990.01 - 1990.12

M-To5 1985.01 - 1989.12 1990.01 - 1990.12

Analyses were conducted using the statistical packages
MicroTSp and SPSS and the spreadsheet Quattro Pro. Quattro
Pro was used to calculate, estimate and forecast the moving
average models, and to calculate the value of the accuracy
measures for each model. Graphs were produced using either
the MicroTSP or the Quattro Pro software and then exported to

the word processing software package, Word Perfect 5.1.

3.3 ANALYTICAL PROCEDURE
3,3.1 Model-fitting Phase

The estimation data of each created data set were used as
input in the model fitting phase. The statistical packages

were used to:
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1) seasonally adjust the data and provide the associated
seasonal factors;

2) test for stationarity of the data;

3) estimate the parameters of the Winters, SES and ARIMA
models. A nonlinear estimation procedure aimed at
minimizing either the MSE or the sum of squared errors
(SSE) is used in the selection of parameter values.

The spreadsheet package was used to calculate the optimal
length of the moving average for each of the data sets. The
criterion used to determine optimal, was the minimum MSE of

-

forecasts for the estimation data;

3.3.2 Forecasting Phase

Once the models were specified the parameters were held
constant while forecasting in the out-of-sample period. For
one-step ahead forecasts the last three points in the data set
used to produce the forecast would consist of actual data.
For the two-step ahead forecasts the last three points in the
data set would consist of actual data, actual data and the
jast available one-step ahead forecasted value respectively,
for the specific months. In the three-step ahead forecast it
would be actual data and the last available one-step ahead and
two-steps ahead forecasted values respectively for the
specific months. The forecasted values are thus used as
substitutes for actual data values when two and three-steps

ahead forecasting.
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3.3.3 Evaluation Phase
once forecasts were obtained graphs of the actual versus
forecasted values were generated . The accuracy measures were

also computed and these results analyzed.

3.4 REPORTING THE RESULTS

The results are presented in the form of tables and
graphs. Tables, located in the results chapter, present the
MAPEs, MSEs and %TPE of each model as the forecasting horizon
and quantity of estimation data is varied. This allows
evaluation of the best model for one, two and three steps
ahead forecast. Graphs are located in appendices A through D.

These show the actual versus the forecasted output of each

model.

The next two chapters contain the results of the
analyses. Chapter 4 contains the analyses associated with the
model identification process. It also contains model
equations and working details for all identified models.

chapter 5 contains the results of the evaluation phase.
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CHAPTER 4

FORECASTING MODELS

4.1 THE COMMODITIES AND DATA

Both cabbage and tomatoes are produced by a large number
of small farmers, and sold competitively, in an environment
relatively free of government intervention. A ban on imports
and virtually no export or processing use effectively channel
production -onto the fresh market. Each crop requires
approximately three months from time of tfansplanting to
harvesting. Typically harvesting occurs over a period of
several (2-3) weeks.

Examination of the price data for both commodities shows
strong seasonal effects. Seasonality is almost exclusively
due to variations in supply, driven by the occurrence of the
wet and dry seasons. The dry season spans the period December
to May, with the remainder of the year being wet. The petit-
careme, a 2-3 week dry spell within the wet-season, occurs
sometime within the period September to October. Both
commodities. give higher yields in the dry season. However
this effect is much greater in tomato. Prices-are thus higher

in the wet as against the dry season.

4.2 ANALYSIS OF THE DATA

Model identification and selection is heavily influenced

by patterns present in the data. Also importantly the
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statistical models are based on the assumption of stationarity
of the process generating the data. Thus the unadjusted data
were analyzed to determine the significance of seasonal
effects, trend and stationarity. The raw data for cabbage
and tomatoes are presented in tabular form (Tables 4.1 and

4.2) and graphical form (Figures 4.1 and 4.2).

Table 4.1 TOMATO - Monthly Average wholesale Prices ($/kdqd)

#

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

1985 5.68 3:32 1.43 0.98 3.52 5.13 2.34 5.65 5.95 , 8.57 8.93 8.37
1986 5.5 2.88 2.03 1.46 2,96 3.24 41 2.76 1.93  5.02 9.52 9.17
1987 5.37 3.09 2.79 2.71  2.85 4.26 3.73 5.64 4.28 5.25 6.16 7.33
1988 5.06 2.75 2.45 2.31 1.99 3.88 5.1 3.78 3.59 6.78 7.8 6.03
1989 6.03 3.4 2.55 1.62 1.69 1.93 3.9 6.79 5.16 7.02 T71.52 7.34
1990 3.8 3.02 2.9 2.9 £.31 8.1 7.04 2.65 5.03 8.27 T7.45 6.63

av. 5.5 3.09 2.25 1.81 2.6 3.69 4.26 4.92 4.18 6.53 T.99 7.65
85-89

Source: Central Marketing Agency - Market Information Unit
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Table 4.2 CABBAGE -Monthly Average Wholesale Prices(TT$/kg)

f

Jan Feb  Mar. Apr. May. Jun. Jul. Aug. Sep.  Qct. Nov. Dec.

4+

1985 5.7 3.9 1.61 1.33  3.18  4.72 4.48 2.3 1.26 2.7 5.51 7.9
1986 6.12 5.3 2.2 1.65 3.61 3.26 2.3 159 2.32 3.78 7.11 5.8

9
1987 4.29 2.6 4.06 4.82 &1 5.86 7.67 T.36 2.59 2.89 2.76 2.49
1988 3.84 ?.4 2.27  1.95 1.48 1.58 3.35 3.99 431 495 5.9 3.26
1989 1.52 ;.2 4,19 0.5 2.12 1.8, 2.83 2.84 1.73 1.97 1.7 3.95
1990 2.74 3.5 2.04 1.046 1.3 2.72  2.39  2.06 2.9 5.53  6.37 4.56
av. 4.29 3.7 2.2T 2.4 2.9 3.65 412 3.62  2.44 331 4.61 4.7
85-89 3

Source: Central Marketing Agency - Market Information Unit

TIiIIllllI'lIllll[ll‘l|lllll|llIII]'I'IIIIII1|II]]IIII!IIII

1985 1988 1987 1988 1989

— TOMATO

Figure 4.1 Tomato - monthly average wholesale
prices (TT $/kq)

-
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Figure 4.2 Cabbage - monthly average

wholesale prices (TT k

4.2.1 BSeasonality

The importance of seasonal effects was determined by
examination of the raw data and the seasonal factors of the
seasonally adjusted data. The seasonal factors for each data
set are presented in Table 4.3. The seasonal factors confirm
the presence of seasonality in both data-series.

The effects of seasonality can be either additive or
multiplicative. An additive model is appropriate when the
seasonal effects within the data series remains fairly

constant over time (see Lillien (1990) and SPSS Inc (1990).




41

Table 4.3 Additive seasconal adjustment factors

-~
Cabbage Tomato

Quantity of estimation data (years)

3 4 5 3 4 5
Jan 0.87  0.87  0.81 1.06  1.06  0.81
Feb  -1.69  -1.69 0.5 0.70  0.70  -1.63
Mar  -2.23 - -2.23  -1.17 “1.32 o132 -2.05 .
Apr 247 -2.47  -1.28 .25 -1.25  -2.26 '
May 1.5t  -1.51  -1.05 -0.56  -0.56  -1.78
Jun  -0.58  -0.58  -0.16 0.81  0.81  -0.53
Jul 0.61  0.61  0.51 0.90  0.90  0.68
Aug  -0.09  -0.09  0.50 0.48  0.48  -0.25
Sep  -1.19  -1.19  -0.67 1,50 -1.50  -1.06
oct 0.82  0.82  0.16 -0.63  -0.63 1.3
Nov 3.52  3.52  1.60 .01 101 3.51
Dec 3.9 3.9 0,22 0.32 0.32  3.22

The seasonal factors resulting from analysis of the additive
model assume positive and negative values. They represent the
difference between the raw data values and the seasonally
adjusted data values. A multiplicative model‘is appropriate
when the seasonal effects are increasing or decreasing with
time. The multiplicative model produces a seasonal index
whose values are centered around a value of one. In this case
the raw data series is equal to the seasonally adjusted data
times the seasonality index. Section 4.4 outlines calculation
of the seasonally adjusted data and the seasonal factors.
Visual inspection of the data plots indicate that an

additive model is appropriate for both commodities. Thus the

T P
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Winters exponential smoothing model and seasonal adjustments
conducted in this study are specified as additive. Note
however that the secondary analysis was conducted using

multiplicative seasonals.

4.2.3 stationarity

The Adjusted Dickey-Fuller (ADF) test (David Lillien,
1990) was used to determine stationarity of the time series.
This test also allows determination of the degree of
differencing required to achieve stationafity, and the
significance of the trend variable in the process generating
the data. An absolute value of the t-statistic that is
greater than the MacKinnon critical value implies stationarity
of the time series. The reverse implies non-stationarity.
Evaluation of the t-statistic of the trend variable included
in the ADF regression allows us to determine whether trend is
significant.

The testing procedure involves evaluation of the time
series for evidence of non-stationarity. The tests are
conducted at varying lag-lengths within the data set. If
unable to réject the null hypothesis of non—sthtionarity, we
conclude that the time series is non-stationary. We then test
the first differences using the same hypothesis., Stationarity
of the first differences, where the time series is non-
stationary allows us to conclude that the data is integrated

of order one, I(1l).

e ey L 0541

g 1 42 e -




43

ADF tests were conducted on the six study data sets. The
hypothesis of non-stationarity could not be rejected at the 5%
confidence level, for any of the data sets. Test t-statistics
smaller than the critical MacKinnon t-statistic values (i.e.
evidence of non-stationarity) often occurred at lag two or
three. The first difference of each series, however, proved
stationary. Thus we conclude that each of the data sets are
integrated of order one, I(1). This knowledge is important in
ARMA model identification.

Trend was not found to be a significant variable in any
of the data sets. This of course has implications for the
choice of smoothing model.

Thus, each of the six data sets are_~non-stationary
(specifically, they are integrated of order one), does not

contain any significant trend and exhibits seasonality.

4.3 MODEL, IDENTIFICATION PROCESS

Knowledge of the data patterns, the quantity of data
available and the forecasting horizon desired was then applied
to the apriori framework for model selection. Specifically,
this information was applied to Table 2.1 in order to
identify models applicable to the situation. The Winter's
exponential smoothing, adaptive filtering, univariate ARMA and
Harrison's harmonic smoothing models were identified. A
second set of models is identified when seasbnally adjusted

data are used as input. These are the single moving average,

L
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naive, single exponential smoothing and adaptive response rate
exponential smoothing models.

However, use of the MicroTSP and SPSS software further
constrains this set. Thus for this study the applicable
models are the wunivariate ARMA, Winter's exponential
smoothing, naive, single moving average and siﬁéle exponential
smoothing models. The last three models use seasonally
adjusted data as input. The mathematical form of these models

is explored in the next two sections.

4.4 FORECASTING WITH SEASONALLY ADJUSTED DATA

Models which utilize seasonally adjusted data as input
forecast the seasonally adjusted series. Thus, the seasonal
factors must be added to the forecast in order to obtain
forecasts of the original data series.

Seasonally adjusting the raw data can be viewed as a two-
step process, which involves first calculatiné the seasonal
factors and then removing their effect from the time series.
The procedure outlined below is in line with that used by the
MicroTSP software.

An additive relationship between the components of the
time series can be represented as follows:

X, =8, + T, + C, +R,
Where 8, T, C and R are the seasonal, trend, cyclical and

random components respectively of the time series. The

subscript t, specifies the current month or a specific month

T v e <18
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under review. Thus X, refers to the price of the commodity in
the current month.

First a centered moving average of the series is
calculated. The moving average must be equal to the length
of seasonality. This is 12 months in the cabbage and tomato
data sets. This smoothing operation eliminates randomness and
seasonality from the smoothed series (M,) . Thus

X, - 8 - R, = M, = T, + C.

t t

Calculating the difference of the moving average (M,)
from the time series (X,) isolates the component containing
the seasonal effects and randomness. That is

X, - M, = S, + R,.
Randomness is eliminated by averaging separately the
differences obtained for each month over all the years in the
sample. These averages are the seasonal factors (S,) .

The seasonally adjusted series (D,) 1is calculated by
subtracting the seasonal factors from the time series. Thus

X, - I, = D,.

The subscript t-IL specifies that the seasonal factor
calculated for the same month one cycle ago must be used in
this process.

Thus in models using D, as input, the forecasted output
is D,,,. To obtain a forecast of the time series (raw data) it

is necessary to add the seasonal factor from the last cycle to

this value. That is X =D + I

t+1 t+1 t-(L-1"°
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4.5 WORKING DETAILS OF THE IDENTIFIED MODELS

The information contained in this section is to a large
extent a summary and reproduction of material contained in

Makridakis, Wheelwright and McGee (1983).

4.5.1 Notation
The following notation is used in the equations.
a - constant term
X - actual value of the variable of interest.
F ~ forecasted value for the variable of interest.

a - smoothing constant for randomness in the data

>
I

smoothing constant for seasonality

(gamma) - smoothing constant for trend

H

- seasonal factors or seasonality index

&
1

length of seasonality

-
]

number of periods (months)

t - time period

o
i

error

4.5.2 Accuracy measures.

The applicable models are evaluated using three accuracy
measures. The MAPE and MSE differ in the weight attached to
the forecast error. In addition both these measures are used
in the repdrt evaluating the Makridakis data;set, allowing

some comparisons to be made. Percentage Turning Point
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Error (¥TPE) evaluates on a different though important
criterion.

The MAPE and MSE are calculated with the aid of the
Quattro Pro spreadsheet. %TPE are computed from plots of the
forecasted against the actual series, in the out-of-sample
period. A mechanical computational procedure is used to
decide whether the turning point is in error. The graphs are

found in Appendices A and B.

" [ ]X -~ F |
mape = * x l_lﬁ__ﬁﬁl x 100 (1)
n X,
n
MSE = X x ¥ (X,-F,)? (2)
n o9
$TPE = [_N©. of incorrect turning points % 100 (3)

no. of out-of-sample data points

4.5.3 8ingle moving average e

This simple averaging process can only produce good
results if the process underlying the observed values of X has
no noticeable trend or seasonality.

The greater the number of terms (n) in the moving

average, the greater the smoothing effect. When n=1, the
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model is equivalent to a random walk model. The use of a
small value for n will thus allow the moving average to follow
the pattern of the data, though it will always be behind it by
one or more periods. The optimal length of the moving average
was determined by minimizing the MSE of the estimation data.
This was accomplished in the model fitting phase.

The forecasting equation for the single moving average

can be written algebraically as:

Xe * X1t Xe o+ +Xil(n-1y

Ft+1 = n

(4)
1

1l

ist-(n-1)

This equation indicates that the forecast is an average
of the present and past actual values contained in the moving
average. Thus, once the model is estimated, only n data

points are required to produce a forecast.

4.5.4 8ingle exponential smoothing

Fioq = aX, + (1 - @) F, (5)

This equation is the general form used in computing a
forecast with the method of exponential smoothing. The

operational concept inherent in exponential smoothing can be
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easily demonstrated if equation 5 is expanded by replacing F,

with its components:
Fo =aX, 4 + (1 - a)F_, _‘ (6)
Thus the first substitution yields:

Feor = aXe + (1 -@) (aXq + (1 ~a)Fy)

5 (7)
=aXy +a(l-a)X, 4+ (l-a)°F,_,

If this substitution process is continued we obtain the
relationships:

Feog =aX +a(l-a)Xe, +a(l-a)2X,, +

(8)
(L-a)®%e 5+ +(1 = @) "Fe_goyy + =

Since alpha has a value between zero and one, the older
observed vaiues have exponentially decreasing values. Hence,
the name exponential smoothing.

Eqguation 9 is an alternate form of equation 5.

Frog = Fe + a (X, ~ Fy)
F, + ae,

(9)

Thus the new forecast is simply the old forecast plus alpha
times the error in the old forecast. This implies that when
alpha has a value close to one the new forecast consists of
the previous forecast plus a large portion of the error
associated with that old forecast. 1In this situation the new
forecast taks a value close to the last observed value of X.

Conversely when alpha is close to zero, the new forecast

will include very 1little adjustment. Thus it will have a

S,
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value close to that of the previous forecast. A large value
of alpha gives very little smoothing in the forecast, while a
very small value gives considerable smoothing. An alpha value
of 1 gives the random walk model.
The value of alpha is determined by a non-linear estimation
procedure aimed at minimizing the MSE in the model estimation
phase. |

Equation 8 provides an alternative way of looking at the
mechanics of the model. Here an alpha value of one in effect
means that all the weight is placed on the last observed value
of X. Thus the forecast for the next period is equal to the
present value of X, i.e. the random walk model. An alpha
value close to zero means that a large number of data points
will be included in the smoothing segment to calculate the
forecast. In this situation the forecast takes on the
characteristics of an average of the past data. Thus the
forecast in each succeeding period tends to be identical or

very close to value forecasted for the previous period.

4.5.4 Beasonal exponential smoothing - Winters model

The single and double exponential smoothing methods may
do a poor job of forecasting when seasonality is present in
the data set. Winter's model explicitly takes account of
seasonality and trend through inclusion of additional

egquations and parameters.

T T b e e
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Winter's model uses four equations and three parameters.
Three of the equations, and their associated parameters,
smooth for fandomness, trend and seasonality (eéuation 10, 11,
and 12 respectively) in the data. The fourth equation

(equation 13) is used to forecast.

St =a(X - I ) + (1L -a) (8,4 +by) (10)
be = ¥ (8¢ =8¢q) + (1-7¥) Dby (11)

Iy =B (X -8) + (1-8)I, (12)

Fiem = (S¢+bgm} + I, .. (13)

In the above equations b,I and S estimate the trend,
seasonal factors and present level of the deseasonalized data.
Thus in operation this model removes seasonality from the
data, using the seasonal factor calculated for the same month
in the preceding seasonal cycle. In addition randomness is
removed from the seasonally adjusted data. These two
operations are accomplished in equation 10. The series that
results, S,, is used to calculate the seasonal factors and the
trend in the data. In equation 12 since X, contains
seasonality and 5, does not, the difference-of these two

provides the seasonal adjustment factors. 5, is also used to
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calculate the trend (equation 11). This is calculated as the
difference between two values of S,. In equation 13, the
trend and seasonal factor is added to the present level of the

deseasonalized data to obtain the forecast.

4.5.5 Auto-regressive moving average (ARMA) models

Forecasts are expressed as functions of past values, but
unlike exponential smoothing, no fixed weighting scheme is
assumed.

As noted in Chapter 2 p, d and q denote the order of the
AR model, the degree of differencing required for stationarity
and the order of the MA model respectively. In addition, when
seasonality is present in the data, seasonal differencing is
required. The mathematical models are outlined below.

4.5.5.1 The Autoregressive model

Xp =8+ 91X + pXeop + P3Xez + 0 @K, + e (14)

Equation 14 is an autoregressive(AR) scheme. It shows
that future values are linear combinations of past values of
the variable. This equation can be thought of as similar to
the general equation in the Single Exponential'émoothing model

(equation 5), but with the following substitutions:

¢ =a, ¢=a(l-a), ¢, =a(l-a)f’ (15)

e
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Thus p can take different values. The equations below
show the mathematical form of the AR model when p=1 and p=2
(equations 16 and 17 respectively). These are auto-regressive

processes of order one AR(1) and order two AR(2).

Xe =a + X, +e (16)

Xe ma + ¢1Xeq + @2X o+ e (17)

We can see that the AR(1) process has the previous value of X
included, while the AR(2) model has the two previous terms.
Thus the order of the AR process determines the number of past
terms included. Thus model specification is flexible allowing
the most appropriate combination to be selected.

4.5.4.2 The Moving Average(MA) model

Xp =a+e - 0Oiey - 065 - 6385 - - 048, (18)

Moving Average models differ from autoregressive ones, as
they assume that future values of X, are linear combinations
of past values of the errors or noise(e,). Equation 18 is an
MA model of degree g. Like the parameter p in the AR model,
the parameter g can take on various values. Equations 19 and
20 show the mathematical form of the Moving Average model when

g=1 MA(1l) and g=2 MA(2) respectively.

Xe =a +e -01e., (19)

X, =a + e, ~6e,,-0,e,, (20)
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4.5.4.3 Autoregressive Moving Average Models

e =2+ 01X+ PR ot +PpXp p v —01e - -04e, . (21)

Equation 21 is a combination of an AR(p) model and an
MA(qg) model. An ARMA model can thus be specified as being of
order p and q. Thus equations 22 and 23 are ARMA(1,1) and

ARMA (2,2) models respectively.

Xp =a+ ¢ X +ve -0ie (22)

Xe =a + 91X 1 +¢X e, ~B1e_-0,e,, (23)

The advantage of an ARMA scheme is that it includes
different AR models and uses whatever error remains in an MA
equation in attempting to further improve forecasting. This
can be done until the errors have been reduced to randomness
(white noise), at which point no further improvements in the
model fitted are possible.

The ARMA model operates on the assumption of stationarity
in the process generating the data. When this assumption is
violated, differencing the data and working with the
differenced series can provide stationarity. The Augmented
Dickey-Fuller test was used to determine stationarity of the
data and the degree of differencing required to achieve
stationarity. Differenced models are referred to as
integrated (I). When seasonal differencing is also necessary

then the models are known as seasonal ARIMA models.
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The ARMA approach is powerful because in addition to P,
q, and d, the coefficients ¢; and 8, of an integrated ARMA
model can vary depending upon the data. These are determined
in such a way that the sum of the squared errors are
minimized.

When the data are seasonal, there is added complexity
involved 1in achieving stationarity. We must achieve
stationarity among the same month of different years, or
specifically among months which are L periods apart. The
degree of differencing required for seasonal stationarity can
be denoted by the parameter s. The seasonal component,
depending on the process generating the data, is placed in
either the MA or AR part of the model. The seasonal component
(in parenthesis) is in the AR part of the ARMA model of

equation 24 and the MA part in equation 25.
e =a+¢ X, g+ (DXt +@1@:Xe 1) e - 040, (24)

X = a+¢ X1 +e, ~Be. - (B e, -0,08,ec, 1) (25)
In the equations above the seasonal coefficient is b
¢,¢, exists because the model is multiplicativg and therefore
shows the combined effects of the AR (or MA in equation 25)
non-seasonal and seasonal parameters.
Given the wide range of models, the major difficulty is in
model selection. The Box-Jenkins methodology however provides

guidelines for this choice.
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4.5.5.4 Box-Jenkins methodology

The Box-Jenkins methodology is an efficieht and practical
procedure for identifying and testing the adequacy of an
appropriate ARMA model for use in forecasting.

The autocorrelation coefficients and the partial auto
correlation coefficients are two important statistics in the
Box-Jenkins methodology. The autocorrelation function (ACF)
describes the association among values of the same variable
but at different time periods. The partial autocorrelation
function (PACF) measures the degree of association between X,
and th when the effects of other time lags (1,2,3,...k-1) are
partialled out.

The Box-Jenkins procedure consists of three stages.
These are model identification, parameter estimation and
diagnostic checking.

Model identification consists of first evaluating the
data for stationarity, and then if needed, transforming the
data to obtain it. The ADF test is used to test for
stationarity. Differencing the data is one method of
achieving stationarity.

Once stationarity is achieved the tentative model is
identified. This consists of determining the order of the
parameters p and . The parameter d denotes the degree of
differencing required to achieve stationarity;‘ The order of
the parameters p and g can be determined through examination

of the PACF and ACF.
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As a general rule, when the autocorrelations drop off
exponentially to zero, the model is AR, and its order is
determined by the number of partial autocorrelations that are
significantly different from zero. If the partial
autocorrelations drop off exponentially to zerd, the model is
MA and its order is determined by the number of statistically
significant autocorrelations. When both auto correlations and
partial autocorrelations drop off exponentially to zero, the
model is ARMA (Makridakis and Wheelwright 1989, p 138). (See
texts such as Makridakis and Wheelwright 1989, for specific
guidelines).

Parameter estimation consists of determining the values
of the ¢ and 8 variables included in the model.

Once the model is specified it must be checked to
determine its adequacy. This is accomplished through
examination of the ACF and PACF of the residuals. If the
model is adequate, then the AC and PAC coefficients of the
residuals will not be significantly different from zero, nor
will it have any pattern. If adequate the model can be used

in forecasting. If not then the procedure must be repeated.




CHAPTER 5

RESULTS

5.1 FORECASTING MODELS

The following models were specified as a consequence of
the model-fitting operations. The Naive model is not listed
because its one step ahead forecast is alwéys equal to the
present-month actual value.

PRIMARY ANALYSIS

CABBAGE
Single Moving Average 3 yrs n=2
4 yrs n=2
5 yrs n=2
Single Exp. Smoothing 3 yrs a=.956
4 yrs a=.999
5 yrs a=.,993
Winter's 3 yrs a=1l B=0 y=0
4 yrs a=1 B=0 y=0
5 yrs a=1l B=0 y=0
ARIMA 3 yrs (0; 1; [2,3]); sma 12.
4 yrs (0; 1; [1,2])
5 yrs (0 1:; [1,2])
TOMATOES
Single Moving Average 3 yrs n=2
4 yrs n=2
5 yrs n=3
Single Exp. Smoothing 3 yrs a=0.001
4 yrs a=0.001
5 yrs @=0.001
Winter's 3 yrs a=0.510 =0 y=0
4 yrs a=0 =0 =0
5 yrs o=0.20 =,010 y=0
ARIMA 3 yrs ([1,2]:; 1; 0); sma 12
4 yrs ((1,2]: 1; 1); sma 12
5 yrs ([2,3171:({7,8)): sar 12

58
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SECONDARY ANALYSIS

CABBAGE
Single Exp. Smoothing 3 yrs a=.999
4 yrs =.930
5 yrs o=.983
Winter's 3 yrs a=.780 B=0 y=0
4 yrs a=.920 B=0 =0
5 yrs @=1.0 B=0 y=0
ARIMA 3 yrs (2: 1; 2)
4 yrs (0; 1; [10, 11])
5 yrs (0; 1: [1,2])
TOMATOES
Single Exp. Smoothing 3 yrs a=,972
4 yrs a=,001
5 yrs a=.001
Winter's 3 yrs a=0 B=.180 y=0
4 yrs a=1.0 =0 y=0
5 yrs a=.010 B=.110 =

In the notation for the ARIMA model above, the first term
denotes the order of the AR model. The second term specifies
the degree of differencing required for achieving
stationarity, while the third term specifies the order of the
MA term. The last part of the ARIMA model notation indicates
the presence of seasonality and whether it is best included in
the AR or MA scheme. Each term in the ARIMA model notation is

separated by a semi-colon.

5.2 INTERPRETING THE RESULTS o

In general we expect forecast accuracy to successively
increase as the quantity of data used in model estimation is

increased. This effect should be readily apparent if data is
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a limiting factor in achieving forecast accuracy. In a like
manner we expect forecast accuracy to decrease as the number
of steps-ahead forecast is increased. Whether these patterns
in fact occur can be determined through examination of the
tables displaying the results. The results>of the primary
analysis ére presented in tables 5.1 - 5.5 and 5.9 - 5.13 for
cabbage and tomatoes respectively. Tables 5.6 - 5.8 and 5.14
- 5.16 display the results of the secondary analysis for

cabbage and tomatoes respectively.

5.3 RESULTS - CABBAGE

The values of the accuracy measures obtained, are high.
For example the lowest MAPE value in the primary analysis is
32.5%. In particular the values obtained for the ARIMA model

are in the extreme.

5.3.1 Most accurate model

Tables 5.1- 5.3 display the values of the accuracy
measures (MSE, MAPE and %TPE respectively) resulting from the
primary analysis. The asterisks in each table identify the
most accurate model for the specific number of steps-ahead and
a given quantity of estimation data. Tables 5.4 and 5.5
identify the most accurate model in providing forecasts for
the one through three steps-ahead period, evaluating with the
MSE and MAPE measures respectively. These last measures are

in effect mean MSE and mean MAPE respectively.
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The results indicate that selection of the "most accurate
model" is influenced by the accuracy measure used. A
comparison of the results obtained using the MSE, MAPE and
%TPE measures (tables 5.1, 5.2 and 5.3) readily shows this.
The variations are a result of the differing evaluating
criteria used by each measure. For example the MAPE is a
linear as opposed to the "quadratic" MSE measure. The %TPE on
the other hénd evaluates differences in changes of direction.

Table 5.1 reports the result of evaluating with the MSE
measure. It indicates that the Naive model was most accurate
at one step ahead forecasting when using three and five years
estimation data, and at two steps ahead forecasting using
three years data. The moving average model was best at two
steps ahead forecasts using five years data and three steps
ahead using three years data. The Winter's model was the most
accurate model when forecasting with four vyears data,
irrespective of the number of steps ahead. The Winter's model
was also best at three steps ahead forecasting using five
years estimation data.

In essence therefore the models which used deseasonalised
data as input (the Naive, SES and Moving average models) all
performed relatively well. So too did the Winter's model.
The Arima model however was never able to achieve the
distinction of being most accurate. Somewhat similar results
occur when evaluating with the MAPE, mean MSE and mean MAPE.

The situation is a little different when evaluating with the
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3TPE measure. The ARIMA model is most accurate on two
occasions. These are when forecasting two steps ahead with
five years data and when forecasting three steps ahead with
three years data. Even so the basic distribution of the "most
accurate model" results is little affected.

The results of the secondary analysis does not indicate
any great variations with the primary analysis in terms of
either the magnitude of the values of the accuracy measures or

the basic distribution of the "most accurate model" results.

5.3.2 Quantity of data and model accuracy

The relationship between quantity of data and model
accuracy can be evaluated from the results posted in tables
5.1 - 5.3. Given the study objectives, four types of
relationships can be identified when we evaluate changes in
the values of the accuracy measure, as the quantity of
estimation data is increased. These relationships can be
described as:

= Increasing : describes successive decreases in the value
of the accuracy measure (thus increases in accuracy).

- Decreasing : describes successive increases in the value
of the accuracy measure (decrease in accuracy) as the
quantity of estimation data is increased.

= Inconsistent : That is it is inconsistent in terms of
being difficult to draw any meaningful conclusions given

the objectives of the study. This category includes five

i
f
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types of changes in the value of the accuracy measure in
response to successive increases in the quantity of
estimation data. The last two are classed as
inconsistencies rather than as decreasing~or increasing
relationships respectively because of the inability to
determine whether sustained change is occurring. These
five are:
increase and then decrease
decrease and then increase
increase and then stabilize
stabilize and then increase
stabilize and then decrease
- stabilized : where the value of the accuracy measure
either remains unchanged or at first decreases but then
stabilizes. )
These movements are denoted by insertion of the letters 1, D,

C or S respectively in the last column of the appropriate

tables.

Most of the data—quantity/model-accuracy relationships
reveal inconsistent movements. Few show sustained increases
in accuracy as the quantity of data is increased. The
instances where increasing relationships occur are greatest in
the MAPE as opposed to the MSE and $TPE measures. In the MAPE
results the ARIMA model posted increasing relationships at

each step ahead. It accounted for more than half the number

e g,
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of increases in this table. However we must also note that in
each case the initial MAPE value for the ARIMA model was
extremely high.
The secondary analysis does not reveal any positive change in
the relationships. 1In fact an even greater number of models
posted inconsistent relationships under all three evaluation

measures, : .

5.3.3 Accuracy of the ARIMA model

The ARIMA models specified had the highest MSE values
(hence lowest accuracy) of all the models evaluated {Table
5.1). This was true at all levels of data use and steps ahead
forecasted, except when four years of data were used for the
one and three steps ahead forecast. There was not a single
instance in the primary analysis where the ARIMA model was the
most accurate model under the MSE evaluation measure.

The ARIMA models specified also had the highest MAPE
values (Table 5.2) at all levels of data use and steps ahead
forecasted. Exceptions were for the two and three steps ahead
forecast using five years data. A somewhat similar story

holds with respect to the %TPE.
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Table 5.1 Primary Analysis: Cabbage MSE values
M

Model Estimation data (yrs)
One-Step 3 4 5
ARIMA 6.34 1.94 3.83 C
Winter's 2.46 *1.74 1.28 I
SES 1.54 2.31 *1.21 c
Naive *1.51 2.31 *.21 c
Moving Average 2.19 2.59 1.24 C
Two-Step
AR IMA 10.65 2.65 5.24 c
Winter'ts 5.55 *1.29 2.97 o
SES 3.69 2.32 2.33 3
Naive *3.67 2.32 2.34 S
Moving Average 3.88 2.27 *2.07 1
Three-Step
ARIMA 10.34 1.58 4.40 C
Winter's 8.40 *1.13 *1.20 C
SES 5.81 1.83 2.54 c
Naive 5.89 1.83 2.55 [
Moving Average *5.39 2.19 2.46 c

* Lowest value for the number of steps ahead and quantity of data

Table 5.2 Primary Analysis: Cabbage MAPE values
M

Model Estimation data (yrs)
One-Step 3 4 5
ARIMA 1.9 84.6 43.2 I
Winter's 44 .4 *T.4 32.9 c
SES 37.1 66.7 *32.7 C
Naive 36.9 66.7 32.8 c
Moving Average *32.5 59.4 43.0 c
Two-Step
ARIMA 117.8 98.0 46.8 1
Winter's 7.4 *51.7 50.1 I
SES 57.2 85.4 *44.5 c
Naive 57.3 85.4 44.7 c
Moving Average *35.8 64.4 48.3 c
Three-Step
ARIMA 120.4 70.7 45.2 1
Winter's 82.1 *39.7 37.9 I
SES 65.7 69.3 *33.7 c
Naive 66.0 69.3 34.0 c
Moving Average *41.8 60.4 54.4 C

* Lowest value for the number of steps ahead and quantity of data
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Table 5.3 Primary Analysis: Cabbage %TPE values
Model Estimation data (yrs)

One step 3 4 5
ARTMA 72.7 54.5 54.5 s
Winter's *45,5 *45.5 *36.4 1
SES *45.5 54.5 45.5 c
Naive *45.5 *45.5 45.5 c
Moving average 54.5 54.5 *36.4 I

Two step
ARIMA 60.0 80.0 *50.0 Cc
Winter's *40.0 50.0 *50.0 c
SES *40.0 50.0 60.0 D
Naive 50.0 50.0 *50.0 c
Moving average 50.0 *40.0 *50.0 c

Three step
ARIMA w444 55.5 55.5 D
Winter's 66,7 35.5 *11.1 I
SES 66.7 *33.3 “4h.4 c
Naive 66.7 *33.3 44.4 c
Moving average 66.7 44 .4 33.3 1

* Lowest value for the number of steps ahead and quantity of data

Table 5.4  Primary Analysis: Cabbage mean MSE values
M

Data (yrs) Models
ARIMA Winter's SES Najve M Avg.
3 9.11 5.47 *3.68 3.69 3.82
4 2.06 *1.39 2.15 2.15 2.35
5 4.49 *1.82 2.03 2.03 1.92

* Lowest value for the specified quantity of data.

e e Ry . o
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Table 5.5 Primary Analysis: Cabbage mean MAPE values
h

Dats (yrs) Models
ARIMA Winterts SES Naive M avg.
3 110.60 65.97 53.33 53.40 *36.70
4 84.43 *46.27 73.80 73.80 61.40
5 45.07 40.30 *36.94 _ 3717 48.57

* Lowest value for the specified quantity of data

Table 5.6 Secondary Analysis: Cabbagqe MSE values

ﬁ

Model Estimation data (yrs)
One-Step 3 A .5
ARIMA 2.86 4.75 3.83 c
Winter's 2.02 .21 1.38 c
SES 3.07 2.72 *4 .94 C
Naive 3.07 3.07 5.07 c
Two-Step
ARIMA 3.25 321 4.81 C
Winter's 3.85 2.86 3.25 C
SES *2.22 *2.05 *2.63 c
Naive *2.22 2.22 2.67 C
Three-Step
ARIMA 2.58 2.89 3.74 D
Winter's 4.52 3.36 3.37 s
SES *2.32 *2.25 *2.86 c
Naive *2.32 2.32 2.88 [

* Lowest value for the number of steps ahead and quantity of data
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Table 5.7 Secondary Analysis: Cabbage MAPE values

Model Estimation data (yrs) -
One-Step 3 4 5
ARIMA 67.0 7.3 43.2 c :
Winter's *62.4 *31.3 *31.2 s ;
SES 48.7 46.7 47.4 c :
Naive 48.7 48.7 48.3 c ,
Two-Step ;
ARIMA 68.4 *42.4 *43.1 c ’
Winter's 58.0 51.9 52.6 c
SES *50.5 47.8 50.0 c
Naive *520.5 50.5 50.8 c
Three-Step
ARIMA 59.3 *39.2 *39.9 s
Winter's *49.6 40.5 42.5 C
SES 52.3 51.6 57.5 c
Naive 52.3 52.3 57.9 C

* Lowest value for the number of steps ahead and quantity of data

Table 5.8 BSecondary Analysis: Cabbaqge %TPE values

“

Model Estimation data (yrs)
One step 3 4 5
ARIMA 54.6 *36.4 54.5 c
Winter's *36.4 *36.4 *36.4 s
SES 45,5 45.5 54.5 c
Naive 45.5 45,5 54.5 c
Two step
ARIMA *36.4 *27.3 *54.5 c
Winter's 81.8 54.5 *54.5 S
SES 63.6 63.6 63.6 s
Naive 63.6 63.6 63.6 S
Three step
ARIMA *36.4 63.6 54.5 C
Winter's 63.6 45.5 54.5 €
SES *36.4 *36.4 *36.4 $
Naive *36.4 *36.4 *36.4 53

* towest value for the number of steps ahead and quantity of data
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5.4 RESULTS - TOMATO
5.4.1 Most accurate model

The asterisk in each table identifies the most accurate
model when forecasting for a specified number of steps ahead
and a given quantity of data. Tables 5.9 - 5.13 and 5.14 -
5.16 report'the results of the primary and secondary analyses
respectively. Tables 5.12 and 5.13 in effect report mean MSE
and MAPE values.

Examination of tables 5.9 and 5.10 reveal that in almost
all cases of the primary analyses, the most accurate model was
the Winter's or the SES model. The one exception was the
result for three steps ahead forecasts using three years of
data where the ARIMA model was best under both accuracy
measures. Further, models found to be most accurate with one
measure tended to hold this position when evaluated with the
other measure. Evaluating with the %TPE measure results in
a much more dispersed distribution of the Y“most accurate
model" results. The Winter's and SES models were most accurate
when evaluating with the mean MSE and MAPE measures.

The secondary analysis conducted using the Winter's, SES

and Naive models little affected the above reported results.

5.4.2 Quantity of data and model accuracy
The last column in each table classifies the relationship

that exists between model accuracy and quantity of estimation




70
data. The notation used and the relevant definitions are set
out in section 5.3.2.

The primary results indicate that most of the
relationships can be described as either decreasing or
inconsistent. Instances of increasing relationships are
provided by the ARIMA model in its one step ahead forecasts
evaluated with the MSE measure and its one and two steps ahead
forecasts evaluated with the MAPE measure. The ARIMA model in
these cases however had extremely high init%al (i.e. with
three years data) wvalues. When evaluated.iwith the $%TPE
measure all the relationships were classified as either
decreasing or inconsistent.

The secondary analysis showed one model with a
relationship classified as increasing. This was the Winter's
model when three steps ahead forecasting using the MAPE
measure. All other models had decreasing, inconsistent or

stabilized relationships.

5.4.3 Accuracy of the ARIMA model

The ARIMA models specified had the largest MAPE values
for the one step ahead and two steps ahead fb;ecasts (Table
5.10). However it had the smallest MAPE value for the three
step ahead forecast using three year of data.

Essentially the same results are obtained when the
evaluation is based on the MSE measure (Table 5.9). The ARIMA

model was not included in the secondary analysis.

H
I
b
b
H
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Table 5.9 Primary Analysis: Tomato MSE values

Model * Estimation data (yrs)
One-Step 3 FA 5
ARIMA 18.83 7.99 7.57 1
Winter's *1.10 *1.50 4.08 v}
SES 1.38 1.71 *2,95 D
Naive 1.66 2.41 4.05 D
Moving Average 1.47 2.96 4.56 " D
Tuwo-Step
ARTMA .26 10.17 6.40 C
Winter's *1.30 *1.53 4.50 D
SES 1.47 1.84 *2.99 v}
Naive 2.73 5.08 7.63 D
Moving Average 1.89 5.04 6.15 D
Three-Step
ARIMA *D.62 6.75 4.15 c
Winter's 0.97 *1.61 4.95 D
SES 1.61 1.91 *3.29 D
Naive 1.79 7.01 4.76 C
Moving Average 1.23 6.04 3.70 c

* Lowest value for the number of steps ahead and quantity of data

Table 5.10 Primary Analysis: Tomato MAPE values

M

Model Estimation data (yrs)
One-Step 3 4 5
ARTMA 128.2 63.2 61.7 1
Winteris 24.6 *26.1 34.5 b
SES *22.6 13.2 *27.0 c
Naive 27.3 26.4 36.4 c
Moving Average 22.7 45.7 40,5 C
Two-Step
ARIMA 88.5 69.6 52.7 1
Winter's 28.8 *26.8 34.2 c
SES *22.8 35.4 *25.7 c
Naive 33.3 49.3 47.9 c
Moving Average 25.2 49.2 45.6 c
Three-Step
ARIMA *14,7 41.8 37.4 c
Winter!s 23.4 *27.0 3.7 b
SES 24.0 37.5 *28.2 C
Naive 29.9 66.7 43.0 c
Moving Average 23.9 56.9 37.0 C

* Lowest value for the number of steps shead and quantity of data
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Table 5.11 _Primary Analysis: Tomato %TPE values

Model Estimation data (yrs)
One;step 3 4 5 x
ARIMA 45.5 36.4 45.5 C
Winter's 45.5 *00.0 *36.4 (i
SES 2r.3 18.2 *36.4 c
Naive *18.2 18.2 45.5 D
Moving average *18.2 27.3 *36.4 ] .
Two step
ARIMA *20.0 40.0 *40.0 c ;
Winter's 50.0 *00.0 *40.0 c ;
SES 30.0 20.0 40.0 c :
Naive 70.0 30.0 70.0 c
Moving average 40.0 40.0 70.0 D
three step
ARIMA *22.2 77.8 55.6 c :
Winter's 44.4 *00.0 55.6 C
SES 33.3 22.2 44.4 c
Naive 44.4 22.2 4.4 c ;
Moving average 33.3 33.3 *33.3 c :

* Lowest value for the number of steps ahead and quantity.of data

Table 5.12 Primary Analysis: Tomato mean MSE values

“

Data (yrs) Models
ARIMA Winter's SES Naive M avg.
3 2.57 *1.12 6.05 2.06 - ) 1.53
4 8.30 *1.55 1.85 4.83 4.68
5 6.04 4.51 *3.08 5.48 4.80

* Lowest value for the specified quantity of data
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Table 5.13 Primary Analysis: Tomato mean MAPE values
m

Data (yrs) Models
ARIMA Winter's SES Naive M avg.
3 77.13 25.60 *23.13 30.17 23.93
4 58.20 *26.63 35.37 47.47 50.60
5 50.60 35.13 *26.97 42.43 41.03

* lowest value for the specified quantity of data

Table 5.14 Secondary Analysis: Tomato MSE values
m

Mode | Estimation data (yrs)
One-Step 3 4 5
Winter's *3.82 5.5¢9 4,06 c
SES 4.17 *3.13 *3.18 c
Naive 6.92 5.97 8,92 c
TWo-Step
Winter's *3.77 6.96 4.18 C
SES 5.77 *3.13 *3.18 C
Naive 7.85 7.00 7.85 Cc
Three-Step
Winter's *3.73 8.63 4.12 c
SES 9.55 *3.13 *3.17 C
Naive 9.22 9.81 9.22 C

* Lowest value for the number of steps ahead and quantity of data

e g
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Table 5.15 BSecondary Analysis: Tomato MAPE values

Model Estimation data (yrs)

One-Step 3 4 5

Winter's *30.3 41.0 32.8 c

SES 92.0 *27.2 *28.9

Naive 93.2 93.2 100:0
Two-Step '

Winter's *29.9 58.8 32.7 c

SES 72.1 27.2 *28.9 c

Naive 73.6 73.6 71.0
Three-Step

Winter's $9.3 53.6 32.5

SES 36.6 27.2 28.9 c

Naive 37.4 37.5 38.9 D

* Lowest value for the number of steps ahead and quantity of data

Table 5.16 Secondary Analysis:; Tomato %TPE values
m

Model Estimation data (yrs)
One step 3 4 5
Winter's *34.6 *45.5 *45.5 -7
SES 63.6 *45.5 54.5 c
Naive 63.6 63.6 *45.5
Two step
Winter's *54.5 54.5 45.5 C
SES 72.7 *45.5 *27.3
Naive 72.7 72.7 g81.8 c
Three step
Winter's 54.5 *45.5 *36.4
SES *45.5 *45.5 *36.4 c
Naive *45.5 54,5 45.5

* Lowest value for the number of steps ahead and quantity of data

-




CHAPTER 6

CONCLUSION

6.1 DISCUSSTION

All models have relatively high error values under all
three accuracy measures used. In particular the error values
for the ARIMA model were in the extreme, sometimes above 100%.

Several of the models specified (both primary and
secondary) are close to the Naive model. This may indicate
that both data sets are adequately represented by a model of
this type. The Moving average model where n=1 and the SES
model with an alpha value of one (a = 1) will both produce
results identical to the Naive model when the same data are
used as input. In this study the Moving average models have
values of n=2 or n=3, but then specification of these as n=1
models was not attempted. Many of the SES models specified
have high alpha values (above .9), consequently forecasts and
error values for these SES and Naive models tend to be close.
In this regard the SES and Naive models for the cabbage data-
sets provide good examples (see Tables C1 - €3 and Tables 5.1

- 5.8).

In the great majority of cases the simpler models had the
distinction of being declared most accurate for the given
quantity of data and steps-ahead. The results show that the

ARTMA model was hardly ever most accurate.
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The relationship between the value of the accuracy
measure and the quantity of estimation data as it is
successively increased, has implications for evaluating the
objectives of the study. The main objective was to determine
if "existing models/techniques can provide accurate forecasts
given a short data-set". To test this the relationships
between forecast accuracy and quantity of data were evaluated
for each identified model.

An increasing relationship (ie. forecast accuracy
increases as the quantity of data is increased) implies that
data is limiting. A stabilized relationship implies that data
is not a limiting factor in forecast accuracy."This of course
rests on the assumption that five years of data is sufficient
for accurate forecasts. A decreasing relationship is
difficult to interpret. In general it is felt that the
greater the quantity of estimation data the more accurate the
forecast obtained. However as was pointed out earlier, good
fit in the model estimation phase does not guarantee accurate
forecasts. Notwithstanding this we do not expect accuracy to
decrease as the quantity of estimation data is increased.
Inconclusive results can be explained for the simpler (non-
statistical methods) if three years of data is more than
adequate fof their specification and operatioﬁ: Then random
movements in accuracy could be expected based on movements of
the time series. The number of years over which the test were

conducted are inadequate to test this hypothesis.
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The majority of accuracy/quantity relationships were
inconclusive, decreasing or stabilized. Very few
relationships were classified as increasing. Thus the results
of our analysis, in terms of determining the first objective,
are inconclusive.

The second objective was to determine whether the ARIMA
models would provide more accurate forecasts than the other
applicable extrapolative models, given a short data series.
The results indicate that this did not occur. In fact the
simple methods of Moving average, Naive, SES and Winter's all
performed in most cases much better than the ARIMA model.
While there is a certain amount of specificity to the data in
studies of this kind, the results are in accord with those
obtained in the accuracy studies conducted by Makridakis. The
studies by Makridakis, however did not takg inte account

limitations on the length of the data series.

One weakness in the study is that the methodology made no
attempt to investigate reasons for this poor performance of
the ARIMA model. Poor performance could be due to inadequate
model specification and/or the effects of the short data
series. The ARIMA model had the highest number of increasing
relationships (i.e the highest error values occurred when the
least amount of data was used}). We can conclude from this
that length of the data series is a factor in the poor

performance  of the ARIMA model. The methodology used to
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specify the ARIMA model (see Appendix E) allowed acceptable
random residuals to be obtained. However unlike the other
models, the ARIMA model involved the greatest subjective
input. Teéts were not conducted to determine if model
specification was a factor in the poor performance of the
ARIMA model. The methodology does not allow us to
conclusively make such a statement, thus we cannot conclude
that the ARIMA model performs worse than the other models when

the data series is short.

Given the main objective of this study the results are
inconclusive. This result is in part due to weaknesses in the
study methodology. These include:

- the inability to state an absolute value for each
accuraéy measure thus allowing us to judge whether model
performance is acceptable. However no such absolute
values exist, in part because an acceptable level of
accuracy depends on the user, the use and the forecaster.

- inability to prove conclusively that the ARIMA models
were well specified and thus argue that its poor
performance is due solely to limitations imposed by the

quantity of estimation data.

i
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6.2 RECOMMENDATIONS

Further study is needed as this study was exploratory in
nature. Further work must however take account of the
weaknesses of this study. That may well require:

- definition of absolute values for the accuracy measures
used, or the development of new measures;

- use of ARIMA models specified by experts in the field.
This is the approach often adopted by Makridakis and
others when conducting comparison studies of this kind;

- use of an approach (other than the case study) that
allows statistical determination of the significance of
the data/accuracy relationships.

There is a need for training of forecasters and beginning
forecasters, with the emphasis on an evolutionary rather than
arbitrary model selection process. This training must
highlight the range of models available and appropriate user

friendly software packages.
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APPENDIX A

PRIMARY ANALYSIS - TOMATO

Plots of actual and forecasted wvalues

e T e TS =




APPENDIX A

10
$/kg

Jan 1588 Dec

[——T03 .. ToAMA4

Figure Al 1-step ahead ARIMA forecasts
: (3 yrs estimation data)

$/ke

Jan 1988 Dec

[ o3 ___ TowEsi|
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Figure A9 l-step ahead Naive forecasts
(4 yrs estimation data)
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Figure Al12 1l-step ahead Winters forecasts
(5 yrs estimation data)
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Figure a13 l-step ahead SES forecasts
(5 yrs estimation data)
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Figure A14 l1-step ahead Naive forecasts
(5 yrs estimation data)
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Figure A17 2-steps ahead Winters forecasts
(3 yrs estimation data)
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Figure A20 2-steps ahead M avg. forecasts
(3 yrs estimation data)
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(5 yrs estimation data)
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Figure A32 3-steps ahead Winters forecasts
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APPENDIX B

PRIMARY ANALYSIS — CABBAGE

Plots of actual and forecasted values
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Figure B8 l-step ahead SES forecasts
(4 yrs estimation data)
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1989 Dec

|—CABB¢ . cuovy]

Figure B1lo l-step ahead M avg. forecasts
(4 yrs estimation data)

e 5 e g




110

¥/ ke
6

Jan 1990 Dec

[——CABB5 . cARMAJ]
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Figure B12 l-step ahead Winter's forecasts
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(5 yrs estimation data)

§/kp

Figure 14 l-step ahead Naive forecasts
(5 yrs estimation data)




112

$/kg

Jan 1990 Dec

|——CaBB5 ___ cmovy]

Figure 15 l-step ahead M avg. forecasts
(5 yrs estimation data)
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Figure B19 2-steps ahead Naive forecasts
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Figure B2s 2~steps ahead M avg. forecasts
(4 yrs estimation data)

Jan 1980 Dec

| —cABBS .. _caRMAZ]
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(5 yrs estimation data)
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Figure B28 2-steps ahead SES forecasts
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Figure 30 2-steps ahead M avg. forecasts
(5 yrs estimation data)
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Figure B33 3-steps ahead SES forecasts
(3 yrs estimation data)

-

1988 Dec

—— CABB3 . CNES3)|

Figure B34 3-steps ahead Naive forecasts
(3 yrs estimation data)




122

$/ks

Jan 1988 Dec

— CABB3 ... CMOV3]

Figure B35 3~steps ahead M avg. forecasts ]
(3 yrs estimation data)

40
§/kg
3.

3.0

2.9

2.0+

1.5

1.04

0.5

Jan 1989 Dec

Figure B36 3-steps ahead ARMA forecasts
(4 yrs estimation data)




123

1989

Dec

|[——CABB: ___caWes3)
Figure B37

3-steps ahead Winters forecasts
(4 yrs estimation data)

0 :“ ',"' l',l ,rf
_1 T T T L T T T T T
Jan 1p8o Dec
— CABB¢ _..__ CSES3)]
Figure B3s

3-steps ahead SES forecasts
(4 years estimation data)




124 .

Figure B39 3-steps ahead Naive forecasts
(4 yrs estimation data) -

A g

e e

Jan 1989 .7 Dec

[—caBBs _.“cmovs|

Figure B40 3~steps ahead M avg. forecasts
(4 yrs estimation data)




125

$/xe

1990 Dec

| —cABBS ___CARMAJ

Figure B41 3-steps ahead ARMA forecasts
{5 yrs estimation data)

$/:p
6

Jan 1000 Dec

| —CABBS . cawEs3)]

Figure B42 3-steps ahead Winters forecasts
(5 yrs estimation data)




126

$/ kg

Jan 1980 Dec

| —cABB5 . Csms3)

Figure B43 3~steps ahead SES forecasts
(5 yrs estimation data)

$/ke

Jan 1950 Dec

Figure B44 3-steps ahead Naive forecasts
. (5 yrs estimation data)

IR "




127

$/k¢

Jan 1350 Dec

[-——CABBS ___ cpov3)

Figure B4S 3~steps ahead M avg. forecasts
(5 yrs estimation data)

R




APPENDIX C

PRIMARY ANALYSIS: data and model® forecasts

* The first number in the alpha-numeric model names used in
the tables refers to the quantity of estimation data used.
The second number highlights the number of steps~ahead being

forecasted. .




APPENDIX C

Table C1 CABBAGE: l-step ahead actual and forecasted values
(TTS/kg) (3, 4 & 5 Years estimation data)

CABBAGE  ARIMA31 Wint31 SES31  WNaive3q M.av31 Factor

1988.01 3.84 2.50 2.82 3. 3.23 3.02 1.06
1988.02 3.41 4.19 3.12 3.46 3.48 3.18 0.70
1988.03 2,27 4.83 1.38 1.39 1.39 1.42 -1.32
1988.04 1.95 5.36 2.25 2.3 2.3 1.90 -1.25
1988, 05 1.48 4.83 2.98 2.65 2.64 2.84 -0.58
1988.06 1.58 6.16 2.79 2.%90 2.85 3.43 0.81
1988,07 3.35 &6.67 1.45 1.73 1.67 2.31 0.90
1988.08 3.99 6.58 2.28 2.86 2.93 2.09 0.43
1988.09 4,31 4.39 2.29 1.96 2.01 1.48 -1.50
1988.10 4.95 4.44 5.47 5.08 5.18 4.03 -0.63
1988.11 5.9¢ 3.93 6.86 6.60 6.59 6.70 1.01
1988.12 3.26 4.27 6.31 3.33 5.30 5.60 0.32

Cabbage  ARIMA41 Winté1 SES4T  Naivedi M.av41 Factor

1989.01 1.52 2.44 3.22 4.00 4.00 5.02 t.06
1989.02 1.28 3.29 0.87 1.16 1.16 2.40 0.70
1989.03 1.19 3.26 -0.53 ~0.74 -0.74 ~0.80 -1.32
1989.04 0.95 3.23 1.09 1.26 1.26 0.29 -1.25
1989.05 2.12 3.20 1.61 1.64 1.64 1.80 -0.56
1989.06 1.84 3.7 3.13 3.49 3.49 3.25 0.81
1989.07 2.83 3.14 2.19 1.93 1.93 2.76 0.90
1989.08 2.8 3.12 2.19 2.41 2.41 1.96 0.48
1989.09 1.73 3.09 1.65 0.86 0.86 0.64 ~1.50
1989.10 1.97 3.06 2.76 2.60 2.60 2.16 -0.63
1989.11 1.67 3.03 3.67 3.61 3.61 3.92 1.01
1989.12 3.95 3.00 1.23 0.98 0.98 1.95 0.32

Cabbage ARIMAST wints1 SES51  NaiveS1 M. av51

1990.01 2.74 3.65 3.10 4.51 4.54 2.71 0.81
1990.02 3.57 2.29 2.17 2.48 2.47 3.37 0.54
1990.03 2.04 2.24 2.1 1.85 1.86 1.31 -1.17
1990.04 1.04 2.20 1.91 1.93 1.93 1.84 -1.28
1990.05 1.30 2,16 1.80 1.27 1.26 1.7 -1.05
1990.06 2.72 2.12 2.05 2.19 2.19 2.17 -0.18
1990.07 2.39 2.07 3.19 3.39 3.39 3.13 0.51
19%0.08 2.04 2.03 1.88 2.39 2,38 2.88 0.50
1990.09 2.90 1.99 0.86 0.87 0.87 1.04 -0.67
1992.10 5.53 1.95 3.77 3.72 3.73 2.7 0.16
1990.11 6.37 1.90 6.83 6.96 6.97 6.07 1.60
1990.12 4.56 1.86 6.47 4.99 4£.99 5.29 0.22
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Table C2 CABBAGE: 2-steps ahead actual and forecast values
(TT$/Kg) (3,4 & 5 years estimation data)

CABBAGE  ARIMA32 Wint32 SES32  Nafve3’2 M.av32 Factor
1988.01 3.84 N/A N/A N/A N/A N/A 1.06
1988.02 3.41 4.21 2.10 2.85 2.87 2.77 0.70
1988.03 2.27 4,32 1.09 1.44 1.46 1.51 -1.32
1988.04 . 1.95 5.41 1.34 1.46 1.46 1.&8 -1.25
1988, 05 1.48 .46 3.28 3.00 3.03 2.81 -0.56
1988.06 1.58 7.19 4.29 4.02 4.01 4.1 0.81
1988.07 3.35 7.78 2.66 2.99 2.94 3.23 0.90
1988.08 3.9¢ 8.34 0.38 1.31 1,25 1.57 0.48
1988.09 4.31 5.60 .58 0.88 0.95 0.53 -1.50
1988.10 4.95 4.76 3.45 2.83 2.88 2.62 -0.63
1988.11 5.99 4.04 7.38 6.72 6.82 6.24 1.0
1988.12 3.26 3.44 7.18 5.91 5.90 5.95 0.32

Cabbage ARIMA42 wint42 SES42  Naive42 M. av42 Factor

1989.01 1.52 N/A N/A N/A N/A N/A 1.06
1989.02 1.28 3.29 2.57 3.64 3.64 4.15 0.70
1989.03 1.19 3.63 0.94 -0.86 -0.86 -0.24 -1.32
1989.04 0.95 3.77 0.43 -0.67 -0.67 -0.70 -1.25
1589.05 2.12 3.57 1.75 1.95 1.95 1.47 -0.56
1989.06 1.84 3.66 2.62 3.01 3.01 3.09 0.81
1989.07 2.83 2.97 3.48 3.58 3.58 3.46 0.90
1989.08 2.84 3.44 1.55 1.5% 1.51 1.92 0.48
1989.09 1.73 2.62 1.00 0.43 0.43 0.20 -1.50
1989.10 1.97 3.10 2.68 1.73 1.73 1.62 -0.63
1989.11 1.67 3.19 4.46 4.24 4.24 4.02 1.01
1989.12 3.95 2.93 3.23 2.92 2.92 3.08 0.32

Cabbage ARIMAS? Wint52 SES52  NaiveS2 M. avs? Factor

1990.01 2.74 N/A N/A N/A N/A N/A 0.81
1990.02 3.57 2.29 2.53 4,24 4.27 3.35 0.54
1990.03 2.04 2.61 0.7 0.77 0.76 1.21 =117
1990.04 1.04 1.39 1.98 1.74 1.75 1.48 -1.28
1990.05 1.30 2.7¢ 2.67 2.16 2.16 2.12 -1.05
1990.06 2.72 2.19 2,55 2.16 2.15 2.38 -0.16
1990.07 2.39 2.33 2.52 2.86 2.86 2.85 0.51
1950.08 2.04 1.53 2.68 3.38 3.38 3.25 0.50
1990.09 2.%90 2,13 0.70 1.22 1.21 1.46 -0.67
1990.10 3.53 1.82 1.73 1.70 1.70 1.78 0.16
1990.11 6.37 1.59 5.07 5.16 5.17 4.66 1.60

1990.12 4.56 0.61 6.93 5.58 5.59 3.14 0.22
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Table C3 CABBAGE: 3-steps ahead actual and forecast values
(TT$/Kkg) (3,4 & 5 years estimation data)

%

Cabbage ARIMA33Z Wint33 SES33 Naive33 M.av33 Factor

1988.01 3.84 N/A N/A N/A N/A N/R 1.06
1988.02 3.41 N/A N/A N/A N/A N/A 0.70
1988.03 2.27 4.84 0.07 0.83 0.85 0.69 -1.32
1988.04 1.95 4.60 1.07 1.51 1.53 1.30 -1.25
1988.05 1.48 5.54 2.39 2.15 2.15 2.18 -0.56
1988.06 1.58 7.53 4.59 4.37 4.40 4.07 0.81
1988.07 3.35 7.55 4.16 4.1 4.10 4,25 0.90
1988.08 3.99 7.72 1.59 2.57 2.52 2.95 0.48
1988.09 4.3 6.11 -1.32 -0.67 -0.73% -0.25 -1.50
1988.10 4.95 4.99 1.7 1.75 1.82 1.19 -0.63
1988.11 5.99 4.30 5.36 4.47 4.52 4.12 1.01
1988.12 3.26 3.74 7.70 6.03 6.13 5.27 0.32

Cabbage  ARIMA43 Wint43 SES43  Naived3 M. avé3 Factor

1989.01 1.52 N/A N/A N/A N/A N/A 1.06
1989.02 1.28 N/A N/A N/A N/A N/A 0.70
1989.03 1.19 3.25 0.77 1.62 1.62 2.39 -1.32
1989.064 0.95 3.20 0.84 ~0.79 -0.79 0.14 -1.25
1989.05 2.12 3.10 1.09 0.02 0.02 -0.03 -0.56
1989.06 1.84 2.97 2.76 3.32 3.32 2.60 0.81
1989.07 2.83 2.87 2.97 3.10 3.10 3.22 0.90
1989.08 2.84 2.77 2,84 3.16 3.16 2.98 0.48
1989.09 1.73 2.72 0.36 -0.47 -0.47 0.15 -1.50
1989.10 1.97 2.66 2.03 1.30 1.30 0.96 -0.63
1989.11 1.67 2.66 4,38 3.37 3.37 3.21 t.07
1989.12 3.95 2.60 4.02 3.55 3.55 3.22 0.32

Cabbage  ARIMAS3 Wint53 SES53  Naive53 M. avs3 Factor

1990.01 2.74 N/A N/A N/A N/A N/A 0.81
1990.02 . 3.57 N/A N/A N/A N/A N/A 0.54
1990.03 2.04 2.24 1.07 2.53 2.56 1.99 -t.17
1990.04 1.04 2.17 0.58 0.66 0.65 1.32 -1.28
1990.05 1.30 2.14 2.74 1.97 1.98 1.57 -1.05
1990.06 2.72 2.16 3.42 3.05 3.05 2.98 -0.16
1990.07 2.39 2.03 3.02 2.83 2.82 3.16 0.51
1990.08 2.04 1.96 2.01 2.85 2.85 2.84 0.50
1990.09 2,90 1.91 0.85 2.21 2.21 2.01 -0.67
1990.10 5.53 1.92 3.77 2.05 2.04 2.41 0.16
1990.11 6.37 1.87 6.83 3.14 3.14 3.27 1.60

1990.12 4.56 1.86 5.17 3.78 3.79 3.03 0.22
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Table C4 TOMATO: 1l~step ahead actual and forecasted values
(TTS$/kg) (3,4 & 5 years estimation data)

%

Tomato  ARIMA31 Wint31 SES3? Haive3l M.av31 Factor

1988.01 5.04 7.%0 4.30 5.62 4,26 3.88 0.87
1988.02 2.75 8.07 2.23 3.06 2.48 2.09 -1.69
1988.03 2.45 7.91 1.48 2.46 2.21 2.08 -2.23
1988.04 2.3 7.70 1.60 2.13 2.21 2.09 -2.47
1988.05 1.99 7.56 3.36 4.60 4.78 3.2 -1.51
1988.06 3.88 8.15 3.7% 4.02 2.92 3.56 -0.58
1988.07 5.1 8.34 3.67 5.14 5.07 4.59 0.61
1988.08 3.78 9.08 5.03 4.61 4,59 4.39 0.09
1938.09 3.59 8.99 3.7 3.32 2.68 2.99 -1.1¢9
1988.10 6.78 8.99 5.90 5.33 3.60 5.14 0.82
1988.11 7.82 8.48 8.27 8.10 9.48 8.89 3.52
1988.12 6.03 8.9 8.13 8.54 B.24 9.07 3.9

Tomato  ARIMA41 Wint41 SES4T  Naived! M. avdd Factor

1989.01 6.03 2.53 4.95 5.47 2.96 4,06 0.87
1989.02 3.40 0.60 2.54 2.91 3.47 1.94 -1.69
1989.03 2.55 1.67 1.71 2.37 2.86 2.89 -2.23
1989.04 1.62 3.17 1.39 2.13 2.3 2.47 -2.47
1989.05 - 1.69 3.61 2.36 3.09 2.58 2.93 -1.51
1989.06 1.93 3,85 3.66 4.02 2.62 3.07 -0.58
1989.07 3.9 3.18 3.85 5.24 3.12 3.46 0.61
1989.08 6.79 1.12 3.99 4.73 3.39 2.82 0.09
1989.09 5.16 1.58 3.47 3.45 5.69 3.90 -1.19
1989.10 7.02 4.34 5.94 5.46 7.7 7.43 0.82
1989.11 7.52 5.89 7.64 B.16 .72 9.80 3.52
1989.12 7.34 4,20 7.26 8.58 7.94 9.04 3.94
Tomato  ARIMAS1 Wint51 SES51  Naive51 M, avs1 Factor
1990.01 3.84 7.57 5.28 5.44 4,93 4.87 0.81
1990.02 3.02 7.05 2.79 3.00 1.40 1.94 -1.63
1990.03 2.90 6.25 1.96 2.59 2.60 1.79 -2,05
1990.04 2.90 4.43 1.54 2.42 2.69 2.54 -2.26
1990.,05 4.31 4.71 2.35 2.90 3.38 3.27 -1.78
1990.06 8.1 5.04 3.48 4.15 5.56 5.09 -0.53
1990.07 7.04 6.36 4.12 5.38 9.32 8.05 0.68
1990.08 2.65 7.97 4.86 4.43 6.11 7.25 -0.25
1990.09 5.03 7.05 4.08 3.62 1.84 3.57 -1.06
1990.10 8.27 8.15 6.44 6,02 7.43 5.84 1.34
1990.11 7.45 8.53 7.94 8.14 10.44 10.02 3.51

1990.12 . 6.63 8.51 7.59 7.83 7.16 8.65 3.22
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Table C5 TOMATO: 2-steps ahead actual and forecasted values
(TT$/KG) (3,4 & 5 years estimation data)

ﬁ

) Tomato ARIMAZ2  Wint32 SES32 Naive32 M. av32 Factor
1988.01 5.04 N/A N/A N/A N/A N/A 0.87

1988.02 2,75 4.52 1.85 3.06 1.70 1.51 -1.69
1988.03 2.45 5.26 1.2¢2 2,46 1.94 1.74 -2,23
1988.04 2.3 6.57 1.1 2.13 1.97 1.9 ~2.47
1988.05 1.99 5.88 3.00 4.60 4.68 3.1 -1.51
1988, 06 3.88 7.59 4.46 4.02 4.20 .17 -0.58
1988.07 5.1 7.93 3.61 5.14 4.1 4.43 0.61
1988.08 3.78 7.45 4.30 4.61 4.35 4.13 0.09
1988.09 3.5¢9 6.10 4.40 3.32 n 3.30 -1.1%
1988.10 6.78 10.02 5.99 5.33 4.69 4.84 0.82
1988.11 7.82 9.48 7.82 8.10 8.30 8.07 3.52
1988.12 6.03 7.70 8.36 8.54 2.90 9.61 3.94

Tomato  ARIMA4Z? Wint42 SES42  Naived2 M. av4? Factor

1989.01 6.03 N/A N/A N/A N/A N/A 0.87

1989.02 3.40 1.39 2.54 2.9 0.40 0.95 -1.69

1989.03 2.55 -0.74 1.7 2.37 2.93 2.16 -2.23

1989.04 1.62 1.27 1.39 2.13 2.62 2.64 -2.47

1989.05 1.69 3.41 2.36 3.09 3.27 3.35 -1.51

1989.06 1.93 4,92 3.66 4,02 3.51 3.68 -0.58

1989.07 3.9 4.27 3.88 5.23 3.81 4.03 0.61 _
1989.08 6.79 4.02 3.99 4.72 2.60 2.59 0.09 ’
1989.09 5.16 1.43 3.47 3.44 2.1 1.9 -1.19 f
1989.10 7.02 0.35 5.94 5.46 7.70 6.81 0.82 {
1989, 11 7.52 4,83 764 8.16 9.87 10.00 3.52

1989.12 7.34 3.95 7.26 8.58 10.14 10.18 3.94

Tomato  ARIMASZ2 Wint52 SES52  NaiveS2 M. av52 Factor

1990.01 3.84 N/A N/A N/A N/A N/A 0.81
1990.02 3.02 6.76 2.77 3.00 2.49 2.46 -1.63
1990.03 2.90 6.43 1.93 2.59 0.98 1.25 -2.05
1990.04 2.90 4.79 1.49 2.42 2.39 1.99 -2.26
1990.05 4.3 4.30 2.28 2.90 3.7 3.09 -1.78
1990.06 a8.n 3.84 3.36 4.15 4£.63 4.58 -0.53
1990.07 7.04 4.70 3.9 5.38 6.77 6.54 0.68
1990.08 2.65 5.3 4.60 4.43 8,39 7.75 -0.25
1990.09 5.03 7.67 3.8 3.62 3.30 5.87 -1.06
1990.10 8.27 9.49 6.20 6.02 4.24 5.1 1.34
1990.11 7.45 8.54 7.67 8.14 9.60 8.80 3.51

1990.12- 6.63 5.66 7.33 7.83 10.15 9.94 3,22
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Table C6 TOMATO: 3-steps ahead actual and forecasted values
(TTS/kg) (3,4 & 5 years estimation data)

M

Tomato ARIMA33Z  Wint33 SES33 Naive33 M, av33  Factor

1988.01 5.04 N/A N/A N/A N/A N/A 0.87
1988.02 2.75 N/A N/A N/A N/A N/A =1.69
1988.03 2.45 2.06 0.8 2.46 1.16 0.88 -2.23
1988.04 2.31 1.88 0.84 2.13 1.70 1.41 ~2.47
1988.05 1.99 2.19 2.51 4.60 4.44 2.83 -1.51
1988.06 3.88 3.55 4.41 4.02 4.10 4.0 -0.58
1988.07 5.1 4.60 4.31 5.14 5.3¢ 5.35 0.61
1988.08 3.78 4.90 4.24 4.61 3.5¢9 3.89 0.09
1988.09 3.59 3.23 3.67 3.32 3.27 2.91 -1.19
1988.10 6.78 5.16 6.63 5.33 5.32 5.30 0.82
1988.11 7.82 7.76 7.91 8.10 7.39 7.62 3.52
1988.12 6.03 7.24 7.91 B.54 8.72 8.38 3.94

Tomato  ARIMA43S Wint43 SES43  Naives3 M. avid3 Factor

1989.01 6.03 N/A N/A N/A N/A N/A 0.87
1989.02 3.40 N/A N/A N/A N/A N/A -1.69
1989.03 2.55 2.66 1.71 2.37 -0.14 0.69 -2.23
1989.04 1.62 2.20 1.39 2.13 2.69 1.54 -2.47
1989.05° 1.69 2.28 2.36 3.00 3,58 3.61 -1.51
1989.06 1.93 4,31 3.66 4.02 4.20 4.32 -0.58
1989.07 3.9 4.02 3.85 5.23 4.70 4.96 0.61
1989.08 6.79 2.5 3.99 4.73 3.29 3,44 0.09
1989.09 5.16 4.82 3.47 3.45 1.32 1.58 -1.19
1989.10 7.02 4.56 5.94 5.46 4.12 3,82 0.82
1989. 11 7.52 2.64 7.64 8.16 10.40 9.06 3.52
1989.12 7.34 4.2 7.26 8.58 10.29 10.49 3.94

Tomato  ARIMAS3 wints3 SES53  NaiveS3 M. av53 Factor

1990.01 3.84 N/A N/A N/A N/A N/A 0.81
1990.02 3.02 N/A N/A N/A N/A N/A ~1.63
1990.03 2.90 5.93 1.93 2.59 2.07 2.03 ~2.05
1990.04 2.%90 4.35 1.49 2.42 0.77 1.18 -2.26
1990.05 4.31 4.1 2.27 2.%0 2.87 2.26 -1.78
1990.08 8.1 4.20 3.36 4.15 4.42 4.3 -0.53
1990.07 7.04 4.46 3.90 5.38 5.8 3.76 0.68
1990.08 2.65 4.66 4.58 4.43 5.84 5.49 -0.25
1990.09 5.03 6.03 3.84 3.62 7.58 6.62 -1.06
1990.10 8.27 9.78 6.18 6.02 7.70 8.56 1.34
1990.11 7.45 6.54 7.64 8.14 6.41 7.m 3.51

1990.12" 6.63 6.87 7.30 7.83 9.31 8.1 3.22




APPENDIX D

Secondary Analysis: data and model” forecasts

* The first number in the alpha~numeric model names used in
the tables refers to the quantity of estimation data used.
The second highlights the number of steps ahead being

forecasted.




APPENDIX D

Table D1 CABBAGE: one~-step ahead actual and forecasted values
(TT$/kg) (3, 4 & 5 Yrs estimation data)

\

Cabbage ARIMAZ1 Wint31 SES31 Naive31 Factor
1990.01 2.74 3.90 1.74 4.64 4,64 1.04
1990.02 3.57 3.70 2.37 2.95 2.95 1.03
1990.03 2.04 3.67 2.58 2,83 2.83 0.77
1990.04 1.04 3.54 2.% 1.21 1.21 0.77
1990.05 1.30 3.53 1.41 0.50 0.50 0.62
1990.06 2.72 3.45 1.56 0.76 0.76 0.94
1990.07 2.39 3.43 3.47 3.38 3.38 1.32
1990.08 2.04 3.38 2.66 4.50 4.50 1.43
1990.09 2.90 3.38 1.36 2.91 2.9 1.00
1990.10 5.53 3.35 2.92 3.42 3.42 1.18
1990.11 6.37 3.34 5.23 8.85 8.85 1.36
1990.12 4.56 3.32 7.16 7.73 7.73 0.89

Cabbage ARTMAG1 wint41 SES41 Nsived1 Factor
1990, 01 2.74 4.02 2.73 4,41 4,64 1.04
1990.02 3.57 3.80 2.51 3.05 2.95 1.03
1990.03 2.04 3.09 2.33 2.80 2.83 0.77
1990.04 1.04 2.57 1.92 1.32 1.21 0.77
1990,05 1.30 2.3 1.44 0.53 0.50 0.62
1990.06 2.72 1.70 1.45 0.77 0.7 0.94
1990.,07 2.39 1.75 3.27 3.21 3,38 1.32
1990.08 2.04 1.67 2.41 4.43 4.50 1.43
1990.09 2.90 2.07 1.47 2.93 2.91 1.00
1990.10 5.53 2.15 3.43 3.42 3.42 1.18
1990.11 6.37 1.31 6.71 8.51 8.85 1.36
1990.12 4,56 1.17 6.46 7.57 7.73 0.89

Cabbage ARIMAS1 Wint51 SES51 Naive51 Factor
1990.01 2.74 3.65 2.86 4.55 4.61 1.25
1990.02 3.57 2.29 2.34 4.07 4.07 1.19
1990.03 2.04 2.24 2.20 3.05 3.06 0.72
1990.04 1.04 2.20 1.87 1.02 0.99 0.67
1990.05 1.30 2.16 1.49 .53 a.52 0.74
1990.06 2.72 2.12 1.53 0.87 0.88 0,92
1990.07 2.39 2.07 3.19 2.75 2.79 1.1
1990.08 2.04 2.03 2.12 2.96 2.97 1.12
1990.09 2.90 1.99 1.41 2.05 2.04 0.89
1990.10 5.53 1.95 3.88 2.93 2.93 1.13
1990.11 6.37 1.90 7.46 9.41 9.50 1.52
1990,12 4.56 1.86 7.03 10.30 10.37 1.07
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Table D2 CABBAGE: 2-steps ahead actual and forecasted values
) (TTS$S/kg) (3, 4 & 5 yrs estimation data)
ﬁ

Cabbage ARIMA32 Wint32 SES32 Naijve32 Factor
1990.01 2.74 2.91 0.83 1.28 1.28 1.04
1990.02 3.57 3.64 1.61 4.59 4.59 1.03
1990.03 2.04 3.9 1.90 2.20 2.20 0.77
1990.04 1.04 3.12 2.65 2.83 2.83 0.77
1990.05 1.30 4,13 2.41 0.97 0.97 0.62
1990.06 2.72 3.35 1.67 0.75 0.75 0.94
1990.07 2.39 3.96 2.14 1.07 1.07 1.32
1990.08 2.04 2.88 3.56 3.66 3.66 1.43
1990.09 2.9 3.95 1.68 3.15 3.15 1.00
1990.10 5.53 3.04 1.49 3.43 3.43 1.18
1990.11 6.37 3.7 3.03 3.94 3.94 1.36
1990.12 4.56 2.28 6.10 5.79 5.79 0.89

Cabbage ARIMAL2 wint4z2 SES42 Naive42 Factor
1990.01 2.74 2.51 1.18 1.31 1.28 1.04
1990.02 3.57 3.78 2.50 4.37 4.59 1.03
1990.03 2.04 2.89 1.67 2.28 2.20 0.77
1990.04 1.04 2.23 2.17 2.80 2.83 0.77
1990.05 1.30 2.12 2.52 1.06 0.%7 0.62
1990.06 2.72 1.85 1.59 0.81 0.75 0.94
1990.07 2.39 1.9 1.78 1.08 1.07 1.32
1990.08 2.04 1.73 3.22 3.47 3.66 1.43
1990.09 2.90 2.20 1.71 3.10 3.15 1.00
1990.10 5.53 2.63 1.78 3.46 3.43 1.18
1990.11 6.37 2.43 4.27 3.94 3.94 1.36
1990.12 4.56 1.38 6.78 5.57 5.79 0.89

Cabbage ARIMAS?Z wintb2 SESS2 Naiveb2 Factor
1990.01 2,74 2.64 1.27 i.39 1.38 1.25
1990.02 3.57 2.29 2.45 4.33 4,39 1.19
1990.03 2,04 2.61 1.43 2.46 2.46 0.72
1990.04 1.04 1.39 2.02 2.83 2.85 0.67
1990.05 1.30 2.79 2.70 1.12 1.10 0.74
1990.06 2.72 2.19 1.76 0.65 0.64 0.92
1990.07 2.39 2.33 1.78 1.05 1.07 1.1
1990.08 2.04 1.53 2.84 2.78 2.81 1.12
1990.09 2.90 2.13 1.47 2.35 2.36 0.89
1990.10 5.53 1.82 1.87 2.60 2.59 1.13
1990, 11 6.37 1.59 5.22 3.94 3.94 1.52

1990.12 4.56 0.61 8.24 6.62 6.69 1.07




Table D3 CABBAGE:
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-steps ahead actual and forecasted values

(TTS$/kqg) 4 & 5 yrs estimation data)
“

Cabbage ARIMA33 Wint33 SES33 Naive33 Factor
1990.01 2.74 2.39 1.00 1.74 1.74 1.04
1990.02 3.57 2.94 0.72 1.27 1.27 1.03
1990.03 2.04 3.55 1.27 3.43 3.43 0.77
1990.04 1.04 3.32 1.86 2.20 2.20 .77
1990.05 1.30 3.29 3.00 2.28 2.28 0.62
1990.06 2.72 3.27 2.92 1.48 1.48 0.94
1990.07 2.39 3.26 2.30 1.06 1.06 1.32
1990.08 2.04 3.19 2.14 1.16 1.16 1.43
1990.09 2.90 3.18 2.28 2.56 2.56 1.00
1990.10 5.53 3.23 1.88 3.72 3.72 1.18
1990, 11 6.37 3.27 1.48 3.96 3.96 1.36
1990.12 4.56 3.25 3.46 2.58 2.58 0.89

Cabbage ARIMA4S Wint43 SES43 Naive4l Factor
1990.01 2.74 3.66 1.73 1.7% 1.74 1.04
1990.02 3.57 2.40 1.05 1.30 r.27 1.03
1990.03 2.04 2.79 1.66 3.26 3.43 0.77
1990.04 1.04 2.0t 1.55 2.28 2.20 0.77
199G.05 1.30 1.73 2.85 2.25 2.28 0.62
1990.06 2.72 1.59 2.82 1.61 1.48 0.94
1990.07 2.39 2.01 1.96 1.14 1.06 1.32
1990.08 2.04 1.94 1.73 1.17 1.16 1.43
1990.09 2.90 2.30 2.3 2.43 2.56 1.00
1990.10 5.53 2.78 2.08 3.66 3.72 1.18
1990.11 6.37 2.16 2.18 3.98 3.96 1.36
1990.12 4.56 2.64 4,29 2.58 2.58 0.89

Cabbage ARIMAS3 Wints3 SES53 Naive33 Factor
1990.01 2.74 2.76 2.08 2.19 2.18 1.25
1990.02 3.57 2.64 1.06 1.32 1.31 1.19
1990.03 2.04 2.24 1.50 2.62 2.66 0.72
1990, 04 1.04 2.17 1.30 2.29 2.29 0.67
1990.05 1.30 2.14 2.92 3.13 3.15 0.74
1990.06 2.72 2.16 3.22 1.40 1.36 0.92
1990.07 2.39 2.03 2.05 0.79 0.78 1.1
1990.08 2.04 1.96 1.57 1.06 1.08 1.12
1990.09 2.90 1.91 1.97 2.21 2.23 0.89
1990.10 5.53 1.92 1.95 2.98 2.99 1.13
1990.11 6.37 1.87 2.49 3.50 3.48 1.52
1990.12 4.56 1.86 5.75 2.77 2.77 1.07

gy o




137

Table D4 TOMATO: 1l1-step ahead actual and forecasted values
(TT$/kg) (3, 4 & 5 yrs estimation data)

m

Tomato Wint31 SES31 Naive31 Factor
1990.01 3.84 5.55 5.58 5.58 1.26
1990.02 3.02 3.12 3.38 31,39 0.70
1990.03 2.90 2.63 1.36 1.31 0.62
1990.04 2.90 2.25 1.07 1.06 0.59
19%0.05 4.31 2.20 0.95 0.95 0.56
1990.06 8.1 3.41 2.33 2.35 0.97
1990.07 7.04 4.99 10.10 10.31 1.31
1990.08 2.65 5.44 10.34 10.40 1.13
1990.0% 5.03 4.39 2.97 2.81. 0.94
1990.10 8.27 6.45 6.86 6.94 1.46
1990, 11 7.45 7.29 20,23 20.57 1.7
1990.12 6.63 6.98 21.08 21.13 1.66

Tomato Wint4t SES41 Naived1 Factor
1990.01 3.84 5.55 5.14 5.58 1.26
1990.02 3.02 2.1 2.86 3.39 0.70
1990.03 2.90 2.44 2.52 1.31 0.62
1990. 04 2.90 2.38 2.40 1.06 0.59
1990.05 4.31 3.43 2.27 0.95 0.56
1990.06 8.1 6.04 3.9 2.35 0.97
1990.07 7.04 11.43 5.32 10.31 1.31
1990.08 2.65 7.01 4,59 10.40 1.13
1990.09 5.03 2.10 3.82 2.81 0.94
1990.10 8.27 8.17 5.93 6.94 1.46
1990.11 7.45 10.72 6.94 20.57 1.71
1990.12 6.63 7.15 6.74 21.13 1.66

Tomato Wint51 SES51 Naive51 Factor
1990.01 3.84 5.06 5.37 4,97 1.29
1990.02 3.02 2.80 2.9 3.47 0.70
1990.03 2.90 2.06 2.46 1.25 0.5¢9
1990.04 2.90 1.67 2.23 0.91 0.53
1990.05 4.31 2.38 2.74 0.99 0.65
1990.06 8.1 3.40 4,00 2.67 0.95
1990.07 7.04 4.04 5.34 9.75 1.26
1990.08 2.65 464 4.31 .05 1.02
1990.09 5.03 3.92 3.47 2.21 0.82
1990.10 8.27 6.22 6.05 5.88 1.43
1990.11 7.45 7.74 8.32 23.42 1.98

1990.01 6.63 7.42 8.04 28.19 1.91
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Table D5 TOMATO: 2-steps ahead actual and forecasted values
(TTS$/kg) (3,

4 & 5 yrs estimation data)

M

Tomato Wint32 SES32 Naive32 Factor

1990.01 3.84 5.37 5.56 5.54 1.26
1990.02 3.02 3.12 3.10 3.10 0.70
1990.03 2.90 2.63 2.99 3.00 0.62
1990.04 2.90 2.25 1.29 1.24 0.59
1990, 05 4.3 2.20 1.01 1.01 0.56
1990.06 8.1 3.41 1.65 1.65 0.97
1990.07 7.04 4.99 3.14 3.17 1.31
1990.08 2.65 5.44 8.7 8.89 1.13
1990.09 5.03 4,39 B.60 8,65 ° 0.94
1990.,10 8.27 6.45 4.61 4.37 1.46
1990.11 7.45 7.29 8.04 8,12 1.71
1990.,12 6.63 6.98 19.64 19.97 1.66
Tomato Wint42 SES42 Naivebd2 Factor
1990.01 3.84 5.45 5.14 5.54 1.26
1990.02 3.02 3.05 2.86 3.10 0.70
1990.03 2.90 1.7 2.52 3.00 0.62
1990.04 2.90 2.0 2,40 1.24 0.59
1990.05 4.31 2.81 2.27 1.01 0.56
1990.06 8.1 4.80 3.94 1.65 0.97
1990.07 7.04 8.51 5.32 3.17 1.31
1990.08 2.65 1.37 4.59 8.8¢ 1.13
1990.09 5.03 5.53 3.82 8.65 0.94
1990.10 8.27 3.41 5.93 4,37 1.46
1990.11 7.45 10.59 6.94 8.12 1.7
1990.12 6.63 10.28 6.74 19.97 1.66
Tomato Wint52 SESS2 Naive52 Factor
1990.01 3.84 5.03 5.37 4.90 . 1.29
1990.02 3.02 2.81 2.9 2.70 - 0.70
1990.03 2.90 2.06 2.47 2.92 0.59
1990.04 2.90 1.66 2.23 1.12 0,53
1990.05 4.31 2.36 2.74 1.12 0.65
1990.06 8.1 3.37 4.00 1.45 0.95
1990.07 7.04 3.98 5.34 3.54 1.26
1990.08 2.65 4.61 4.31 7.89 1.02
1990.09 5.03 3.94 3.47 7.27 0.82
1990.10 8.27 6.20 6.05 3.86 1.43
1990.11 7.45 7.7 8.32 8.14 1.98

1990.01 6.63 7.41 8.02 22.60 1.91
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TABLE D6 TOMATO: 3-steps ahead actual and forecasted values
(TTS$/kg) (3, 4 & 5 yrs estimation data)

“

Tomato Wint33 SES33 Naive33 Factor
1990.01 3.84 5.22 6.10 6.07 1.26
1990.02 3.02 3.02 3.09 3.08 0.70
1990.03 2.90 2.63 2.75 2.75 0.62
1990.04 2.%0 2.25 2.85 2.86 0.59
1990.05 4.3 2.20 1.23 1.18 0.56
1990.06 8.1 3.41 1.76 1.75. ° 0.97
1990.07 7.04 4.99 2.23 2.23 1.31
1990.08 2.65 5.44 2.7 2.73 1.13
1990.09 5.03 4.39 7.25 7.40 0.94
1990.10 8.27 6.45 13.36 13.43 1.46
1990. 11 7.45 7.29 5.40 5.11 1.7
1990.12 6.63 6.98 7.80 7.89 1.66

Tomato Wint43 SES43 Naives3 Factor
1990.01 3.84 6.77 5.14 6.07 1.26
1990.02 3.02 2.99 2.86 3.08 0.70
1990.03 2.%0 2.47 2.52 2.75 0.62
1990.04 2.90 1.41 2.40 2.86 0.59
1990.05 4,31 2.38 2.27 1.18 0.56
1990.06 an 3.94 3.9 1.75 0.97
1990.07 7.04 6.77 5,32 2.23 1.31
1990.08 2.65 B.4T 4.59 2.73 1.13
1990.09 5.03 8.97 3.82 7.40 0.9
1990.10 8.27 8.98 5.93 13.43 1.46
1990.11 7.45 4.43 6.94 5.1 1.7
1990.12 6.63 10,15 6.74 7.89 1.66

Tomato Wint53 SESS53 NaiveS3 Factor
1990,01 3.8 5.02 5.37 6.33 1.29
1990.02 3.02 2.80 2.9 2.66 0.70
1990.03 2.90 2.06 2.46 2.27 0.59
1990.04 2.90 1.67 2.23 2.62 0.53
1990.05 4.31 2.35 2.74% 1.38 0.65
1990.06 8.11 3.34 4.00 1.63 0.95
1990.07 7.04 3.96 5.34 1.93 1.26
1990.08 2.65 4.53 4.3 2.87 1.02
1990.09 5.03 3.90 3.47 6.35 .82
1990.10 8.27 6.23 6.05 12,68 1.43
1990.11 V.45 7.68 8.32 5.35 1.98

1990.01 6.63 7.39 8.02 7.85 1.91
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APPENDIX E

ARIMA MODEL SPECIFICATION WITH MicroTSP

The aim in ARIMA modelling is to specify a model that
allows us to accounts for all of the systematic patterns
within the data set. Conversely the presence of random
residuals (white noise) after model specification indicates a
well-specified model. Two tests can be used to check for the
presence of white noise.

One is visual check of the ACF and PACF of the residuals.
With very few exceptions, statistically these® should not be
significantly different from zero (eg. they should all lie
within the 95% confidence bands for a random series).

The Ljung-Box Q statistic is another test for white
noise. The Ljung-Box Q statistic estimates the probability
that autocorrelations as large or larger than those observed
could have been the result of random variation. Statistically
this should not be significant. It should thus assume a value
greater than say 5%. Therefore a probability of 70% indicates
that white noise could have generated autocorrelations as
large or larger than thoée observed 70% of the time, (SPSS

Inc., 1990).

The actual model-fitting procedure involves first
determining stationarity of the data. This is accomplished

through use of the Adjusted Dickey-Fuller(ADF) test. As
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described in chapter 4 of this report, non-stationarity exists
when the ADF test t-statistic value is lower in absolute value
than the critical MacKinnon t-statistic. Thé opposite case
exists when the data is stationary. If the original data
series are non-stationary then the first difference of that
series is tested. If this differenced series is stationary
then the series is integrated of order one. Once the data is
stationary it can be used ih the specification process.

Model-specification using the Micro-TSP software involves
a procedure in which the model is initially "overfit" with AR
and MA terms, followed by a process wherein those with
insignificant t-statistics are dropped from the equation.
Thus each statistically significant spike in the AC and PAC
functions are included first as an ARI regression equation and
then as an IMA regression equation. In both equations the
terms with insignificant t-statistics are dropped. The
significant terms in the two equations are then placed in one
ARIMA regression equation. Again the terms with insignificant
t-statistics are dropped from this ARIMA equation. The terms
with significant t-statistics are those in the well-specified
ARIMA equations. |
The Ljung-Box statistic and/or visual test is used to check

the residuals for white noise.




