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Abstract 

This study involves the application of a random-effects double-hurdle model to survey data to 

identify the farm-level factors affecting the adoption and intensity of herbicide use in rice 

production in the Philippines. Results broadly indicate apparent differences in the degree to 

which important explanatory variables affect the intensity and adoption decisions. The age of 

the farmer, household size, and irrigation are the significant predictors influencing the 

decision of farmers to use herbicides, while economic variables such as the price of 

herbicides, total income of farmers, and the use of bank loans or credit are the highly 

significant factors determining the intensity of herbicide use. Significant determinants of both 

the adoption and intensity decisions are land ownership, farm area, and the method of crop 

establishment used. Results suggest that all of the identified significant predictors in both 

herbicide use decisions can be considered by the national government when designing 

policies to reduce excessive use of herbicides or to encourage the adoption of alternative 

methods of weed control. This is important because for small rice producers, like the majority 

of Filipino farmers, improved weed management techniques that build on their traditional 

practices and that are compatible with their resources will be more easily adopted by farmers, 

relative to those that require radical change to the entire farming system. 

Key words. Herbicide use; Double-hurdle model; Adoption; Rice farming system. 

1. Introduction 

In the Philippines, rice is the staple food of over 80% of its national population and accounts 

for an important share of total economic activity. The global importance of rice highlights the 

need to promote efficient production, as demand is expected to double over the next 40 years. 

The effective management of weeds is one way to achieve this goal. Accordingly, the use of 

herbicides to reduce weed competition in rice crops is rapidly increasing worldwide. The 

annual growth rate of herbicide sales for rice crops globally is estimated to be around 60 

million (M) US dollars (US$) year
-1

, exceeding those reported for insecticides (US$47 M) 

and fungicides (US$41 M) (Zhang et al., 2004). With this estimated growth rate, the global 

sale of herbicides for application in rice farming systems could reach around US$3 billion 

year
-1 

by 2025. 
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In the Philippines, many farmers rely on herbicides to control weeds in their rice fields, 

particularly for direct-seeded (as opposed to transplanted) crops, as broadcast seed does not 

grow in consistent rows, making manual weeding less efficient. Manual weeding and 

flooding are traditionally used to restrict weed competition with crops, but their cost is rising 

due to increased labor and water resource costs. Herbicides are easy to use, can achieve high 

rates of control with effective application, and are, in many situations, relatively cheap, 

compared to manual or mechanical weeding. Indeed, Pingali et al. (1997) estimated that the 

benefit-cost ratio of applying herbicides in rice farming is almost four times higher than 

manual weeding. However, the use of herbicides has been accompanied globally by the 

potential build up of herbicide-resistant weeds, weed species population shifts, and concerns 

about environmental contamination and impacts on human health (Johnson and Mortimer, 

2005). 

Rice farmers have generally been encouraged by the Philippine Rice Research Institute 

(PhilRice) to use integrated weed management (IWM) strategies. This encouragement is 

primarily aimed at maintaining crop yields, while reducing chemical use. IWM involves the 

use of a diversity of weed control methods, including non-chemical strategies (such as full 

cultivation prior to establishment). IWM can benefit the control of rice weeds by delaying the 

development of resistance and/or allowing the control of herbicide-resistant weeds. The 

adoption of weed management strategies that increase production and profit without 

depreciating future productive capacity, such as through resistance development, will be 

higher where practices build on traditional methods and are compatible with existing 

practices (Pannell et al., 2006). This is particularly important given the significance of rice to 

the Philippines and the increasing scarcity of key resources required for traditional farming 

systems, such as labor and water. A statistical analysis that identifies the impact of various 

economic and non-economic factors on the adoption and intensity of use of weed 

management strategies can thus provide valuable input into the formulation of policies to 

promote sustainable agricultural production. 

The objective of this study is to determine farm-level factors driving herbicide demand in rice 

farming systems of the Philippines. This involves the identification of those factors 

influencing the adoption and intensity of herbicide use in rice fields. A random-effects 

double-hurdle model is applied to survey data that collates responses from thousands of 

producers throughout the Philippines. 
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The paper is structured as follows. Section 2 describes the method of statistical estimation. 

Section 3 describes the data set and variables of the model. The results of the analysis are 

presented and discussed in Section 4. Section 5 concludes. 

2. Statistical method of estimation 

The double-hurdle statistical model, originally formulated by Cragg (1971) in the context of 

household demand for products, is applied in this study. This method has many benefits in 

the context of this study. First, the sets of factors that affect the adoption and intensity of 

input use can be dissimilar (Wooldridge, 2002). Second, this procedure allows the definition 

of different types of dependent variables for the adoption and intensity decisions. This is 

important since the herbicide adoption decision will often be described by a binary variable 

or censored variable (one that has a lower limit, an upper limit, or both (Greene, 2003)), 

while the intensity decision is better described using continuous values. Last, in contrast to a 

Tobit model (Tobin, 1958; Llewellyn et al., 2007), a double-hurdle model is able to represent 

the fact that failure to adopt can occur due to both economic and non-economic reasons, not 

just economic factors (Sinning, 2009). For example, producers may not purchase herbicides 

since they prefer not to work with chemicals, not just because the price is too high or their 

income is too low.  

A double-hurdle model enables the modelling of two separate stochastic processes, each of 

which may potentially possess their own explanatory variables and parameters (Brouhle and 

Khanna, 2005). These processes involve (1) the decision to use an input (first hurdle), and (2) 

the intensity of use (second hurdle) (Wooldridge, 2002). The model is based on an 

assumption that these two separate hurdles or stages must occur before a positive level of 

input use is observed. Both hurdles are estimated separately in this study, based on an 

assumption that there is no correlation between the error terms of the two hurdles, implying 

that the two decisions are made independently of each other. A Probit model is used to study 

the determinants of adoption and a Tobit model is used to determine what drives the intensity 

of input use (Blundell and Meghir, 1987). These models are preferred to ordinary least 

squares (OLS) regression since OLS will result in biased and inconsistent parameter 

estimates, as the dependent variable for the adoption equation is discrete, while the dependent 

variable for the intensity of use equation is censored from its lower limit (the case of zero 

observations) (Wooldridge, 2002).  
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The model is applied here to ―panel data‖: a cross-sectional sample of respondents providing 

data in several time periods. A random-effects model (REM) (Wooldridge, 2002) is used. It is 

based on the assumption that the intercept of an individual unit is randomly drawn from a 

distribution that exists for a larger population and is expressed as a deviation from the 

population‘s constant mean value. It is also assumed in a REM that the intercept is 

uncorrelated with the independent variables. REM has multiple benefits over a fixed-effects 

estimator (Wooldridge, 2002). First, it provides more degrees of freedom since there is no 

need to estimate individual specific intercepts (Maddala, 1987). Second, REM takes into 

account not only the effects of observable variables on the dependent variable, but also the 

effects of unobserved heterogeneity among the individuals. Indeed, most applications 

involving panel-data models make use of the random-effects estimator, as it captures the 

unobservable individual specific effects of the variables (Baltagi, 1995). Last, the random-

effects estimator is superior where there are some time-invariant observations. This is 

appropriate here, as some variables used in the estimation (e.g. education and farm location) 

do not vary with time in the data set. 

A panel double-hurdle model has been applied previously in a number of studies applied to 

the study of agricultural inputs (e.g. Dong et al., 2001; Abera, 2008). However, this 

application adds to this literature in that it analyses the determinants of herbicide demand in 

Philippine rice crops, which requires various modifications of the standard procedure that are 

now outlined. 

The first stage of the panel double-hurdle model is the estimation of adoption of herbicide. 

Unlike the Dong et al. (2001) estimation, farmers in the sample are treated individually based 

on their classification (user or non-user of herbicide). This approach is more appropriate than 

using a panel of N farmers because using all observations would only lead to an inefficient 

estimate of adoption, as different predicted probabilities will be obtained for the same farmer 

over T  time periods. Given the nature of the data, a cross-section Probit regression is used in 

this study. The information that is used in the estimation is taken only in the year that an 

individual farmer is first interviewed. The equation representing the adoption decision of an 

individual farmer is represented as: 

,,...,1
otherwise,0

if,1
Ni

wu
D ii

i 


 




 (1) 
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where 
iD  is a binary dependent variable which is equal to 0 if the i

th
 farmer is not a user of 

herbicides for all survey periods and equal to 1 if the i
th

 farmer used herbicide for at least one 

time period. In addition, iw  are the explanatory variables where some of these also exist as 

explanatory variables in the regression identifying the determinants of the level of herbicide 

use. The regressors include both economics and non-economic factors, with a leaning 

towards the latter because it is assumed that economic factors mainly come into play once 

farmers decide to use herbicides (Newman et al., 2003). The   are the estimated coefficients 

and 
iu  is an error term that is assumed to be distributed normally with mean zero and 

constant variance 2 . Given the observed binary decision (
iD ), the regression equation of 

the unobserved ―latent‖ variable ( *

iD ) is described as: 

,iii uwD  
 (2) 

In the second stage of the model, consider a panel of N  farmers whose herbicide use is 

observed over T  time periods. This yields a data array for the i
th

 farmer, 
iy  and 

ix  where 
iy  

is a 1T  vector of the observed amount of herbicide use and 
ix  is a KT   matrix of 

explanatory variables. To determine the level of herbicide use over time, a random-effects 

Tobit model is applied in this study. The censoring rule of the Tobit model is described as: 

otherwise,0

,,...,1;,...,1if, 21

*





it

ititititit

y

TtNixeyy 

 (3) 

where 
ity  is the i

th
 farmers amount of herbicide use at time t, *

ity  is the unobserved latent 

variable of 
ity , 

itx  is a vector of exogenous variables, 
1  is a 1K  vector of estimated 

parameters, and 
ite  is a random error term assumed to be jointly-distributed normal over t 

with a mean vector of zero and variance-covariance matrix 
i  and independent in 

iu . In 

addition, 
it  represents the inverse mills ratio (IMR) (Heckman, 1979) and

2  is the estimated 

coefficient of IMR. Inclusion of the IMR corrects censoring bias that would arise from 

excluding non-users in the Tobit model. It also corrects for sample selection bias that would 

occur as a result of dropping at least one exogenous variable that is present in Equation 2 

(Probit) from the estimation of Equation 4 (Tobit) (Vella, 1998). IMR is based on the 

predicted adoption estimates from Equation 2, and is derived as    ii ww '/'   where   is 
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the probability density function and   is the cumulative distribution function of the standard 

normal distribution—see Heckman (1979) for a detailed discussion. 

Using this censoring rule, the latent variable *

ity  is estimated by a regression equation 

described as: 

,21 itititit exy    (4) 

In this approach, 0ity  is the corner solution to the farmer‘s utility maximization problem. 

Unlike in the estimation procedure of Dong et al. (2001), in this model 0ity  only denotes a 

typical corner solution driven by economic factors. All observations with zero outcomes due 

to non-adoption are no longer included in this estimation. This means that any changes in the 

economic variables that are included in the model (e.g. price of herbicide) will not induce 

non-users of herbicides to apply chemicals. Both the random-effects Tobit and cross-section 

Probit models are estimated using the maximum likelihood estimation (Wooldridge, 2002). 

3. Data source and model variables 

Panel data regarding herbicide use in rice production in the Philippines is obtained from the 

Rice-Based Farm Household Survey (RBFHS) that is conducted every five years by the 

Bureau of Agricultural Statistics (BAS) and Socioeconomics Division of PhilRice. The data 

set used in this study includes six of these surveys: the wet seasons of 1996, 2001, and 2006 

and the dry seasons of 1997, 2002, and 2007. The RBFHS in 1996–97 covered the rice 

production and input use of 30 major rice-producing provinces, while the 2001–02 and 2006–

07 surveys covered 33 provinces from different regions of the Philippines. The data set 

represents around 70% of the country‘s total rice area in each year, which makes it easier to 

generalize the findings to the national level. 

The farm households that are included in the data set for each province are randomly selected 

from major irrigated and rainfed lowland villages using a two-stage sampling selection 

procedure (PhilRice, 1997). The first stage randomly selects a village. The second stage 

selects a farm-household using the ―right coverage method‖. This method is used to ensure 

samples are randomly selected, even without a complete list of farmers in the village. Based 

on six rounds of survey, a total of 11,898 observations (approximately 2000 individual 

farmers in each round)) form the sample. Around 4,737 data points (40% of the sample) 
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report no herbicide use on their farms. The zero outcomes for herbicide use are comprised of 

two components: (a) a non-user (non-adoptor) for all periods, and (b) a user but one who 

decided not to spray herbicides in any period (a typical corner solution). On the other hand, 

treating samples in terms of an individual farmer, the total sample size is 3,864. Of this total, 

about 28% of individual farmers did not spray herbicides in the time period covered by the 

survey. 

Table 1 presents the descriptions and summary statistics of all the variables that are used in 

the analysis. It also shows the expected influences (as indicated by the positive and negative 

signs) of the explanatory variables on herbicide use decisions. The expected sign of some 

variables (e.g. age) are indeterminate because past research indicates that they can have 

positive or negative impacts. The unobserved latent variables that are used in the models are 

dependent on the type of regression employed. In the adoption model, a discrete latent 

variable of herbicide use (adopt) is generated, taking on a value of 1 if the farmer sprayed 

herbicides for at least one survey period and 0 if the farmer does not use herbicides in all 

survey periods (1996 to 2007). In contrast, in the regression focussed on the determinants of 

the level of herbicide use, two latent variables are defined: (a) herbicide expenditure (hexp), 

and (b) the amount of active ingredient of herbicide used (herbai). Herbicide expenditures are 

adjusted for inflation using the Philippines‘ Retail Price Index (RPI) for chemicals, with 1978 

defined as the base year (NSO, 2008). On the other hand, the amount of active ingredient 

(a.i.) of herbicide applied by the farmer is expressed in terms of kilogram (kg) per ha per 

crop. 

In the intensity model, dummy variables for different years are included to capture time 

effects, with 1996 set as the base year. However, the year effect is presented in a different 

way in the adoption model. Since samples in the adoption model are reported for individual 

farmers, the interpretation of dummy variables representing individual years is meaningless. 

Thus, a single time effect capturing the total probability of being a user over T  time periods 

is generated using the following procedure. A separate random-effects Probit model with a 

latent variable taking the value of 1 if a respondent is a user of herbicide and 0 if a respondent 

is a non-user is first estimated using only dummy variables for the year as the explanatory 

variables. The predicted values from the Probit estimation are then generated and these values 

are used in calculating the total probability of adoption (tpa) expressed in log values. The 
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values of the ―tpa‖ parameter capture the effect of the number of times an individual farmer 

appears in the survey period in the predicted adoption estimates. 

 

Table 1. Descriptions, summary statistics, and expected signs for variables in the model. 

Variable Descriptions  
C

a
 CV

b
 BV

c
 ES

d
 

 Mean Percentage  

Dependent variable      
adopt Value 1 if user of herbicide, 0 otherwise   1=60 0=40  

hexp 
Average amount of herbicide sprayed (in PHP 

ha
-1

) 

 0.3    

herbai Amount of herbicide a.i. applied (kg a.i. ha
-1

)   0.4    

Independent variable      
Labor and human capital      
age Age of the farmer (years) a,b 50.2   +/- 
sex Value 1 if female, 0 otherwise a,b  1=9 0=91 + 
fexp Number of years in rice farming a,b 23.2   + 
hhsize Number of total household members a,b 5.4   +/- 
forg Value 1 if member of a farm organization, 0 

otherwise 

a,b  1=45 0=55 +/- 

ftrain Value 1 if attended a rice training, 0 otherwise a,b  1=45 0=55 +/- 

educ Number of years in school a,b 7.3   +/- 
Land characteristics      
tstat Value 1 if farmer owns a farm, 0 otherwise a,b  1=51 0=49 + 

area Area planted to rice (in hectare) a,b 1.2   +/- 
Infrastructure      
irrig Value 1 if irrigated, 0 otherwise a,b  1=68 0=32 + 
dist Distance of farm to the nearest market (km hr

-1
) a,b 6.9   + 

Type of rice technology      
seed Value 1 if certified seeds, 0 otherwise a,b  1=19 0=81 - 
cropes Value 1 if transplanted, 0 otherwise a,b  1=70 0=30 - 
fert Amount of nitrogen (N) applied (in kg ha

-1
) b 69.5   + 

insec Amount of insecticide applied (in kg a.i ha
-1

) b 0.2   + 
Economic variable      
price Average price of herbicide (in PHP ha

-1
) b 0.4   - 

income 
Total annual household income (in thousand 

PHP) 

b 0.9   + 

credit Total amount borrowed (in thousand PHP) b 0.0   + 
wage Price of labor in real terms (in PHP day

-1
) b 137.4   + 

mwage Average of price of labor (in PHP day
-1

) b 137.4   + 
Adoption-related variable      
imr Ratio of normal density function of adoption 

predicted probability (app) to normal probability 

of app 

b 0.4   + 

a 
C = category : a= factors that affect the adoption of herbicide use; b = factors that affect the 

intensity of herbicide use. 
b
 CV = continuous variable. 

c
 BV = binary variables. 

d
 ES = expected 

sign.  
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Table 1 cont.  Descriptions, summary statistics, and expected signs for variables in the model. 

 

Variable Descriptions  C
a
 CV

b
 BV

c
 ES

d
 

 Mean Percentage  
Respondent dummy      

fdum 
Value 1 if farm-owner is the respondent, 0 

otherwise 

a,b  1=73 0=27 + 

Year dummies      
1996 Value 0 if 1996 (base year)      
1997 Value 1 if 1997, 0 otherwise b  1=20 0=80 + 
2001 Value 1 if 2001, 0 otherwise b  1=20 0=80 + 
2002 Value 1 if 2002, 0 otherwise b  1=20 0=80 + 
2006 Value 1 if 2006, 0 otherwise b  1=20 0=80 + 
2007 Value 1 if 2007, 0 otherwise b  1=10 0=90 + 
tpa Year effect in adoption (in log values) a -0.1   + 
Regional dummies      
reg3 Value 0 if Central Luzon (base region)      
reg1 Value 1 if Ilocos Region, 0 otherwise a,b  1=15 0=85 - 
reg2 Value 1 if Cagayan Valley, 0 otherwise a,b  1=10 0=90 - 
reg4 Value 1 if Southern Tagalog, 0 otherwise a,b  1=10 0=90 - 
reg5 Value 1 if Bicol Region, 0 otherwise a,b  1=15 0=85 - 
reg6 Value 1 if Western Visayas, 0 otherwise a,b  1=5 0=95 + 
reg7 Value 1 if Central Visayas, 0 otherwise a,b  1=15 0=85 - 
reg8 Value 1 if Eastern Visayas, 0 otherwise a,b  1=10 0=95 - 
reg9 Value 1 if Western Mindanao, 0 otherwise a,b  1=10 0=90 + 
reg10 Value 1 if Northern Mindanao, 0 otherwise a,b  1=5 0=95 + 
reg11 Value 1 if Southern Mindanao, 0 otherwise a,b  1=10 0=90 + 
reg12 Value 1 if Central Mindanao, 0 otherwise a,b  1=10 0=90 + 
reg13 Value 1 if ARMM, 0 otherwise a,b  1=5 0=95 - 
reg14 Value 1 if Caraga Region, 0 otherwise a,b  1=10 0=90 + 
a 
C = category : a= factors that affect the adoption of herbicide use; b = factors that affect the 

intensity of herbicide use. 
b
 CV = continuous variable. 

c
 BV = binary variables. 

d
 ES = expected 

sign. 

The explanatory variables in the models are tested for the presence of imperfect 

multicollinearity and heteroscedasticity. To detect problems arising from multicollinearity, 

the variance inflation factor (VIF) (Baum, 2006) is estimated. As a rule of thumb, values of 

VIF greater than 10 are often taken as a signal that the variables are collinear. The average 

real price of labor (as represented by ―mwage‖) is the only variable that has a VIF value that 

is greater than 10 (15.25) and thus it is removed from the model. Pearson‘s correlation 

coefficient is also used to investigate the degree of association among the variables. Result 

show that the ―age‖ and farming experience (as represented by ―fexp‖) of farmers are highly 

correlated and thus using both variables in the models would inflate the standard errors. Thus, 

only ―age‖ is retained in both models and ―fexp‖ is removed. Moreover, ―robust‖ and 
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―bootstrapped standard error‖ commands in STATA program are used in estimating the 

cross-section Probit and random-effects Tobit models to overcome any inherent 

heteroscedasticity (Baum, 2006). 

4. Results and discussion 

4.1 Base results 

Table 2 presents the estimated parameters for the adoption and level of herbicide use models 

and their corresponding standard errors. Columns 2 and 3 present the results of the cross-

section binary Probit model for adoption of herbicide, while Columns 4 to 7 report the results 

of the random-effects Tobit regressions for the level of herbicide use using the two 

unobserved latent variables: (a) herbicide expenditure, and (b) the amount of herbicide active 

ingredient applied. 

The results for the Probit (adoption) regression show that the adoption model is significant at 

the 0.01 level based on a model chi-square statistic of 1056.74 with 27 degrees of freedom. 

The calculated McFadden R
2
 of the model is 0.32, with 80% of the responses predicted 

correctly. These statistics show that the adoption model that is used in this study is reasonably 

accurate, as it performs well in explaining the factors that influence farmers‘ decision to use 

herbicides. The two random-effects Tobit (intensity) regressions also fit well for the models 

estimating the determinants of the level of herbicide use. The models are statistically 

significant at the 0.01 level using the Wald test based on a model chi-square statistic of 

1865.20 for herbicide cost (Tobit Model 1) and 319.23 for the amount of herbicide active 

ingredient used (Tobit Model 2). 

Results of the regressions in general show that the decision to use herbicides is driven by 

different factors to those that explain the decision of how much to apply. Specifically, in the 

labor and human capital group of variables, household size (as represented by ―hhsize‖ 

 01.0 ) has the expected sign and significantly influences the adoption of herbicide. 

However, this variable is not significant in estimating herbicide expenditure (Tobit Model 1) 

or the amount of active ingredient of herbicide applied (Tobit Model 2). This implies that 

farmers with larger families are more likely to adopt herbicides for controlling weeds in their 

rice fields, but once the farmers decide to use herbicides, their decisions regarding the 

quantity of herbicide to be applied are no longer affected by their ―hhsize‖. The ―age‖ of the  
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Table 2. Probit and Tobit parameter estimates of herbicide use. 

Variable 
Adoption Herbicide 

expenditure 

Herbicide a.i. 

(Probit Model) (Tobit Model 1) (Tobit Model 2) 
Coefficient S.E.

a
 Coefficient S.E. Coefficient S.E 

          
constant 1.253 ** 0.217 0.223 * 0.140 -0.118  1.119 
age -0.004 *** 0.002 -0.001  0.000 -0.001  0.003 
sex 0.097  0.096 0.002  0.015 0.004  0.086 
hhsize 0.033 *** 0.012 -0.002  0.002 -0.004  0.016 
forg 0.016  0.059 0.001  0.012 0.095 * 0.055 
ftrain 0.033  0.059 0.020 * 0.011 -0.006  0.066 
educ 0.007  0.009 0.002  0.002 0.014  0.001 
tstat 0.176 *** 0.053 0.017 * 0.010 0.081  0.078 
area 0.304 *** 0.037 -0.009 * 0.006 0.031  0.036 
irrig 0.172 *** 0.055 0.007  0.011 0.000  0.109 
dist -0.001  0.002 0.001  0.001 0.001  0.004 

 

seed 0.103  0.074 -0.001  0.012 0.030  0.078 
cropes -0.830 *** 0.074 -0.182 *** 0.015 -0.589 *** 0.124 
fert    0.001 *** 0.000 0.001 * 0.001 
insec    0.001  0.001 0.019  0.041 
price    0.301 *** 0.040 -1.567 *** 0.304 
income    0.013 ** 0.006 0.075 ** 0.034 
credit    0.111 * 0.068 0.281  0.406 
wage    -0.000  0.001 0.007  0.007 
imr    0.089 *** 0.030 0.326 * 0.209 
fdum 0.084  0.069 0.028 ** 0.013 0.102  0.068 
1997    -0.037 ** 0.015 -0.283  0.178 
2001    -0.036 ** 0.015 -0.238 ** 0.117 
2002    -0.190  0.018 -0.165  0.150 
2006    -0.001  0.015 -0.286 ** 0.135 
2007    -0.028 * 0.015 -0.410 *** 0.137 
tpa 2.989 *** 0.185       
reg1 -0.421 *** 0.106 -0.142 *** 0.033 -0.762 ** 0.375 
reg2 -0.354 *** 0.104 -0.080 ** 0.036 -0.361  0.350 
reg4 0.066  0.098 0.070 ** 0.028 -0.021  0.213 
reg5 -0.390 *** 0.104 -0.051  0.045 -0.218  0.413 
reg6 0.766 *** 0.246 -0.030  0.050 0.017  0.386 
reg7 -1.863 *** 0.168 -0.394 *** 0.089 -0.524  0.832 
reg8 -1.207 *** 0.104 -0.304 *** 0.054 -1.260 * 0.672 
reg9 0.150  0.112 0.043  0.042 0.249  0.409 
reg10 0.030  0.155 -0.006  0.044 -0.140  0.286 
reg11 0.751 *** 0.120 0.073  0.047 0.337  0.413 
reg12 0.562 *** 0.168 0.033  0.039 -0.151  0.297 
reg13 -0.323 ** 0.134 -0.099 ** 0.045 0.302  0.754 
reg14 0.587 *** 0.155 0.072 * 0.043 0.112  0.375 
Log likelihood -1565.71  -5260.86  -19415.30  
McFadden R

2
 0.317        

Model Chi
2
 (p-value) 1056.74 (0.000) 1865.20 (0.000) 319.23 (0.000) 

% Predicted Correctly
b
  80.41        

 
*** significance at 1%, ** significance at 5% and * significance at 10% levels. 

a
 S.E. stands 

for standard errors. 
b
 Ratio of sensitivity to specificity. Sensitivity is the percentage of users 

identified correctly while specificity is the percentage of non-users classified correctly. 
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farmer has a negative sign and significantly influences both the decision to adopt  05.0  

and herbicide expenditure  10.0 , but not the amount of active ingredient applied. A 

negative sign indicates that young farmers are more likely to adopt and spend more on 

herbicides. This could represent a greater reluctance for older farmers to adopt new 

technologies given their preference for more traditional methods of weed control, such as 

flooding and hand-weeding. 

Participation in training, as represented by ―ftrain‖  10.0 , has a positive significant 

impact on herbicide expenditure (Tobit Model 1), but is not statistically related to the 

adoption decision and amount of active ingredient applied. Thus, those farmers who have 

attended rice-production training events held throughout the Philippines typically apply more 

herbicides. A positive relationship between ―ftrain‖ and herbicide expenditure could arise 

because many of the training events attended by the farmer respondents are sponsored by the 

chemical companies who produce and sell the herbicides. 

Within the land characteristics category, both tenurial status (as represented by ―tstat‖) and 

farm area (as represented by ―area‖) significantly affect both adoption  01.0  and 

herbicide expenditure decisions  10.0 . As hypothesized, farmers who own their farms are 

more likely to use herbicides. This is primarily because farmers who do not own their land 

may be hesitant to adopt a new technology due to capital constraints and apprehension that 

this technology may not succeed (Casiwan et al., 2003). In addition, farmers who have large 

farm areas tend to adopt herbicides and incur lower costs per hectare. The inverse 

relationship of farm area to herbicide expenditure implies that economies of scale exist in 

regards to herbicide use in rice crops in the Philippines. 

Under the infrastructure category, the presence of irrigation (as represented by ―irrig‖) 

significantly influences the adoption decision  01.0 , but not the level of herbicide use. 

This highlights the importance of water availability as a determinant of chemical use because 

application of herbicides is more effective if water is controlled. Moreover, the distance of 

farm to market (as represented by ―dist‖) appears to be an unimportant variable in herbicide 

use decisions in this study. This implies that farmers with easy access to input markets 

behave essentially the same as farmers who have less access to input markets. The quality of 

road infrastructure or available transport, which is not captured by the market distance 
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variable, perhaps could be a more important determinant of herbicide use, but were not 

incorporated here due to a lack of data. 

Among the variables relating to the type of technology category, the method of crop 

establishment (as represented by ―cropes‖) is a significant factor  01.0  in both decisions. 

As expected, results show that more farmers who direct-seed rice crops use herbicides than 

those who transplant their crops. Also the herbicide applications of farmers who practice 

direct-seeding are also relatively high. This supports the hypothesis that herbicide use varies 

significantly across the establishment methods that are typically used to plant rice crops. 

Under the group of technology variables, the amount of nitrogen fertilizer applied (as 

represented by ―fert‖) is also a significant predictor of both herbicide expenditure  01.0  

and the amount of active ingredient applied  10.0 . This may be because weeds establish 

and grow more easily in a nitrogen-rich soil (Ampong-Nyarko and De Datta, 1991). This 

finding is consistent with the recommendation to cease or delay fertilizer application to limit 

weed growth in rice farming systems (De Datta and Baltazar, 1996). 

The price of herbicides (as represented by ―price‖) is very important in determining herbicide 

use, in line with basic economic theory that states that the demand for herbicide would 

usually be expected to be inversely related to its market price. Tobit Model 2 is consistent 

with this theory, implying that as the price of herbicide goes up, the amount of active 

ingredient applied decreases. On the other hand, the estimated effect of ―price‖ in Tobit 

Model 1 is less clear theoretically, as price is also a component of the derived herbicide 

expenditure variable. The fact that an increase in herbicide price decreases herbicide 

expenditure indicates that farmers demand for herbicides is ‗inelastic‘, meaning that the 

percentage change in use is less than the percentage change in prices (Table 2). 

Concerning the annual household income (as represented by ―income‖), results show that it is 

positively associated and significantly influences  01.0  the herbicide use measured in 

both models. It appears that the higher the capacity of farmers to meet a cash requirement on 

purchasing inputs, the higher the quantity of herbicide use. A similar effect on herbicide use 

is observed relating to the amount of production loan or access to ―credit‖ that a farmer has, 

although its influence is not significant in determining the amount of active ingredient that is 

used (Tobit Model 2). Furthermore, the real price of labor (as represented by ―wage‖) is 
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insignificant in both herbicide use models. This means that once farmers decide to use 

herbicides, their decisions regarding the quantity to be applied are only weakly affected by 

the ―wage‖.  

In terms of participation-related variables, the coefficients of IMR are significant in both 

Tobit models. This implies that removing this variable would result in biased estimates due to 

misspecification error. Moreover, the ―fdum‖ variable that is incorporated in the model to 

qualify the reliability of information provided by each producer is only significant  01.0  

in determining herbicide expenditure (Tobit Model 1), although its impact tends to be small 

overall. Observed insignificant effects pertaining to the ―fdum‖ variable in the adoption 

decision and the amount of active ingredient used imply that the information given by the 

farm-owner and other non farm-owner respondents (e.g. tenant, family member) are very 

similar. This is likely to be true, as this information is easier to recall compared to that 

regarding total herbicide expenditure. 

The ―tpa‖ variable represents the year effects for the adoption decision (see Section 3). It has 

a significant influence on whether a farmer uses herbicides. Its positive effect (Table 2) 

implies that an individual farmer who appears a greater number of times in the survey periods 

is more likely to be a user of herbicides. In fact, the ―tpa‖ is significantly correlated 

 01.0,73.0  r  with the number of times that the farmer is interviewed across the whole 

survey period. 

Quantity of herbicide use varies between cropping years, as indicated by the year dummies. 

Relative to the herbicide used in 1996, results show that herbicide use generally fell. This 

trend is more evident in the amount of active ingredient applied, as lower application rates are 

now commonly observed in rice fields, despite no decrease in weed control effectiveness, due 

to the increasing potency of herbicides. Moreover, results reported for the regional dummy 

variables show that region is a key determinant of herbicide use, but its impact is highly 

variable. For example, estimates reported in Table 2 demonstrate that the use of herbicide in 

Central Luzon is significantly higher than in Ilocos, Cagayan Valley, Bicol, Central and 

Eastern Visayas, and ARMM. However, it appears to be lower than in Western Visayas, 

Southern and Central Mindanao, and Caraga. These differences could be attributed to specific 

localized problems with crop weeds, regional price differences of herbicides, and the regional 

activities of chemical dealers. 
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4.2 Economic significance of estimated parameters 

Since the statistical significance presented above does not necessarily correspond with 

economic significance (McCloskey and Ziliak, 1996), an estimated measure of the impact of 

each variable in the Tobit regression is also presented. Results of adoption estimates here are 

not the same as those reported in Table 2 because of the inclusion of all of the explanatory 

variables in the Tobit model. Interpretation is only focussed on the estimates of Tobit Model 

1 because it appears that it gives the best fit for the model, has more significant explanatory 

variables, and has higher values of log likelihood and chi-square parameters, compared to 

Tobit Model 2. Two indicators of economic significance are used in this study. 

The first indicator is the marginal effect or point elasticity, which represents the percentage 

change in herbicide use per percentage change in each of the independent variables. The 

marginal effects are estimated using the ―elasticity decomposition framework‖ developed by 

McDonald and Moffitt (1980) for Tobit generated coefficients and parameter estimates are 

generated using STATA program (Baum, 2006). The estimates of marginal effects are 

provided in Table 3. Column 2 presents the elasticity of probability of participation in the 

market, while Columns 4 and 6 respectively demonstrate the elasticity of herbicide use 

conditional and unconditional on participation. 

Results show that of all the significant explanatory variables (economic and non-economic) 

identified in the general analysis (Table 2), only the ―price‖, ―credit‖, and ―cropes‖ are found 

to have significant impacts on herbicide use. The maximum likelihood estimates reported in 

Table 3 show that conditional on herbicide use, a 1% change in the average price of 

herbicides would increase the amount of herbicide expenditure by approximately 0.16% and 

about 0.24% for the probability of adopting the herbicide. If the farmer uses direct-seeding 

for crop establishment, their herbicide expenditure and the likelihood of adopting herbicide 

use is respectively higher by 10 and 14%, compared to if transplanting was used. In addition, 

a 1% increase in the average amount of production loan would raise the expenditure on 

herbicide by about 0.06% and about 0.09% for the probability of using herbicide. It is 

interesting to note that ―income‖, which is found to be statistically significant, has a low 

elasticity in determining herbicide use (Table 3). This suggests that, although the effect of a 

one-dollar change in income is low, the range of income levels in the sample is large enough 

to result in statistical significance. 
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Table 3. Marginal effects (elasticities) of Tobit parameter estimates of herbicide use. 

Variable Adoption effect
b
 Conditional effect

b
 Unconditional effect

b
 

 Elasticity S.E.
c
 Elasticity S.E. Elasticity S.E. 

          
age -0.001 * 0.00

0 

-0.001 * 0.000 -0.001 * 0.003 

sex
a
 -0.002  0.01

2 

-0.001  0.008 -0.002  0.011 

hhsize -0.002  0.00

2 

-0.001  0.001 -0.002  0.002 

forg
a
 0.001  0.00

9 

0.001  0.006 0.001  0.009 

ftrain
a
 0.016 * 0.00

9 

0.011 * 0.006 0.015 * 0.009 

educ 0.002  0.00

2 

0.001  0.001 0.002  0.001 

tstat
a
 0.014 * 0.00

8 

0.009 * 0.006 0.013 * 0.008 

area -0.007 * 0.00

4 

-0.005 * 0.003 -0.007 * 0.004 

irrig
a
 0.005  0.00

9 

0.004  0.006 0.005  0.008 

dist 0.001  0.00

1 

0.000  0.000 0.001  0.000 

seed
a
 -0.001  0.01

0 

-0.000  0.006 -0.001  0.009 

cropes
a
 -0.136 *** 0.01

0 

-0.102 *** 0.008 -0.141 *** 0.011 

fert 0.001 *** 0.00

0 

0.001 *** 0.000 0.001 *** 0.000 

insec 0.005  0.00

5 

0.003  0.004 0.004  0.005 

price 0.236 *** 0.03

2 

0.163 *** 0.022 0.228 *** 0.031 

income 0.010 ** 0.00

5 

0.007 ** 0.003 0.010 ** 0.005 

credit 0.087 * 0.05

4 

0.060 * 0.037 0.084 * 0.052 

wage -0.000  0.00

1 

-0.000  0.000 -0.000  0.000 

imr 0.070 *** 0.02

4 

0.048 *** 0.016 0.068 *** 0.023 

fdum
a
 0.022 ** 0.01

0 

0.015 ** 0.007 0.021 ** 0.010 

1997
a
 -0.030 ** 0.01

2 

-0.020 ** 0.008 -0.028 ** 0.011 

2001
a
 -0.028 ** 0.01

2 

-0.020 ** 0.008 -0.027 ** 0.011 

2002
 a
 -0.015  0.01

4 

-0.010  0.009 -0.142  0.013 

2006
 a
 -0.001  0.01

2 

-0.000  0.008 -0.000  0.011 

2007
a
 -0.022 * 0.01

2 

-0.015 * 0.008 -0.021 * 0.011 

reg1
a
 -0.122 *** 0.03

0 

-0.071 *** 0.015 -0.099 *** 0.021 

reg2
a
 -0.066 ** 0.03

2 

-0.042 ** 0.018 -0.059 ** 0.026 

reg4
a
 0.052 *** 0.02

0 

0.039 ** 0.016 0.054 ** 0.022 

reg5
a
 -0.042  0.03

8 

-0.027  0.023 -0.038  0.032 

reg6
a
 -0.024  0.04

1 

-0.016  0.026 -0.023  0.037 

reg7
a
 -0.371 *** 0.08

6 

-0.164 *** 0.027 -0.228 *** 0.034 

reg8
a
 -0.280 *** 0.05

2 

-0.135 *** 0.019 -0.191 *** 0.026 

reg9
a
 0.033  0.03

1 

0.024  0.024 0.033  0.033 

reg10
a
 -0.005  0.03

5 

-0.003  0.024 -0.004  0.033 

reg11
a
 0.054 * 0.03

3 

0.041  0.027 0.057  0.037 

reg12
a
 0.025  0.02

9 

0.018  0.022 0.026  0.031 

reg13
a
 -0.084 ** 0.04

1 

-0.050 ** 0.022 -0.071 ** 0.031 

reg14
a
 0.053 * 0.03

0 

0.040  0.025 0.056  0.034 
a
Marginal effects for the dummy variables are interpreted as the percentage change in 

herbicide use in response to 0/1 change in dummy variables. 
b
Adoption effect, 

conditional and unconditional effects are evaluated with respect to 
iX  at 

iX .
 c 

S.E. stands 

for standard errors. *** significance at 1%, ** significance at 5% and * significance at 

10%. 

10% levels. 
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The second measure of economic significance that is used in this study is the ―absolute-

change‖ indicator developed by Abadi Ghadim et al. (2005). This indicator incorporates the 

influence of both elasticity and sample variance. The importance of including variance in the 

estimates of impact is to capture the fact that independent variables with wider ranges of 

values have a larger absolute influence on the dependent variables. In this approach, the 

predicted probability of adoption (Prob) and level of intensity of herbicide use (Intensity) are 

computed by setting each continuous variable to a value two sample standard deviations 

above the sample mean (Prob
+
 and Intensity

+
) and below the sample mean (Prob

-
 and 

Intensity
-
), and setting all other variables to their means. The absolute-change indicator for 

the probability of adoption (∆P) is the difference between the Prob
+
 and Prob

- 
parameters. 

The absolute-change indicator for the probability of intensity of use (∆I) is the difference 

between the Intensity
+
 and Intensity

-
 parameters. In this study, absolute-change is calculated 

only for continuous variables. The estimated values of the indicators for Tobit Model 1 are 

shown in Table 4. 

 

Table 4. Indicators of absolute-change for the probability of adoption and intensity of 

herbicide use. 

Variable Mean SD Prob+ Prob- ∆P Intensity+ Intensity- ∆I 

         
age 49.93 13.11 0.74 0.77 0.03 0.32 0.35 0.33 

hhsize 5.53 2.30 0.75 0.76 0.02 0.32 0.34 0.02 

educ 7.50 3.24 0.77 0.74 0.03 0.35 0.32 0.03 

area 1.28 1.23 0.74 0.76 0.02 0.31 0.35 0.04 

dist 7.15 8.22 0.77 0.75 0.02 0.34 0.32 0.02 

fert 73.51 48.07 0.82 0.67 0.15 0.42 0.25 0.17 

insec 0.22 0.87 0.77 0.75 0.02 0.34 0.32 0.02 

price 0.42 0.25 0.85 0.65 0.20 0.46 0.24 0.22 

income 1.01 1.11 0.78 0.73 0.05 0.36 0.31 0.05 

credit 0.04 0.10 0.78 0.74 0.04 0.36 0.32 0.04 

wage 139.55 20.78 0.74 0.77 0.03 0.32 0.35 0.03 

∆P is the absolute change in probability adoption = (Prob
+
 - Prob

-
) 

∆I is the absolute change in intensity of herbicide use = (Intensity
+
 - Intensity

-
) 

 

Similar to the marginal effect estimates, results of calculated absolute-change indicators show 

that the market price has the largest impact on herbicide adoption and intensity of use. The 
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other variable that stands out in these results is fertilizer use. This is interesting given the low 

elasticity for fertilizer (Table 3) and reflects the high sample variance for this variable. This 

result for fertilizer application supports the results of regression analysis reported in Table 2. 

Also of interest is that the amount of production loans taken by producers was found to have 

the second largest marginal elasticity value among the continuous variables (Table 3), but is 

only the fourth most-important determinant of herbicide use when sample variance is 

considered (Table 4). This demonstrates the importance of not focusing solely on elasticities 

when examining the importance of independent variables. 

 5. Conclusions 

In this research we examined factors affecting the adoption and intensity of use of herbicides 

in Philippine rice farming systems. The cross-sectional double-hurdle model is extended to 

deal with panel data through the employment of a cross-sectional Probit procedure for the 

adoption stage and a random-effects Tobit procedure for the level of use stage. The advantage 

of using a panel double-hurdle model is that it allows separate analysis of what determines 

the adoption and use of herbicides. 

Results broadly reveal differences in the key drivers of the adoption and use decisions. The 

age of the farmer, household size, and irrigation status are the significant factors influencing 

the decision of farmers to use herbicides. Once the farmers decide to use herbicides, their 

decisions regarding the quantity of herbicide to be applied are no longer affected by these 

factors. On the other hand, rice production training or seminars attended by producers, and 

level of fertilizer use only play an influential role in determination of the quantity of 

herbicide to be used. Economic variables such as price of herbicide, total income of farmers, 

and production loan or credit are also highly significant determinants of the intensity of 

herbicide use. 

Land ownership, farm area, and method of crop establishment used (direct-seeded or 

transplanted) are significant predictors in both the adoption and herbicide use decisions. 

Regional differences in herbicide demand also exist. These differences could be attributed to 

locational crop-weed problem situations and price differences of herbicides. It could also be 

the result of regional activities of chemical dealers. 
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Overall, the research has improved our understanding of herbicide use in the Philippines. It 

highlights the complexity of the issue, with different variables influencing decisions about 

whether to adopt herbicides at all, and if so how much herbicide to use. The insights 

generated should be of value to agricultural extension agents, and to policy makers 

considering measures to avoid the over-use of herbicides. 
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