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Abstract: The paradigm of adaptive natural resource management (AM), in 
which experiments are used to learn about uncertain aspects of natural systems, is 
gaining prominence as the preferred technique for administration of large-scale 
environmental projects. To date, however, tools consistent with economic theory 
have yet to be used to either evaluate AM strategies or improve decision-making 
in this framework. Adaptive control (AC) techniques provide such an opportunity. 
This paper demonstrates the conceptual link between AC methods, the alternative 
treatment of realized information during a planning horizon, and AM practices; 
shows how the different assumptions about the treatment of observational 
information can be represented through alternative dynamic programming model 
structures; and provides a means of valuing alternative treatments of information 
and augmenting traditional benefit-cost analysis through a decomposition of the 
value function. The AC approach has considerable potential to help managers 
prioritize experiments, plan AM programs, simulate potential AM paths, and 
justify decisions based on an objective valuation framework.  

 
 

KEYWORDS: adaptive control, adaptive management, dynamic programming, value of 
experimentation, value of information

 1



On the Potential Use of Adaptive Control Methods for Improving Adaptive Natural 
Resource Management 

 
 
1. Introduction 
 

In recent decades, ecologists and other natural scientists have increasingly encouraged the 

use of “adaptive management” (AM) to address relatively large-scale environmental projects 

(e.g., Everglades and Grand Canyon restoration) characterized by considerable uncertainty about 

the effects of controllable actions [1, 2]. A key principle of AM is that management projects or 

policies are considered means of testing hypothesis about the response of the ecological system, 

and the results of these “experiments” are monitored and evaluated before taking additional 

action (such as continuing the project/policy or changing course).  The experiments thus provide 

information about the system and reduce uncertainty [3, 4]. Because the results of actions are not 

known ex ante and ecosystems are constantly evolving (in an often unknown manner), traditional 

benefit-cost techniques are not well-suited to inform decision-makers about the ramifications of 

alternative management choices [5].  

 In a mostly separate literature, macroeconomists have focused on similar problems of 

uncertainty, experimentation, and learning in a formal dynamic framework termed “dual control” 

or “adaptive control” (AC) [6, 7]. With an interesting intellectual history starting in the 

engineering literature and briefly sidelined due to the embrace of rational expectations (see [8] 

for the entertaining full story), the dual control literature has documented many of the challenges 

related to parameter uncertainty and learning in dynamic models (e.g., non-continuities and non-

convexities, an exponentially-expanding state space, etc…), yet these methods have yet to 

penetrate mainstream environmental and resource economics [9]. Of course, there are examples 

that involve either Bayesian updating in a management context (e.g., [10] related to nonpoint 
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source pollution control) and/or passive AM in which the optimization and updating stages are 

decoupled (e.g., [11] related to climate change and [12] related to the problem of polluting a 

shallow lake), but little formal analysis of active AM strategies has been completed. Exceptions 

include papers related to stock pollution/climate change [13], ship examination and invasive 

species [14], and general environmental policy [15]. 

 Although it has evolved from the macroeconomic modeling literature, the AC 

methodology is well-suited to the analysis of many environmental and natural resource 

management problems for which basic scientific stimulus/response relationships are uncertain or 

unknown. In these circumstances, managers must take into account not only their physical 

objectives (e.g., population restoration of an endangered species), but also the fact that actions 

will ultimately provide information about the response of the ecosystem. This information can be 

subsequently used to improve future decisions as the degree of uncertainty about the system has 

been reduced. In addition, managers may have to choose between competing actions or 

experiments subject to a budget constraint, and thus must take the expected value of future 

information into account. In the next few sections, we illustrate how AC can be used to these 

ends. 

 This paper contributes to the literature in several ways. First, we demonstrate the 

conceptual link between AC methods, the alternative treatment of realized information during a 

planning horizon, and adaptive natural resource management. Thus, we bring together strands of 

research and management that have heretofore evolved separately, yet exhibit a number of 

complementarities that can be exploited by natural resource managers to make more efficient 

decisions. Second, we show how the different assumptions about the treatment of observational 

information can be represented through alternative dynamic programming model structures, 
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including the differences between “passive” and “active” learning on the necessary first-order 

conditions that ultimately define the feedback decision rules that govern optimal management 

behavior. These conditions thus define the optimality of experimentation (defined as deviation 

from a similar non-learning feedback rule), though generalizations regarding optimal 

experimentation appear to be problem-specific. Finally, we provide a means of valuing 

alternative treatments of information through a decomposition of the value function, and 

illustrate how this decomposition can be used to augment traditional benefit-cost analysis 

through the incorporation of the expected value of information. This and other similar uses of 

AC techniques have considerable potential to help adaptive natural resource managers make 

more objective and informed decisions, distinguish between management plans, and choose 

between potential experiments based on a theoretically-consistent model of dynamic uncertainty 

that incorporates both natural and informational states. 

This paper proceeds as follows. We first provide some background on AM in practice, 

then present the structure of a general set of models that can be used to generate decision rules 

and ex post and expected ex ante values of following those rules under different treatments of 

information. We then discuss how these results can be applied for decision-making in an 

adaptive natural resource management setting, and discuss the limitations of the AC technique. A 

final section concludes. 

2. Adaptive Management (AM) in Practice 

The optimal management of large, complex environmental systems is characterized with 

uncertainties and incomplete information along multiple dimensions and scales. AM techniques 

feature the resolution of uncertainty through closed-loop experimental learning on a relatively 

smaller scale than the grand project. Experiments are used to test hypotheses on the response of 
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ecosystems to intervention, then monitored, and continued/expanded if the hypothesis regarding 

the response is not rejected, but subject to revision if rejected [16]. The resultant management 

path is thus path-dependent and dependent on both the value of information and the costs of 

acquiring it [3]. 

Billions of dollars are being spent directly on AM in the Everglades, while hundreds of 

millions in foregone hydropower is being incurred due to AM implementation in Grand Canyon 

[1, 17]. AM is also being implemented for projects related to the Missouri river [18], and is being 

considered by public land agencies such as the Bureau of Land Management and the Council on 

Environmental Quality (for use in economic impact statements). As noted in [1, 2], 

environmental and natural resource economists have been largely absent and silent on the 

benefits and costs of AM. However, there is interest among decision makers and those that fund 

AM for evaluative tools that can help agencies properly allocate resources in a context of 

dynamic, closed-loop decisions, rather than the traditional open-loop (and sometimes static) 

benefit-cost framework. 

One technique that offers promise in this regard, but has not been fully explored in the 

environmental and natural resource economics literature, is AC. In the next section, we discuss a 

general representation of an AM model in an AC framework, with particular attention to the 

treatment of information and the expected values of treating information in different manners. 

3. A General Adaptive Management (AM) Model using Adaptive Control (AC)1 

 The canonical model of an autonomous environmental AM problem can be constructed as 

follows. Define the instantaneous payoff (utility) function as ( ),t tu c x ,

                                                

where is an M-

dimensional vector of control variables (e.g., management options, production decisions, etc…) 

tc

 
1 Much of the notation in this section was inspired by [18]. In the discussion that follows, we will assume that the 
relevant functions (objective, state, and value) exist and are differentiable in all of their arguments, and that the 
Bellman equation is a contraction mapping (and thus can be approximated through, say, numerical methods). 
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and tx is a K-dimensional vector of environmental states (populations of species, stocks of 

pollution, etc…). States evolve according to the system of difference equations  

 ( )1 , ; , ,t t tx f c x 1tγ α ε+ = ++  (1.1) 

where γ is a vector of parameters known to the manager, α are the true, but unknown (to the 

controller) parameters of the system, and tε are i.i.d. white noise shocks to the system with 

known variance.  

 The manager, however, does have prior beliefs over the uncertain parameters represented 

by the prior probability distribution ( | ),tp α θ where tθ are the N sufficient statistics describing 

the joint probability distribution at time t. Assuming updating of prior beliefs using Bayes rule 

prior to decision in the next period, the posterior distribution can be described as 

1
1

1

( | , , , ) ( | )( | ) .
( | , , )

t t t t t
t

t t t t

p x c x pp
p x c x

α θ α θα θ
θ

+
+

+

= 2Assuming existence, this implicitly defines the 

evolution of the sufficient statistics (and thus the evolution of the beliefs over the uncertain 

parameters) as a differential equation dependent on the choice of controls and resultant states, or  

 ( )1 1, , ,t t t tG c x x .tθ θ+ +=  (1.2) 

Assuming an infinite horizon and discounting at factor 0 1,β< < the dynamic 

programming formulation of this problem becomes3

( ) ( ){ }
( ) ( )( )( ){ }
1 1

1 1

, max ( , ) ,

max ( , ) , ; , , , , ; , , , ,

t
t t t t t tc

t t t t t t t t t t tc

V x u c x E V x

u c x E V f c x G c f c x x

θ β θ

β γ α ε γ α ε

+ +

+ +

= + ⎡ ⎤⎣ ⎦

⎡ ⎤= + + +⎣ ⎦θ

                                                

 (1.3) 

 
2 Of course, this is but one of a number of updating rules possible. 
3 The assumption of an infinite time horizon suggests that calendar time is inconsequential in the Bellman equation; 
however, for notational convenience, we retain the time subscripts to indicate adjacent periods and the information 
set in time t. 
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where the expectation is over all random parameters in the model conditional on the information 

available at time t. Let ( )q ε  denote the distribution of the white noise terms on the state 

equations, and substitute the relevant distributions into (1.3) to obtain a (somewhat) operational 

Bellman equation: 

 
( ) {

( ) ( )( )( ) }1 1

, max ( , )

, ; , , , , ; , , , ( | ) ( ) .
K N

t t t tc

t t t t t t t t t t

V x u c x

V f c x G c f c x x p q d d

θ

β γ α ε γ α ε θ α θ ε α ε+ +

=

+ + +∫ ∫\ \

(1.4) 

This specification is fairly general, potentially nonlinear in the objective and state transition 

equation, and allows for multiple uncertain parameters. Note the value function depends on 

physical as well as informational states, as do the updating equations for information.  

Alternative Information Treatments 

 As noted in [13, 8] and implied by [19], the manager has a number of ways of dealing 

with the expected impact of information and the uncertainty surrounding the parameters. Options 

include: a) treating the uncertain parameters as true values at their expected levels with zero 

variance and no updating of sufficient statistics; b) treating the uncertain parameters as uncertain 

(positive variance) and no updating of sufficient statistics; c) treating the uncertain parameters as 

uncertain with passive updating of sufficient statistics (i.e., decoupling the optimization and 

updating procedures); and d) treating the uncertain parameters as uncertain with active updating 

(or active learning) of sufficient statistics (i.e., endogenous updating of the distribution of the 

uncertain parameters). In an environmental AM framework, all of these solutions might be of 

interest, depending on the circumstance; however, it seems likely that the expected value of 

active experimentation, as given by the difference in value between c) and d), is of prominent 

importance, given the question of when (and how) to experiment. 
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 Generalizing [8] and concentrating on the dynamic programming framework, the four 

information treatments translate directly into alternative specifications of the dynamic 

programming problem, and thus the value function. If the decision maker does not take into 

account parameter uncertainty (but does take into account the stochastic nature of the state 

variables) and does not learn, then the appropriate Bellman equation is  

 ( ) { ( )( ) }0 1 0ˆ; max ( , ) , ; , ; ( )
K

t

ce ce
t t t t t tc

V x u c x V f c x q d ,θ β γ α ε θ+= + +∫\ ε ε  (1.5) 

where α̂ is the expected value of the unknown parameters based on the prior distribution 

characterized by the constant set of sufficient statistics 0.θ  Note that the value function ( ) ,ceV ⋅ in 

this case, is only a function of the physical (as opposed to informational) state variables, while 

the prior distribution is assumed fixed over the planning horizon.  

 Case b), in which the decision maker takes the uncertainty of the parameters into account 

but does not learn, is characterized by 

 
( ) {

( )( ) }
0

1 0 0

; max ( , )

, ; , ; ( | ) ( ) ,
t

K N

s
t t tc

s
t t t

V x u c x

V f c x p q d d

θ

β γ α ε θ α θ ε α ε+

=

+ +∫ ∫\ \

 (1.6) 

where once again, the optimal value function is only a function of the physical states with the 

prior distribution taken as given and fixed. The fundamental difference between the two 

problems is the fact that (1.6) represents an expectation over the (fixed) parameter distribution, 

while (1.5) just substitutes the certainty-equivalence parameter values. 

Following [13], we now investigate the difference in incentives with respect to the 

control variables between a passive and active management strategy. In each case, the value 

function is of the form ( ) ( ){ }1 1, max ( , ) ,
t

t t t t t tc
V x u c x E V xθ β + += + ,θ⎡ ⎤⎣ ⎦  but by assumption, the 

passive learner assumes (in the maximization only) 1 .t tθ θ+ =  Prior to the next decision, however, 

 8



the passive learner updates based on (1.2), resulting in a (potentially) new posterior distribution 

with updated sufficient statistics. However, this updating is not anticipated in the formation of 

the feedback decision rule.  

In the most general form, then, the first-order conditions with respect to the controls, 

assuming differentiability, are 

 

( )1 1

set

1

,
( , )

( , ) ( | ) ( ) 0,
K N

t t
c t t

c t t t
t

E V x
u c x

c
V f V G G fu c x p q d d
x c c x c

θ
β

β α
θ+

+ +

+

∂ ⎡ ⎤⎣ ⎦+
∂
⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂

= + + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
∫\ θ ε α ε =

 (1.7) 

where the partial derivatives are evaluated at the state values at time t. Thus, the optimal policy 

follows an augmented form of the standard first-order condition, which states that at the margin, 

instantaneous effects of the chosen controls must be offset by the discounted expected net 

present value of all future effects, now including effects on both the state path through V f
x c

∂ ∂
∂ ∂

 

and the effects on the expected value of information 
1t

V G G f
c x cθ +

⎛ ⎞∂ ∂ ∂ ∂
+⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

.  

For the passive management problem, since ( ) ,tG θ⋅ = the term 
1

0.
t

G G f
c x c+

⎛ ⎞∂ ∂ ∂
+ =⎜ ⎟∂ ∂ ∂⎝ ⎠

 This 

term can be interpreted as the sum of the marginal effect of the control variables on the updating 

of sufficient statistics and the marginal effect of the resultant states on the updating of the 

sufficient statistics, working through the controls. In other words, it is the aggregate marginal 

effect of a change in control on the beliefs of the controller. So long as this aggregate effect is 

different than zero, and the shadow value on at least one of the sufficient statistics is non-zero 

(i.e., 0V
θ
∂

≠
∂

), some degree of experimentation (defined here as a deviation from the passive 
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management strategy), will be optimal. If, however, a change in control does not change the 

prior, then clearly there is no benefit to deviation (and, in fact, the control rule is independent of 

).θ  This result is a generalization of Theorem 1 in [13]. 

 While this may seem a trivial result, consider a single-dimension, linear state equation 

with either an uncertain constant term and/or state term with uncertain constant marginal effects 

on the future realization of that state. In our notation, this implies a state equation of the form 

1 0 1 ,t t tx x c 1tα α γ ε+ += + + + 1where α and 2α are uncertain. In addition, in order to simplify either 

analytical or numerical analysis, discrete distributions are often used to describe the uncertainty; 

e.g., for the Q support values [ ]
Q

i
i=1

,  1i iP α α π π= = =∑ iα  of the uncertain parameter. As shown 

in appendix A, if this is the only form of parameter uncertainty, then it will never be optimal to 

deviate from the passive learning solution, as deviation would simply shift the entire distribution 

regardless of the true value of the unknown parameter [13]. 

 Second, this result has significance for selection of experiments in environmental AM; 

namely, ceteris paribus, higher valued experiments are likely to be those in which the direct 

marginal effects of a management action are relatively unknown (in which the updating is fairly 

large), rather than ones in which the marginal effect is more certain. Note, however, that this is 

not to say that undertaking such experiments is always optimal, since the benefits of the 

information gathering must be balanced against the expected effects on the value of the future 

state variables and instantaneous utility (in other words, the endogenous costs). 

 Turning to the first-order conditions with respect to the state variables, application of the 

envelope theorem to (1.3) yields: 

 10



 
( ) ( )1 1

1

,
, ( , )

( , ) ( | ) ( ) ,

t t
x t t x t t

x t t t
t

E V x
V x u c x

x
V f V G f Gu c x p q d d
x x x x x

θ
θ β

β α θ ε α ε
θ

+ +

+

∂ ⎡ ⎤⎣ ⎦= +
∂

⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
= + + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

∫
 (1.8) 

 

 ( ) ( )1 1,
, (t t

t t t

E V x V GV x p q d dθ

θ
| ) ( ) .θ β β α θ

θ θ θ
+ +∂ ⎡ ⎤ ∂ ∂⎛ ⎞⎣ ⎦= = ⎜ ⎟∂ ∂ ∂⎝ ⎠∫ ε α ε  (1.9) 

 

For the passive management problem, the term 
1

0
t

G f G
x x x+

⎛ ⎞∂ ∂ ∂
+ =⎜ ∂ ∂ ∂⎝ ⎠

⎟ in (1.8) and 

V G V
θ θ θ
∂ ∂ ∂⎛ ⎞ =⎜ ⎟∂ ∂ ∂⎝ ⎠

in (1.9). Note that from (1.8), the marginal value of the physical states for the 

active manager now includes not only the marginal utility now and in the future resulting from 

changing that physical state, but also the impact of that state on the future value of information 

through the information updating procedure (in the active management case). Similarly, the 

evolution of the marginal value of information itself depends on the expectation of all future 

information gains. For the passive manager, however, there is no expectation that the prior and 

posterior distributions will differ from one period to the next. Thus, there is no incentive to 

deviate from the non-learning case in which the uncertain parameters are treated as such. 

An Alternative Decomposition of the Active Learning Value Function 

 In seminal works in the engineering literature, Bar-Sahlom and Tse [6] and Kendrick [7] 

develop what is known as the “dual control” method of solving stochastic dynamic programming 

problems in the presence of uncertain parameters and learning (as well as potential errors in 

measurement, not discussed in the present paper).  This method uses a second-order Taylor-

series expansion around the future certainty-equivalent, or “nominal” path, and the resultant 

quadratic problem has a (complicated) analytical solution.  The approximate value function from 

 11



this technique, termed “cost-to-go” as the problem is posed in a dynamic cost-minimization 

framework, can be divided into what are termed deterministic, cautionary, and probing terms, 

where the first is self-explanatory, the second is a function of the covariance of the projected 

one-period-ahead state variable covariance matrix and the stochastic shock covariance matrix, 

and the third (probing) term is a function of the expected covariance matrix of the state equations 

in each remaining period after the state variables are measured. 

 This decomposition has been studied extensively, with one of the main results showing 

that the optimal value function can exhibit nonconvexities caused by the cautionary or probing 

terms [20, 21, 22, 23, 24]. Of course, these nonconvexities can lead to local, rather than global, 

solutions using numerical techniques, especially those that use gradient methods. 

  Although not completely analogous to the “cost-to-go” decomposition, we can use the 

associated value functions of our cases discussed above to value the different treatment of 

information in the system, which could be of considerable interest to managers engaged in 

adaptive environmental management. For the sake of notation, define the optimal feedback rules 

as  

 ( ) { }0; , , ,  , ,ic x i ce sθ γ β =  (1.10) 

for the certainty-equivalent problem (1.5) and the stochastic parameter problem (1.6), 

respectively. The resultant state at time period t from following this rule from the beginning of 

the planning horizon in each case is thus recursively defined by 

 ( )( ) { }1 0 1; , , , ; , ,  , ,  (1, , ),i i i i
t t t tx f c x x i ce s t tθ γ β γ α ε− −= + = …=  (1.11) 

 Ex post, the cumulative realized value of treating the parameter vector as random up until 

time t is thus the difference in the net present value of the objective following the decision rules 

of the certainty-equivalent and stochastic parameter problems, or  
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  (1.12) ( )( ) ( )(
1

0
0

, ; , ; ,
t

t s s s ce ce ce
t t t t t

t

u c x x u c x xβ θ
−

=

⎡ −⎣∑ )0θ ⎤
⎦

taking the prior as fixed. On the other hand, the ex ante expected value of treating the parameter 

vector as random, assuming certain starting stock levels of tx  at time t, is  

 ( ) ( )0;s ce
t tV x V x 0; .θ θ−  (1.13) 

A similar expression can be derived for the cumulative realized values of optimal 

experimentation (letting the superscripts al and pl indicate passive and active learning, 

respectively): 

  (1.14) ( )( ) ( )(
1

0

, , , ;
t

t al al al al pl pl pl
t t t t t t

t

u c x x u c x xβ θ
−

=

⎡ ⎤−⎣ ⎦∑ ) ,θ

noting that the decision rule for the passive learning problem is independent of the state of the 

prior (save for its use in calculating the expectation over uncertain parameter values), and with 

the notation tθ indicating that the prior is updated, but decoupled from the optimization problem.  

This fact, however, complicates the expression for the ex ante expected value of 

experimentation. Specifically, ( ),pl
t tV x θ , the net present value of expected net benefits 

assuming that the prior distribution will not change (recall that 1t tθ θ+ = for the passive learner), is 

not the correct term to use when valuing the expected gains from active experimentation, and, in 

fact, is equal to ( )0;s
tV x θ .  

 Instead, define the evolution of the sufficient statistics vector from following the passive 

learning feedback rule as ( )pl pl
t tc x ( )1 1( ), , ,pl pl pl pl pl pl

t t t t t tG c x x xθ + += ,θ and the associated value 

function 
( ) ( )( )

( )( ) ( )( )
,

1 1

, ,

, ; , , ( ), , , ( | ) ( ) .
K N

pl pl
t t t t

pl pl pl
t t t t t t t t t

V x u c x x

V f c x x G c x x x p q d d

θ θ

β γ α ε θ α θ ε α ε+ +

= +

+∫ ∫\ \
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Note that these expressions are not “optimal” in the sense that they do not satisfy the restricted 

first-order conditions (1.7)-(1.9), but rather are based on the passive learning feedback rule. As 

such, they reflect the expected value of following that rule and the decoupled updating that 

occurs. The appropriate expression for the value of (optimal) experimentation is thus 

 ( ) ( ),,al pl
t t t tV x V xθ , .θ θ−  (1.15) 

 Finally, the ex post and ex ante values of passive learning over the stochastic parameter 

treatment can be defined as 

  (1.16) ( )( ) ( )(
1

0
0

, ; , ;
t

t pl pl pl s s s
t t t t t t

t

u c x x u c x xβ θ
−

=

⎡ −⎣∑ ) ,θ ⎤
⎦

 and 

 ( ) ( ),
0,pl s

t t tV x V xθ ; .θ θ−  (1.17) 

Putting the ex ante expectation terms together, we can use these different value functions 

to break the active learning value function into certainty equivalent, uncertainty, passive 

learning, and active learning terms; namely, 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
0 0 0

, ,
0

, ; ; ;

, ; , ,

al ce s ce
t t t t t

pl s al pl
t t t t t t t

V x V x V x V x

V x V x V x V xθ θ

θ θ θ θ

θ θ θ

⎡ ⎤= + −⎣ ⎦
⎡ ⎤ ⎡+ − + −⎣ ⎦ ⎣ .θ ⎤⎦

 (1.18) 

In contrast to the decomposition of the quadratic-quadratic approximation in [6, 7], (1.18) gives 

an exact decomposition of the expected values of different informational treatments, rather than 

separating the approximate “cost-to-go” into one deterministic and two stochastic terms, with the 

latter decomposed into two terms depending on the effect of the controls on each. In practice, 

however, a closed form of the decomposition is extraordinarily unlikely to be found, though 

numerical methods could provide estimations. 
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 In the next section, we explore how the terms in the decomposition of the value function 

can be used to augment traditional benefit-cost analysis in the presence of deep uncertainty and 

potentially improve the efficiency of adaptive natural resource management. 

4. Usefulness of Adaptive Control in Adaptive Natural Resource Management Applications 

 Many natural resource and environmental management issues are characterized by deep 

uncertainty stemming from a pure lack of information, disagreements about previously collected 

data (leading to disparate priors), and the fact that stochastic and complex processes are the 

norm, rather than the exception. Natural resource managers are faced with the challenge of 

making decisions in the face of this deep uncertainty, yet the standard benefit-cost paradigm 

offers little guidance when a) the response parameters of the system are uncertain and the system 

is stochastic; and perhaps more importantly, b) the allocation of scarce resources must be divided 

between learning about the system and managing it for a specific result. This latter tradeoff, 

which has, in practice, resulted in the adoption of AM practices in which experimentation is 

actively used to test hypotheses about natural system response, introduces a new frontier over 

which decisions must be made, in addition to the (more standard) complex calculus of trading off 

benefits and costs between the short- and long- runs. 

 AC techniques, and the results presented above, may help to shed light on this additional 

dimension. Clearly, the general model incorporates many of key aspects of AM, including 

stochastic dynamic processes, uncertain marginal effects of actions on the states of the system, 

and the need to trade off the benefits of information gathering with the (endogenous) costs of 

deviation from the stated objective. In particular, the potential contributions of using AC in 

environmental AM include: 
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(1) the ability to value alternative treatments of information for use in AM decision-

making; 

(2) the ability to cast the results of the modeling exercise in a familiar benefit-cost 

framework, including a decomposition of the relevant expected informational values of 

the system; and 

(3) the ability to represent and/or simulate optimal alternative AM paths, including the 

“switching” points where a previously employed experiment is no longer optimal relative 

to another in the feasible set. 

We discuss each in turn. 

Valuation of alternative treatments of information 

 A key deficiency of traditional benefit-cost analysis in environmental decision-making is 

that the relationship between an action and the resultant states is either known with certainty, or 

that the uncertain states can be characterized by a reasonably informative distribution. As such, 

ex ante valuation of information collection is completely ignored using this technique. In AM, 

however, experimental learning is a key component of the overall management strategy, and thus 

the use of information becomes paramount [16]. 

 AC offers a way to decompose the expected value of alternative types of system 

information into its component parts, thus providing a significant amount of insight 

(information) to a decision-maker. Equation (1.18) provides this decomposition of value for the 

optimal active learning path, which incorporates all expected forward-looking information, and 

provides the expected value at each physical and informational state from treating parameters as 

uncertain, the value of updating priors based on passive strategies, and the value of 

experimentation. In the presence of,  for example, disparate priors amongst groups of scientists, 
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this decomposition provides a means of illustrating the expected tradeoffs between passive and 

active learning (the value of optimal experimentation) under alternative assumptions, potentially 

leading to more efficient management decisions, or at least documenting the opportunity costs of 

acting under differing assumptions. 

 Note that the value of information can be calculated for sub-optimal paths as well, which 

can be especially useful if only a subset of management options are being considered. For any 

general decision rule ( ,c x )θ corresponding to a pre-defined experiment path (possibly including 

no experimentation whatsoever), the expected value of alternative information treatments can be 

calculated. For example, the expected value of anticipatory information updating can be 

estimated by finding an approximation to the value function 

 
( ) ( )( )

( )( ) ( )( )1 1

, , ,

, , ; , , ( , ), , , ( | ) ( )
K N

t t t t t

t t t t t t t t t t

V x u c x x

V f c x x G c x x x p q d d

θ θ

.β θ γ α ε θ θ α θ ε α+ +

= +

+∫ ∫\ \
ε

) t

(1.19) 

 
under the two conditions ( 1( ), , ,t t tG c x x x θ θ+ = and (1.2), then taking the difference. Similar 

calculations could be performed for the other terms if needed. In a political context where 

objectives may differ across individuals or groups, such calculations can provide a means of 

objective valuation of differing management approaches (e.g., ex ante plans that maximize the 

perceived  information collection, minimize disruptions to the natural ecosystem, etc…), and in 

so doing potentially improve management decisions. 

Benefit-cost Analysis and Adaptive Control 

 Closely related to the value of alternative informational treatments is the ability of 

researchers to use AC methods to consistently augment traditional benefit-cost analysis to 

include informational aspects, especially in the presence of deep uncertainties. Although AC 
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methods are complex, the resultant information can be placed into the more familiar B/C 

framework to help inform policy-makers about the magnitudes and tradeoffs related to 

alternative information treatments. 

 To illustrate, assume that instantaneous utility in each period can be decomposed into 

(presumably additively separable) benefit and cost components, or 

where the first term represents the benefits and the second the 

costs of an action and state vector. Using the now familiar notation, a number of alternative 

benefit-cost streams can be defined. For example, the certainty-equivalent streams from the 

current period through T are defined as 

( ) ( ) (, , ,t t t t t tu c x B c x C c x= − ) ,

( )
0

( ),
T

t ce ce ce
t t

t

B c x xβ
=

⎡ ⎤⎣ ⎦∑  and , and 

subtracting the cost term from the benefit term yields the second term in (1.12), or the realized 

discounted value of following the certainty-equivalent path. This is akin to calculation of the 

traditional benefit-cost analysis when the resultant state vectors and responses are assumed 

known (i.e., no parameter uncertainty).  

( )
0

( ),
T

t ce ce ce
t t

t

C c x xβ
=

⎡ ⎤⎣ ⎦∑

Similar expressions can be developed for the stochastic parameter, passive learning, and 

active learning cases, and the differences between each can be the expected gain or loss in 

benefits or costs from alternative informational treatments. For example, experimentation may be 

valuable ex ante, but due to reduced future costs rather than impacts on future benefits. Formally, 

this situation could be described as:  

( ) ( , , , ,

0

( , ), , ( ), , 0
T

t al al al al al pl pl pl pl
t t t t t t t

t

B B c x x B c x xθ θ θ θβ θ θ θ
=

⎡ ⎤∆ = − <⎣ ⎦∑ )

)

 and 

with this last term similar to 

(1.15). Thus, the researcher or manager can document the effect of alternative information 

( ) ( , , , ,

0

( , ), , ( ), , 0,
T

t al al al al al pl pl pl pl
t t t t t t t

t

B C c x x C c x xθ θ θ θβ θ θ θ
=

⎡ ⎤∆ − − >⎣ ⎦∑
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treatments on both the benefit and cost side, allowing for a natural extension of B/C analysis into 

the realm of deeply uncertain information. Of course, sub-optimal management plans can be 

decomposed this way as well. 

Simulation of optimal adaptive management paths 

 Finally, by providing a framework in which optimal decision rules that incorporate the 

trade offs of management objectives with learning can be derived, the AC framework is well-

suited for simulation analysis related to adaptive environmental management. As such, given 

alternative future simulated stochastic realities, entire AM plans can be developed and/or 

evaluated for planning and other purposes, as opposed to the planning of just one experiment in 

the immediate future.  

Similar to the “information exploitation” of [25] and the agent-based modeling approach 

described in [16], researchers and managers have the ability to use the AC model as a virtual lab 

by exploring the implications of certain future outcomes on the optimal adaptive path, and 

planning accordingly. In particular, this could conceivably include the circumstances under 

which it is optimal to stop a given experiment and start another, even if the full resolution of the 

uncertainty has not yet occurred. In other words, it may not be optimal to completely resolve the 

uncertainty in all parameters if the underlying endogenous opportunity cost of experimentation is 

too great. Unfortunately, as discussed in the next section, there may be occasions where the 

“optimal” solution leads to convergence on incorrect parameters. 

4. Limitations of Adaptive Control in Environmental Adaptive Management Applications 

  As with all modeling techniques, the use of AC to help inform adaptive environmental 

management has several major limitations, several of which are well-documented in the dual-

control and Bayesian learning literature. First, it is possible that limit beliefs (those that 
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predominate asymptotically) do not converge to the true parameter values in certain cases (see 

[26, 27,  and 19, plus references therein]. However, Wieland [19] finds that in a linear regression 

framework (in which the transition function is essentially a regression equation with unknown 

parameters), there are discontinuities in the optimal policy function (and a value function which 

is potentially non-differentiable) at the incorrect limit beliefs, suggesting a large degree of 

optimal experimentation at those points in the state space. Further research is necessary to 

determine if this is a general result, or one specific to the linear regression context or parameter 

values chosen. 

 Second, the curse of dimensionality may be a very real problem in the AM context. 

Assuming N uncertain parameters characterized by a mean, variance, and covariance matrix, this 

results in ( )1
2

2
N N

N
−

+ unique information parameters in ,θ independent of the number of 

state equations. In many cases, it is possible that this number can be reduced depending on the 

assumptions made by the modeler; however, in many environmental applications, even this 

reduced number may render numerical approximation infeasible given the current state of 

technology.  

As such, it may be that AC methods are most useful providing information for a 

separable subset of the large-scale environmental problem under consideration. For example, 

while the restoration projects of the Everglades and Grand Canyon would involve hundreds if not 

thousands of uncertain parameters when taken as a whole, an AC application that helps 

determine the optimal strategy to increase the humpback chub population in a certain section of 

river may be more tractable (say, one or two uncertain parameters). 

Third, environmental systems can be characterized by complex, non-linear dynamics, 

thresholds, and irreversibilities that may not be known to the researcher or manager a priori. 
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Indeed, this fact is a likely driver of the adoption of AM practices in practice. However, to the 

author’s knowledge, there has been no research that compares the performance of active learning 

control strategies with data generating processes that do not match those assumed by the model. 

In some respect, linear or quadratic state equations can be considered first- or second-order 

approximations to this true process, but still may not capture all of the ecological processes 

necessary to make a truly “optimal” decision. One promising option might be to use orthogonal 

polynomial forms, such as Chebychev polynomials, to model state dynamics. In any case, more 

research is needed to confirm the usefulness of AC under circumstances where the true and 

assumed data generating processes differ. 

Finally, as no analytical solutions are likely for even simple AM/AC problems, 

approximate solutions must be found numerically. Dual control algorithms use Monte-Carlo 

simulation analysis using a Taylor-series expansion of the future value function, while functional 

approximation and grid-space methods are typically used for smaller numeric dynamic 

programming applications [19, 28, 29]. As noted by Wieland [19], these approaches are likely 

complementary, with each having its own advantages and disadvantages. 

Nevertheless, there are some specific challenges of the AC methodology. The possible 

existence of non-convexities, non-continuities, or non-differentiable value functions, mentioned 

previously, may result in numerical difficulties with gradient search methods, and the 

exponentially-increasing state space creates problems relating to solution time. As computing 

power advances and more research is completed regarding computational economics and 

methods, however, these problems may become less costly. As with all numerical analyses, 

specific functional forms and known parameter values must be assumed, as well as the 
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distributional form of the unknown parameters, limiting the ability to generalize results across 

applications.  

5. Conclusions 

Experiment-based adaptive natural resource management is being increasingly adopted 

by a number of public agencies and applied to a number of high-profile, large-scale 

environmental management projects, including Everglades restoration and endangered species 

management in the Grand Canyon. However, the natural resource and environmental economics 

profession has not been active in providing appropriate tools for ex ante and/or ex post 

evaluation of AM strategies, which in part has resulted in exclusion from these important 

management issues. 

This paper argues that AC techniques have considerable potential to provide 

theoretically-consistent evaluation of AM strategies. Although originally developed for use in 

models of the macro economy, the incorporation of the notion of learning about structural 

uncertainties of a complex system renders AC well-suited for application to many natural 

resource management problems. More specifically, we illustrate that alternative treatments of 

information can be valued using a dynamic programming framework, and these values can be 

used to augment traditional benefit-cost analysis to include informational aspects of the 

management problem. Thus, a key limitation of standard analysis is overcome. While this 

approach is not without its limitations, the use of AC could help managers prioritize experiments, 

plan AM programs, simulate potential AM paths, and justify decisions based on an objective 

valuation framework.  
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Appendix A 
 
Assume a state equation of the form 1 0 1 ,t t tx x c 1tα α γ ε+ += + + + where 1α and 2α are uncertain. 

Assume a discrete probability distribution of the form for 

the Q support values 

( )
Q

ij
i=1

,  1,  0,1 ,j ij ijP jα α π π⎡ ⎤= = = ∈⎣ ⎦ ∑

ijα  of the uncertain parameter indexed by j. Using Bayesian updating, the 

posterior is obtained by 
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Calculating the elements of the term 
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 from (1.7), obtain 
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where ( )f ⋅  and ( )fε ⋅  are the probability distribution function and marginal of the white noise 

stochastic shock evaluated at 1 0 1 ,t k k t tx x cα α γ+ − − − and 

( ) ( ) ( ) ( ) ( )

( )

1 1
2

1

1

, 1,2, , ,  0,1

Q Q

ij kj ij kj
ij k k

Q
t

kj
k

f f f fG
i Q j

x
f

ε επ π π π

π

= =

+

=

⋅ ⋅ − ⋅ ⋅∂ ⋅
= =

∂ ⎛ ⎞
⋅⎜ ⎟

⎝ ⎠

∑ ∑

∑
… .=  

As such, 
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⎟  Note this result 

would not hold if γ was uncertain. 
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