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the critical level of phosphorus concentrations beyond which nutrient 
recycling begins. Active management is modeled by including the 
anticipated value of information (or learning) in the structure of the 
problem, and thus the agent can perturb the system (experiment), update 
beliefs, and learn about the uncertain parameter. Using this formulation, 
we define and value optimal experimentation both ex ante and ex post. 
Our simulation results show that experimentation is optimal over a large 
range of phosphorus concentration and belief space, though ex ante 
benefits are small. Furthermore, realized benefits may critically depend on 
the true underlying parameters of the problem. 
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Using Numerical Dynamic Programming to Compare Passive and Active Learning 
in the Adaptive Management of Nutrients in Shallow Lakes 

 
Introduction 
 
A central fact of life for decision- and policy-makers engaged in ecosystem management 

is the need to make decisions in the presence of considerable uncertainty about system 

response to management actions. Although system complexity virtually ensures that such 

uncertainty will never be completely eliminated, any management action (or sequence 

thereof) theoretically provides at least some information that can be incorporated into 

subsequent decisions. Often, but not always, this partial resolution of uncertainty 

(learning) can lead to decisions that are “improved” in the sense that the linkage between 

decisions and management objectives is better understood. 

The prospect of learning, however, introduces another margin over which to make 

decisions; namely, the tradeoff between collecting information about system response 

and managing the system to meet an objective. This has been realized by a growing 

number of ecologists and other natural scientists who have proposed the paradigm of 

“adaptive management” (AM), in which small-scale experiments are used to test 

hypotheses about larger-scale system responses, and the information gained is used in 

subsequent management decisions (Walters, 1986; Holling and Meffe, 1996; Thrower 

and Martinez, 2000; Prato, 2005). As such, under AM, management plans are path 

dependent and not a priori defined over the entire length of the planning horizon. Despite 

adoption of this management technique for several high-profile projects, including 

endangered species management in the Grand Canyon, Everglades restoration, and 

management efforts in the Missouri river and Klamath River basin (Bureau of 

Reclamation, 1995; Prato, 2003; USDA Natural Resources Conservation Service, 2004; 
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DeAngelis et al., 2000), natural resource economists have largely been silent in 

documenting the tradeoffs involved in AM (Milton et al, 1998; Loomis, Bond, and 

Harpman, forthcoming). Traditional benefit-cost analysis generally does not take the 

potential of learning into account, even though information collection may be implicitly 

valuable (see, e.g., Graham, 1981; Miller and Lad, 1984; Hanemann, 1989; Fisher and 

Hanemann, 1987; Chavas and Mullarkey, 2002), and thus is not particularly useful in 

evaluating AM strategies. More useful methodologies relating to ex ante AM analysis 

would help define the value and optimal extent of experimentation to collect information, 

and thus the trade-offs between short and long run management goals.  

This paper provides one example of such a methodology using numerical 

dynamic programming. Our approach is based on previous research on adaptive (or dual) 

control (Bar-Shalom and Tse, 1976; Kendrick, 1981, 2005; Wieland, 2000), in which the 

state space of a dynamic optimization problem is augmented with parameters describing 

the extent of system uncertainty or beliefs about the system. These parameters are 

updated via structural rules (such as those based on Bayes’ Theorem) that depend on 

realized, observed values of system variables, which in turn depend (in part) on 

management actions. Thus, the optimizing agent/manager in the dynamic model must 

trade-off between controls that are likely to contribute most directly to the primary 

management objective (such as the optimal level of pollution) and learning about system 

response. By varying the assumptions about the treatment of information in the problem 

and using the value function defined by the Bellman equation, approximations of the ex 

ante valuation of experimentation can be derived. 
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We illustrate the technique using a numerical dynamic model of management of 

nonpoint source pollution into a shallow lake, taken from Peterson, Carpenter, and Brock 

(2003). The key component of this model is a threshold effect of phosphorus 

concentrations which has the potential to switch the steady state of a lake from 

oligotrophic to eutrophic, though the precise concentration at which this switch occurs is 

unknown. Given a particular parameterization of this problem, we characterize the 

optimal management strategies assuming a) certainty over this threshold level; b) passive 

adaptive management under which there is uncertainty over the threshold level but 

learning is not anticipated; and c) active adaptive management under which there is 

uncertainty over the threshold level and learning is anticipated. We then calculate the 

optimal level of experimentation by comparing optimal paths, and estimate the value of 

experimentation by comparing the ex ante expected values of each strategy. This value 

(as well as the values of sub-optimal experimentation) can be used in ex ante policy 

analysis to plan and choose between experiments and to augment traditional benefit-cost 

analysis, and the overall solution can help simulate optimal AM paths (Bond, 2008). 

This paper makes several contributions to the literature. First, the methodology 

provides a clear illustration of the conceptual linkages between dual control/dynamic 

learning and the real-world practice of active adaptive management in a theoretically-

consistent manner. Second, the results document not only the circumstances under which 

experimentation for this problem is optimal from the point of view of the resource 

manager, but also the value of that experimentation. As such, we provide a means to 

determine the trade-offs between management goals and information gathering inherent 

in adaptive management. Finally, the project advances the study of the effects of learning 
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on optimal decision making beyond that of passive information-gathering in the context 

of environmental management, incorporating techniques developed in the engineering 

and numerical sciences for the study of active experimentation by the relevant decision-

maker. 

Adaptive Management, Information Processing, and Dynamic Programming 

The adaptive management paradigm is well-suited to a dynamic programming 

conceptualization in which at least one underlying parameter in a state-transition 

equation(s) is unknown to the controller, but information gathered over the course of the 

planning horizon can help this manager learn about the true nature of the parameter(s).  

In this context, an adaptive management problem is defined through an objective function 

and associated state equations which include not only the evolution of the physical 

system, but also the evolution of the controller’s beliefs about the sufficient statistics of 

the uncertain parameter distribution(s).  

 In theory, the optimizing agent has several options in dealing with the uncertain 

parameter(s) (Cunha-e-Sá and Santos, 2008; Kendrick, 2005; Wieland, 2000). Most 

restrictive is to manage assuming that all parameters are fixed and known (at, say, the 

mean of the prior distribution), while a second option is to assume the prior distribution 

of the uncertain parameters is fixed and unchanging over time. In either case, there is no 

learning, and thus management is not “adaptive” in the sense that none of the information 

gained after the initial time period is used to update the sufficient statistics representing 

beliefs. In this sense, the optimal solutions are of the “open loop” variety. 

However, several “closed loop” solutions are available as well. A decoupling of 

the updating of prior probabilities and the optimization problem results in what might be 
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termed “passive”, or myopic, adaptive management (Wieland, 2000). In this case, the 

optimizing agent acts according to the policy rules of a dynamic optimization problem in 

which it is assumed that the distribution of the uncertain parameters does not change (as 

above), but after each management decision is made and the results observed through 

monitoring, the distribution is updated (Bond, 2008). The manager then makes the next 

decision in accordance with the policy rules associated with those parameter values, and 

the sequence continues. 

On the other hand, if the optimizing agent fully anticipates learning, the optimal 

“active” adaptive management control path is followed. In this case, the updating of the 

sufficient statistics is endogenous, and not separated from the optimization step. 

Functionally, this implies that the optimization problem includes not only the state-

transition equations related to the natural system, but also those related to the updating of 

the sufficient statistics of the uncertain parameters. As shown in Bond (2008), the 

difference between the passive and active management problems is the possibility of 

deviating from the passive policy rule in order to (endogenously) gain information about 

the unknown distributions. Thus, any difference between the passive and active policy 

rules can be naturally be interpreted as experimentation, and the difference in the 

associated Bellman expected value functions at any point in the state space could thus be 

viewed as the expected benefits of active adaptive management, or alternatively the 

expected benefits of experimentation. 

To date, these types of models have not been fully adopted by mainstream 

environmental and resource economics (Mercado and Kendrick, 2006; Kendrick, 2005), 

and few papers have attempted to link these models with the paradigm of adaptive 
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management.1 Examples in the environmental and natural resource economics literature 

of models which incorporate passive Bayesian updating include those related to nonpoint 

source pollution (Kaplan, et al., 2003), climate change (Kelly and Kolstad, 1999), and 

shallow lake management (Peterson, et al., 2003), while active learning is discussed in 

Cunha-e-Sá and Santos (2008) with respect to air pollution, Springborn (2008) with 

respect to invasive species management, and Brock and Carpenter (2007) in the context 

of general environmental policy. We believe this paper represents the first application of 

dynamic programming with endogenous learning and experiment valuation to the 

paradigm of adaptive management.  

The paper proceeds as follows. First, we develop the dynamic model and discuss 

the treatment of information, including definitions of passive and active adaptive 

management/learning. We then briefly discuss the solution technique. Next, the results 

are discussed with a focus on the optimal solutions of the passive and active management 

problems, the extent and value (both ex ante and ex post) of optimal experimentation, and 

the differences in evolution of beliefs and state/control paths. A final section concludes. 

Model 

In order to investigate the potential benefits of active adaptive management, this paper 

naturally extends the passive approach documented in Peterson, Carpenter, and Brock 

(2003) in the context of shallow lakes. We add the component of anticipatory learning, or 

active adaptive management, in which expectations about future information regarding 

the unknown parameters is jointly considered with the optimization step. 

The Shallow Lakes Model 

                                                 
1 Springborn (2008) is a notable exception in the context of ship examination and invasive species. 
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Briefly, the model is characterized by a stochastic difference equation that describes 

evolution of the pollution concentration of a lake as a function of prior phosphorus 

pollution concentrations, baseline natural phosphorus loading, managed phosphorus 

loading, and stochastic deviations. There is a critical level of phosphorus concentrations 

(say, ) above which nutrient cycling is initiated (contributing to eutrophication), 

though the controlling agent/manager may be uncertain about the true value of this 

parameter. Formally, the difference equation can be defined as: 

critP

  (1) 1

 
,

 
t t t t c

t
t t t t c

P b l if P P
P

P b l r if P P
γ ε
γ ε+

+ + + <⎧
= ⎨ + + + + ≥⎩

rit

rit

where  is the concentration of phosphorus in the lake at time t, b is the baseline natural 

loading of P per time period, is additional P loading, presumably from anthropocentric 

sources, into the lake at time t, 

tP

tl

γ  is a decay parameter, and r is recycled and maintained 

P in the lake. We assume tε  is a normally-distributed, mean-zero, constant variance ( 2σ ) 

stochastic term that represents deviations from mean loadings at time t, and is known by 

the manager.2 Although this is a much-simplified representation of the ecosystem, it still 

maintains the properties of admitting potential (but not guaranteed) oligotrophic and 

eutrophic stable steady-states, depending on the relationship between P loadings and 

concentrations.  

Instantaneous payoffs depend positively on both the level of pollution allowed 

(e.g., the benefits from surrounding agricultural production) and negatively on the 

concentration of phosphorus in the lake. As such, we assume a simple linear-quadratic 

utility function of the form: 
                                                 
2 We maintain this assumption following Wieland (2000) to focus attention on the uncertainty of the critical 
Pcrit value. Relaxing this assumption is straightforward, but adds little economic insight to the problem. 
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 ( ) 2, ; ,t t t tU l P l Pβ β= −  (2) 

which is clearly concave in  and  so long as the (known) parameter tl tP 0.β >  The 

manager chooses anthropocentric loadings  in each time period. Parameter values used 

in the simulations are reported in Table 1, and generally follow Peterson, Carpenter, and 

Brock (2003).

tl

3  

Treatment of Information 

In the shallow lakes context, it is assumed that the manager is uncertain about the value 

of the parameter but all other parameter values are known. For simplicity (and to 

restrict the dimensionality of the state space), we assume that  can only take two 

discrete values:  or 

,critP

critP

0.2critP = 0.7.critP = Interpreted slightly differently, this suggest that 

the optimizing agent is making decisions on the basis of competing models of the 

ecosystem, originating perhaps from rival theories or empirical findings. At the beginning 

of the planning horizon, the manager has beliefs over the veracity of the two models, 

represented by the probability weight ( )00 Pr 0.2critPπ 1.≤ = = ≤  

If we assume passive or active learning, these probabilities are updated between 

each decision stage. Following Wieland (2000), we use the Bayes operator for updating, 

though this is by no means the only possibility (Klumpp, 2006). Formally, the structural 

updating equation is 

 .2,
1

.2, .7,

,
(1 )

t t
t

t t t t

L
L L

π
π

π π+

⋅
=

⋅ + − ⋅
 (3) 

                                                 
3 In Peterson, Carpenter, and Brock (2003), passive learning in the context of two competing models was 
considered: one in which recycling never occurs at any phosphorus pollution level, and one in which 
recycling is always present. We introduce the notion of the critical phosphorus level. 
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where and ( )Pr 0.2t critPπ = = ( ), ,  0.2,0.7i tL i =  is the likelihood of observing a particular 

phosphorus concentration in period 1t + ( )1tP+ under the hypothesis of model i (Walters 

and Ludwig, 1994). For the ecological model defined by equation (1), this likelihood is 

defined by 

 
( )2

1 1

, 2

exp ( | )
.

2
t t crit

i t

P E P P i
L

σ
+ +

⎡ ⎤− − =⎣ ⎦=  (4) 

Of course, at any time period t, ( )Pr 0.7 (1 )crit tP π= = −  by the properties of a probability 

density function. 

 We can now define the dynamic programming problems that define the certainty 

equivalent, passive adaptive management, and active adaptive management decision 

rules. Assuming that the manager’s objective is to maximize the expected net present 

value of the infinite stream of utility from managing the lake, the objective function can 

be defined as 

 (
1 2

2

, , , 0

max , , ; , , , , | ,j
t j t j t j tl l l j

E U l P b r )δ π β γ σ π
∞

∞

+ + +
=

⎡ ⎤⎣ ⎦∑…
 (5) 

where tδ is the discount factor in time t, and the notation explicitly recognizes that the 

expected payoffs depend on the beliefs about the true values of  The certainty 

equivalent problem is defined by the objective in equation (5), subject to the biological 

equation (1), and initial condition on and the equation 

.critP

0,P 1 0t tπ π+ = =  or 

1 1,t tπ π+ = = depending on the manager’s beliefs about the correct model. Note that in 

this specification, there is neither learning over time nor uncertainty over the correct 

model. 
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 The passive adaptive management problem, or passive learning problem, is 

defined by the initial condition, equations (1) and (5), and the probability updating 

equation 1 .t tπ π+ =  Passive adaptive management is defined as following the optimal 

policy rule from this problem, say ( ),pasl P .π  As seen by the probability updating 

equation, ( ,pasl P )π  does not anticipate the updating of probability beliefs, or 

equivalently, the rule does not incorporate the tradeoff between information collection 

and expected utility. However, unlike the certainty equivalent problem, we assume that 

after making decision the manager observes ,tl 1tP+  and updates 1tπ +  using updating 

equation (3) before making decision 1.tl +  This new value of 1tπ +  becomes the new prior, 

and thus forms the information set for decision 1.tl +  

 Finally, the active management, or active learning problem, is defined by the 

initial condition, the objective in equation (5), and the constraint set defined by both 

equations (1) and (3). We define the associated policy rule for this problem as ( ), .actl P π  

In contrast to the passive management problem, then, anticipatory learning is not 

decoupled from the optimization step, but rather an opportunity exists for the manager to 

deviate from ( ,pasl P )π  in order to capitalize (in the future) on the information gained 

about the probabilities related to Thus, it is natural to define optimal experimentation 

as any non-zero difference 

.critP

( ) ( ),act pasl P l P, ,π π−  as any deviation from the passive 

management strategy must be due to information effects (see Bond, 2008, for more 

details).  

Solution Technique 
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We solve each of the three dynamic programming problems documented above 

using value function iteration with policy function acceleration over a discrete grid (with 

linear interpolation) in control and state space. Table 1 documents the solution algorithm 

parameters. We very briefly describe the method here; for more details, see Judd (1998).  

The Bellman equation for each problem can be written as 

 ( ) ( ) ( ){ }, max , ; ,
l

V P U l P E V Pπ β δ + + ,π⎡ ⎤= + ⎣ ⎦  (6) 

where and P+ π + are the appropriate values of the phosphorus concentration state 

variable and probability state variable following the current period decision, and ( ),V P π  

is the (unknown) value function representing the expected net present value of utility 

along the optimal path as a function of the state variables of the problem. An iterative 

value function iteration procedure (with acceleration) is used to solve equation (6) for the 

unknown function ( ,V P )π  at each grid point by a) choosing an initial value for ( ),V P π  

at each grid point in the state space; b) calculating the right hand side of equation (6) for 

each point along the control and state grid space and choosing the maximum over the 

control dimension; c) updating the value of ( ),V P π  using these values; and d) repeating 

b) through c) until convergence occurs. As the grid is discrete, we use linear interpolation 

for points between grid values.  

Expectations on the right hand side of equation (6) are calculated using sixteen- 

point Hermite quadrature. Policy acceleration is implemented between steps b) and c) by 

using the estimated policy function from b) (the “optimal” control values) to iterate 

between the right-hand and left-hand sides of equation (6) at each grid point without the 
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maximization step until convergence. Solutions and simulations were written using the 

GAMS 2.0.35.10 development language, and code is available from the senior author.  

Results 

We begin by characterizing the solutions to the certainty problem, the passive adaptive 

management problem, and the active adaptive management problem, and characterizing 

the extent of optimal experimentation. We then discuss the evolution of beliefs and 

provide an example of alternative management paths for passive and active learning, and 

show how to value optimal experimentation both ex ante and ex post. 

Optimal Policy Functions 

Figure 1 displays the estimated optimal anthropocentric loading (policy function) under 

differing prior beliefs. Given the nature of the problem, the optimal strategy for the 

manager under certainty ( 0π =  and 1)π = is characterized by a most rapid approach path 

to the deterministic steady state level, which in this case implies loading in each period 

such that ( )1 ,i
tE P P+ = ∞  where iP∞  is the optimal steady-state level when 

( ) or when 0.2critP = 0.68P∞ ≈ 0.7critP =  ( ). The presence of the stochastic 

loading term, however, ensures that the long run equilibrium values of phosphorus 

concentrations comprise a distribution around the appropriate steady state.  

0.51P∞ ≈

 As such, optimal loadings under certainty are non-continuous, downward-sloping 

functions of phosphorus levels, with exactly one discontinuity at the threshold level of 

pollution concentration.4 Comparing the two policy functions yields the insight that as the 

prior belief that increases (from 0.2critP = 0π =  to 1π = ), optimal loadings increase at 

                                                 
4 When Pr(Pcrit=0.2)=0 or Pr(Pcrit=0.2)=1, the solutions to the passive and active learning problems are 
identical. 
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low (less than 0.2) and high (greater than 0.7) phosphorus concentrations, but decrease at 

intermediate levels. This results from the interplay between the threshold effects and the 

fact that marginal disutility increases with phosphorus concentrations, resulting in 

differing optimal steady states.  

 Turning next to the optimal passive learning policy functions and assuming 

0 1,π< < one can gain insight into the effects of introducing parameter uncertainty (but 

not anticipatory learning) into the problem. Unsurprisingly, at relatively low and high 

phosphorus concentrations, optimal loadings at intermediate values of π  are associated 

with values between the bounds established by the models with complete certainty. 

However, at phosphorus levels between 0.2 and 0.7, this relationship does not hold. In the 

upper graph of Figure 1, for example, optimal loadings when 0.5π =  and 0.75π =  are 

actually lower than when 0π =  or 1.π = Furthermore, at these same intermediate 

probability levels, the entire optimal loading function is less (by a constant) than that 

same function when 1.π =  As a lower  level is associated with a higher steady state 

phosphorus concentration level (and lower steady-state utility), these two effects can be 

considered manifestations of the “precautionary principle”, in which agents tend to act 

conservatively in the face of uncertainty (see Immordino, 2003 for a recent review). This 

is not true, however, for 

critP

0.25,π = in which the optimal policy is identical to that under 

certainty that  0.7.critP =

In contrast, the active learning policy function illustrated in the lower graph of 

Figure 1 introduces still more complexity into the optimal decision. While the optimal 

active loading response is identical to the passive rule when 0.25,π = it is more 

conservative (lower loadings) at low and high phosphorus concentrations, but more 
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aggressive (higher loadings) at intermediate levels, when 0.5.π =  In other words, the 

effects of active, anticipatory learning are of the opposite sign and of greater magnitude 

than the precautionary effects at intermediate concentration levels, but are 

complementary to it at lower and higher levels. When 0.75,π = however, this latter effect 

is not observed, though the learning effects are present for intermediate phosphorus 

concentrations.  

Optimal Experimentation 

The deviation in optimal loadings between the passive and active learning/adaptive 

management problems is interpreted as optimal experimentation, as it is solely the result 

of taking into account the effect of gathering information to reduce uncertainty about the 

unknown parameter. Figure 2 provides a graphical illustration of the patterns of deviation 

found over the belief space.  

 Some degree of experimentation over the feasible range of phosphorus 

concentrations (zero to one hundred percent) is optimal for all 0.4 1.π< <  As such, 

experimentation is more generally more prevalent when 0.2critP = is believed (and hence 

the steady state levels of pollution is higher and utility is lower than when ). 

However, the form of this experimentation differs with both beliefs and pollution 

concentration. For example, when 

0.7critP =

0.425π =  and 0.975,π = it is optimal under active 

learning to experiment only at low and high concentration levels, and by setting optimal 

loadings lower than the passive case.  

In contrast, when 0.7,π =  experimentation (active management) is optimal at 

intermediate concentration levels, and by setting loadings higher than the passive case. 

However, the solutions are identical at more extreme pollution levels. Finally, when the 
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manger is completely uncertain about which model is correct ( 0.5),π =  experimentation 

is optimal over the entire range of feasible concentration levels. As described in the 

previous subsection, loadings under active learning are lower at extreme concentration 

levels for this case, but higher at intermediate levels.  

Thus, we conclude that optimal experimentation is state-dependent in both 

manager beliefs and pollution concentrations, and may involve loadings that are either 

more conservative or more aggressive than management under passive learning. For this 

problem, aggressive experimentation (higher loading) is optimal only at intermediate 

pollution concentrations for beliefs of 0.45 0.95,π≤ ≤  while experimentation under 

relatively low and high concentration levels is optimal (and conservative) only at 

0.425 0.525π≤ ≤  and 0.925 0.975.π≤ ≤  Experimentation of any sort is not optimal for 

0.4.π ≤ Note that these results are likely specific to this problem and the chosen 

parameter values, and may not generalize to other contexts, but illustrate the 

(endogenous) tradeoffs between information collection and current period utility. 

Evolution of Beliefs and Management Simulation 

 As seen in equation (4), the likelihoods of each realization depend only on the 

error between actual realized phosphorus concentrations and their expectation regardless 

of the coupling or decoupling of the probability updating and the optimization steps. As 

this expectation is dependent on the pollution level  due to the threshold effect, 

difference in likelihoods between the passive and active learning models begin occurring 

only when  in each model are on either side of one of the  values (i.e.,  

and  for models m and n, 

tP

tP critP m i
t critP P<

n i
t cP P> rit (0.2,0.7),i∈ )m n≠ . Thus, the evolution of beliefs 

does not often differ markedly between the active and passive solutions, though one 
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instance of differing errors can be propagated over a number of periods. If, however, 

belief evolution is identical over some simulated path of management, it implies that 

differences in the path of pollution concentration between passive and active learning are 

due solely to experimentation, rather than differences in the evolution of beliefs.  

 Figure 3 displays several realized simulations of active and passive learning, each 

assuming identical stochastic shocks, initial pollution concentrations of 0.5 and initial 

beliefs of 0.5,π = but varying the true  level. In each case, beliefs converged to the 

true  level fairly rapidly (19 periods for the 

critP

critP 0.2critP = simulation, and 31 periods for 

the  simulation). Deviations between control and stock levels are greatest for 

the low threshold simulation, partially due to the fact that pollution levels in period 2 are 

0.69 for the passive learning model and 0.78 for the active learning model. This does not 

occur in the high threshold simulation, and as such, beliefs are identical for each time 

period, and loadings and stock levels are identical after period 4 (when the manager is 

almost 99% certain that  In each case, active learning outperformed passive 

learning in the sense of maximizing discounted utility, though the effects were small 

(0.4% when and 2.6% when

0.7critP =

0.7).critP =

0.2critP = 0.7critP = over the first twenty years).  

Value of Optimal Experimentation and Monte Carlo Results 

In addition to using the obtained policy rules to illustrate when (and by how much) it is 

optimal to experiment and to simulate optimal management paths, the dynamic 

programming methodology can be used to obtain the ex ante expected value of 

experimentation by subtracting the expected value of following the passive learning rules 

from the expected value of following the active management rules. For the active 

learning paths, this expected value is given by ( ),actV P π  from the active adaptive 
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management Bellman equation given by equation (6). However, the value function from 

the passive management problem is not the correct value for this model, as probabilities 

are, in fact, updated along any simulated path. This fact is not taken into account in the 

optimization step when the passive learning policy rule is derived. 

 Instead, the proper value is the value function associated with the equation 

 ( ) ( )( ) ( ), , , ; , ,pas pas pasV P U l P P E V Pπ π β δ π+ +⎡ ⎤= + ⎣ ⎦  (7) 

here ( ),pasl P πw  represents optimal loading for the passive learning model and all other 

variables are as defined previously (Bond, 2008). It can be shown that equation (7) 

remains a contraction mapping, and thus ( ),pasV P π  can be recovered via a process 

identical to the policy acceleration mentioned above (Judd, 1998). 

 Figure 4 documents the ex ante expected value of experimentation 

( ) ( )( ), ,pasV P V Pact π π− as a function of beliefs for three pollution concentration levels 

ll, the value of experimentation is small, which is unsurprising 

given that experimentation and uncertainty is concentrated in earlier time periods, the 

discount factor is assumed close to one 

(0.1, 0.5, and 0.9). Overa

1 .99 ,⎛ ⎞
=⎜ ⎟ and we assume an infinite time 

horizon.

(1 )r+⎝ ⎠

ar pattern of t

lly, the gains from experimentation approximately double at the belief 

point w

5 However, we observe a simil he gains regardless of starting 

pollution level.  

Specifica

here aggressive experimentation begins, and stays relatively constant or slightly 

decreasing over the range 0.45 0.75,π≤ ≤  where uncertainty is fairly substantial. The 

                                                 
5 This assumption follows Peterson, Carpenter, and Brock (2003), and reflects a relatively low discount rate 
(high weight on the future) relative to market rates.  

 17



 

value of optimal experi gradually increasing as the belief that 

0.2critP = increases from zero until 0.45,

mentation is 

π = but decreasing rapidly for 0.75.π > As such, 

oblem, we conclude that ntation is most valuable under conditions of 

considerable uncertainty about the pollution threshold level, especially if the manager 

believes that low thresholds are slightly more likely. In other words, in the face of 

uncertainty when it is believed the relatively negative outcome is more likely than the 

alternative, experimentation is more valuable ex ante.  

We can perform a similar ex post analysis using

for this pr experime

 Monte Carl lation. Table 2 

display

o simu

s the results of 1,000 simulations each when 0.2critP = and 0.7critP = for the 

passive and active adaptive management models, along with the mean and standard 

deviations of the net present value (NPV) of the utility stream over a 100 year time period 

and the percentage of the simulations where the sum of discounted utility is greater for 

the active model. While the mean NPV of utility is greater for the active model under 

both true threshold levels, it is not significantly different for either. Furthermore, we can 

rate the performance of the active versus passive learning policy rules by counting the 

number of simulations under which the NPV of utility is greater for the model that 

includes anticipatory learning. Active learning outperforms passive learning decisively at 

high threshold levels (89% of the simulations), but underperforms when the threshold 

level is low (45% of the simulations). It seems likely that this result is directly related to 

the quadratic term on pollution concentrations in the utility function, as aggressive 

experimentation when the threshold is low will tend to decrease utility as a result of 

increased pollution.  

Conclusions 
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This paper has illustrated the use of numerical dynamic programming techniques 

to aid r

f our results are likely specific to the model and 

parame

value of future information, as well as simulate potential AM paths (Bond, 2008). 

esearchers, policy makers, and resource managers in defining the optimal extent 

and value of experimentation when underlying ecosystem parameters are unknown. 

Although greatly simplified relative to many complex ecosystems, the shallow lakes 

management model used here includes an uncertain parameter representing a threshold 

effect that may be fairly common in real world systems, and provides a natural way of 

defining experimentation through loading deviations from a passive learning path. It was 

shown that experimentation is optimal over a large segment of the state space, which 

included both pollution concentrations and beliefs about the threshold level, but that ex-

ante gains were relatively small and that ex-post gains depended on the true (but 

unknown) threshold level. 

Although many o

terization used in this paper, a few general conclusions can be deduced. First, 

these adaptive control/dynamic programming techniques can be used to identify optimal 

policy paths under models of active and passive adaptive management, or help evaluate 

potential (possibly non-optimal) experiment sets ex ante. This includes not only the level 

and extent of experimentation, but also the expected values of that experimentation. As 

such, application of these methods and models can aid in the implementation of adaptive 

management (AM) programs and help AM managers make better, more informed 

decisions in the presence of significant uncertainty. Specifically, the information from 

these models can be used to help choose between experiments, provide expected values 

of experiments, and augment more traditional benefit cost analysis to account for the 
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Second, regardless of the problem, the subjective beliefs of the decision maker 

will likely be a factor in the value and optimal extent of experimentation. While this may 

be trou

) 

true pa

r of unknown parameters is large and continuous distributions are 

assume

bling to those more comfortable with “objective” analysis, it seems unlikely that 

purely objective recommendations exist regarding optimal management in models of 

learning. Perhaps one benefit is that the relevant values can be calculated over the entire 

belief space, which can subsequently be used to make decisions when experts disagree. 

Finally, our Monte Carlo analysis suggests that the realized gains from an active 

adaptive management/learning approach may depend critically on the (initially unknown

rameter values, and despite expected ex ante gains from anticipating future 

information, passive learning may perform equally as well. In the case explored here, 

following the optimal experimentation path can exacerbate environmental problems when 

the underlying threshold value is low, and this can lead to relatively disappointing active 

learning results.  

Clearly, this method will not be applicable for all AM applications, especially 

when the numbe

d. The “curse of dimensionality” is a very real problem when means, variances, 

and covariances must be modeled jointly, and despite recent advances in numerical 

techniques, these problems may remain intractable. However, as computing power 

advances and better solution algorithms are derived, dynamic programming techniques 

may prove to be a powerful tool for economists and others looking to improve adaptive 

environmental management. 
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Table 1. Maintained parameter and solution algorithm values used in numerical 
optimization and simulation. 
 
Description Variable Value Nature of Variable 
Model Parameters    

Threshold beyond which recycling occurs Pcrit (0.2,0.7) Fixed, unknown parameter 
Decay rate of Phosphorus concentration γ  0.1 Fixed, known parameter 
Natural baseline loading b 0.02 Fixed, known parameter 
Phosphorus recycling parameter r 0.2 Fixed, known parameter 
Discount factor δ  0.99 Fixed, known parameter 
Relative marginal utility of loadings β  1.5 Fixed, known parameter 
Standard deviation of stochastic shock σ  0.141421 Fixed, known parameter 
Phosporus concentrations (range) Pt 0.0-1.0 State variable 
Belief that Pcrit=0.2 (probability range) π  0.0-1.0 State variable 
Phosphorus loadings (range)  lt 0.0-0.8 Control variable 

Solution Parameters    
# grid points, phosphorus concentration n/a 41 n/a 
# grid points, belief probability n/a 41 n/a 
# grid points, phosphorus loadings n/a 161 n/a 
# Hermite nodes and weights n/a 16 n/a 
Value function error tolerance n/a 0.001 n/a 

    
Note: Where possible, model parameters closely followed Peterson, Carpenter, and Brock (2003). 
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Figure 1. Optimal loadings as a function of phosphorus concentrations for certainty, 
active, and passive learning under selected belief probabilities. 
 

Optimal Control (lt), Passive Learning, 
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Note: Prob=0 denotes certainty that Pcrit=0.7, and Prob=1 denotes certainty that Pcrit=0.2.  
Passive learning optimal loading functions (upper panel) identical for Prob=(0,.25) and Prob=(.5 ,.75).  

 

Optimal Control (lt), Active Learning, 
as a Function of P Concentrations
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Note: Prob=0 denotes certainty that Pcrit=0.7, and Prob=1 denotes certainty that Pcrit=0 .  .2
Active learning optimal loading functions (lower panel) identical for Prob=(0,.25,.5). 
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Figure 2. Optimal experimentation (active less passive optimal loadings) as a 
function of phosphorus concentrations under selected belief probabilities. 
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Note: Optimal experimentation equals zero (equivalent optimal policy functions for passive and active problem) for 0≤P<0.2 and 
0.7<P≤1 when Prob=0.7 and for 0.2<P<0.7 when Prob=0.425 and Prob=.975.  
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Figure 3. Realized optimal loadings and pollution concentrations for simulations 
under passive and active learning.  
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Optimal Policy Simulation And Pollution Concentration, True Pcrit=0.7
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Figure 4. Ex ante expected value of experimentation (active vs. passive control rule) 
for selected phosphorus concentration levels. 
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Table 2. Ex post Monte Carlo simulations under alternative values of Pcrit under 
passive and active learning. 
 
  NPV Utility (100 yrs) % of Simulations where NPV Utility

True Pcrit Passive Active Greater under Active Learning 
0.2 6.870 6.872 45% 

 (1.43) (1.44)  
0.7 22.021 22.050 89% 

  (1.54) (1.55)   
Std. errors of NPV Utility in parentheses.  
Discount factor = 0.99.   
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