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Abstract: This paper illustrates the use of dual/adaptive control methods
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under both uncertainty about natural loadings and uncertainty regarding
the critical level of phosphorus concentrations beyond which nutrient
recycling begins. Active management is modeled by including the
anticipated value of information (or learning) in the structure of the
problem, and thus the agent can perturb the system (experiment), update
beliefs, and learn about the uncertain parameter. Using this formulation,
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the true underlying parameters of the problem.
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Using Numerical Dynamic Programming to Compare Passive and Active Learning
in the Adaptive Management of Nutrients in Shallow Lakes

Introduction

A central fact of life for decision- and policy-makers engaged in ecosystem management
is the need to make decisions in the presence of considerable uncertainty about system
response to management actions. Although system complexity virtually ensures that such
uncertainty will never be completely eliminated, any management action (or sequence
thereof) theoretically provides at least some information that can be incorporated into
subsequent decisions. Often, but not always, this partial resolution of uncertainty
(learning) can lead to decisions that are “improved” in the sense that the linkage between
decisions and management objectives is better understood.

The prospect of learning, however, introduces another margin over which to make
decisions; namely, the tradeoff between collecting information about system response
and managing the system to meet an objective. This has been realized by a growing
number of ecologists and other natural scientists who have proposed the paradigm of
“adaptive management” (AM), in which small-scale experiments are used to test
hypotheses about larger-scale system responses, and the information gained is used in
subsequent management decisions (Walters, 1986; Holling and Meffe, 1996; Thrower
and Martinez, 2000; Prato, 2005). As such, under AM, management plans are path
dependent and not a priori defined over the entire length of the planning horizon. Despite
adoption of this management technique for several high-profile projects, including
endangered species management in the Grand Canyon, Everglades restoration, and
management efforts in the Missouri river and Klamath River basin (Bureau of

Reclamation, 1995; Prato, 2003; USDA Natural Resources Conservation Service, 2004;



DeAngelis et al., 2000), natural resource economists have largely been silent in
documenting the tradeoffs involved in AM (Milton et al, 1998; Loomis, Bond, and
Harpman, forthcoming). Traditional benefit-cost analysis generally does not take the
potential of learning into account, even though information collection may be implicitly
valuable (see, e.g., Graham, 1981; Miller and Lad, 1984; Hanemann, 1989; Fisher and
Hanemann, 1987; Chavas and Mullarkey, 2002), and thus is not particularly useful in
evaluating AM strategies. More useful methodologies relating to ex ante AM analysis
would help define the value and optimal extent of experimentation to collect information,
and thus the trade-offs between short and long run management goals.

This paper provides one example of such a methodology using numerical
dynamic programming. Our approach is based on previous research on adaptive (or dual)
control (Bar-Shalom and Tse, 1976; Kendrick, 1981, 2005; Wieland, 2000), in which the
state space of a dynamic optimization problem is augmented with parameters describing
the extent of system uncertainty or beliefs about the system. These parameters are
updated via structural rules (such as those based on Bayes’ Theorem) that depend on
realized, observed values of system variables, which in turn depend (in part) on
management actions. Thus, the optimizing agent/manager in the dynamic model must
trade-off between controls that are likely to contribute most directly to the primary
management objective (such as the optimal level of pollution) and learning about system
response. By varying the assumptions about the treatment of information in the problem
and using the value function defined by the Bellman equation, approximations of the ex

ante valuation of experimentation can be derived.



We illustrate the technique using a numerical dynamic model of management of
nonpoint source pollution into a shallow lake, taken from Peterson, Carpenter, and Brock
(2003). The key component of this model is a threshold effect of phosphorus
concentrations which has the potential to switch the steady state of a lake from
oligotrophic to eutrophic, though the precise concentration at which this switch occurs is
unknown. Given a particular parameterization of this problem, we characterize the
optimal management strategies assuming a) certainty over this threshold level; b) passive
adaptive management under which there is uncertainty over the threshold level but
learning is not anticipated; and c) active adaptive management under which there is
uncertainty over the threshold level and learning is anticipated. We then calculate the
optimal level of experimentation by comparing optimal paths, and estimate the value of
experimentation by comparing the ex ante expected values of each strategy. This value
(as well as the values of sub-optimal experimentation) can be used in ex ante policy
analysis to plan and choose between experiments and to augment traditional benefit-cost
analysis, and the overall solution can help simulate optimal AM paths (Bond, 2008).

This paper makes several contributions to the literature. First, the methodology
provides a clear illustration of the conceptual linkages between dual control/dynamic
learning and the real-world practice of active adaptive management in a theoretically-
consistent manner. Second, the results document not only the circumstances under which
experimentation for this problem is optimal from the point of view of the resource
manager, but also the value of that experimentation. As such, we provide a means to
determine the trade-offs between management goals and information gathering inherent

in adaptive management. Finally, the project advances the study of the effects of learning



on optimal decision making beyond that of passive information-gathering in the context
of environmental management, incorporating techniques developed in the engineering
and numerical sciences for the study of active experimentation by the relevant decision-
maker.

Adaptive Management, Information Processing, and Dynamic Programming

The adaptive management paradigm is well-suited to a dynamic programming

conceptualization in which at least one underlying parameter in a state-transition
equation(s) is unknown to the controller, but information gathered over the course of the
planning horizon can help this manager learn about the true nature of the parameter(s).
In this context, an adaptive management problem is defined through an objective function
and associated state equations which include not only the evolution of the physical
system, but also the evolution of the controller’s beliefs about the sufficient statistics of
the uncertain parameter distribution(s).

In theory, the optimizing agent has several options in dealing with the uncertain
parameter(s) (Cunha-e-S4 and Santos, 2008; Kendrick, 2005; Wieland, 2000). Most
restrictive is to manage assuming that all parameters are fixed and known (at, say, the
mean of the prior distribution), while a second option is to assume the prior distribution
of the uncertain parameters is fixed and unchanging over time. In either case, there is no
learning, and thus management is not “adaptive” in the sense that none of the information
gained after the initial time period is used to update the sufficient statistics representing
beliefs. In this sense, the optimal solutions are of the “open loop” variety.

However, several “closed loop” solutions are available as well. A decoupling of

the updating of prior probabilities and the optimization problem results in what might be



termed “passive”, or myopic, adaptive management (Wieland, 2000). In this case, the
optimizing agent acts according to the policy rules of a dynamic optimization problem in
which it is assumed that the distribution of the uncertain parameters does not change (as
above), but after each management decision is made and the results observed through
monitoring, the distribution is updated (Bond, 2008). The manager then makes the next
decision in accordance with the policy rules associated with those parameter values, and
the sequence continues.

On the other hand, if the optimizing agent fully anticipates learning, the optimal
“active” adaptive management control path is followed. In this case, the updating of the
sufficient statistics is endogenous, and not separated from the optimization step.
Functionally, this implies that the optimization problem includes not only the state-
transition equations related to the natural system, but also those related to the updating of
the sufficient statistics of the uncertain parameters. As shown in Bond (2008), the
difference between the passive and active management problems is the possibility of
deviating from the passive policy rule in order to (endogenously) gain information about
the unknown distributions. Thus, any difference between the passive and active policy
rules can be naturally be interpreted as experimentation, and the difference in the
associated Bellman expected value functions at any point in the state space could thus be
viewed as the expected benefits of active adaptive management, or alternatively the
expected benefits of experimentation.

To date, these types of models have not been fully adopted by mainstream
environmental and resource economics (Mercado and Kendrick, 2006; Kendrick, 2005),

and few papers have attempted to link these models with the paradigm of adaptive



management.' Examples in the environmental and natural resource economics literature
of models which incorporate passive Bayesian updating include those related to nonpoint
source pollution (Kaplan, et al., 2003), climate change (Kelly and Kolstad, 1999), and
shallow lake management (Peterson, et al., 2003), while active learning is discussed in
Cunha-e-S4 and Santos (2008) with respect to air pollution, Springborn (2008) with
respect to invasive species management, and Brock and Carpenter (2007) in the context
of general environmental policy. We believe this paper represents the first application of
dynamic programming with endogenous learning and experiment valuation to the
paradigm of adaptive management.

The paper proceeds as follows. First, we develop the dynamic model and discuss
the treatment of information, including definitions of passive and active adaptive
management/learning. We then briefly discuss the solution technique. Next, the results
are discussed with a focus on the optimal solutions of the passive and active management
problems, the extent and value (both ex ante and ex post) of optimal experimentation, and
the differences in evolution of beliefs and state/control paths. A final section concludes.
Model
In order to investigate the potential benefits of active adaptive management, this paper
naturally extends the passive approach documented in Peterson, Carpenter, and Brock
(2003) in the context of shallow lakes. We add the component of anticipatory learning, or
active adaptive management, in which expectations about future information regarding
the unknown parameters is jointly considered with the optimization step.

The Shallow Lakes Model

! Springborn (2008) is a notable exception in the context of ship examination and invasive species.



Briefly, the model is characterized by a stochastic difference equation that describes
evolution of the pollution concentration of a lake as a function of prior phosphorus
pollution concentrations, baseline natural phosphorus loading, managed phosphorus
loading, and stochastic deviations. There is a critical level of phosphorus concentrations

(say, P

) above which nutrient cycling is initiated (contributing to eutrophication),

though the controlling agent/manager may be uncertain about the true value of this

parameter. Formally, the difference equation can be defined as:

B yP+b+l +¢ if B<P,, 0
YUl P +b+l +r+s  if R2P]

where P, is the concentration of phosphorus in the lake at time t, b is the baseline natural
loading of P per time period, |, is additional P loading, presumably from anthropocentric
sources, into the lake at time t, » is a decay parameter, and r is recycled and maintained

P in the lake. We assume ¢, is a normally-distributed, mean-zero, constant variance (o)

stochastic term that represents deviations from mean loadings at time t, and is known by
the manager.” Although this is a much-simplified representation of the ecosystem, it still
maintains the properties of admitting potential (but not guaranteed) oligotrophic and
eutrophic stable steady-states, depending on the relationship between P loadings and
concentrations.

Instantaneous payoffs depend positively on both the level of pollution allowed
(e.g., the benefits from surrounding agricultural production) and negatively on the
concentration of phosphorus in the lake. As such, we assume a simple linear-quadratic

utility function of the form:

? We maintain this assumption following Wieland (2000) to focus attention on the uncertainty of the critical
P.rit value. Relaxing this assumption is straightforward, but adds little economic insight to the problem.



U(l,R;8)=pl-P, )
which is clearly concave in | and P, so long as the (known) parameter £ >0. The
manager chooses anthropocentric loadings |, in each time period. Parameter values used

in the simulations are reported in Table 1, and generally follow Peterson, Carpenter, and
Brock (2003).°

Treatment of Information

In the shallow lakes context, it is assumed that the manager is uncertain about the value

of the parameter P

- but all other parameter values are known. For simplicity (and to

restrict the dimensionality of the state space), we assume that P.

crit

can only take two

=02 or P

discrete values: P it

) it =0.7. Interpreted slightly differently, this suggest that
the optimizing agent is making decisions on the basis of competing models of the
ecosystem, originating perhaps from rival theories or empirical findings. At the beginning

of the planning horizon, the manager has beliefs over the veracity of the two models,

represented by the probability weight 0 < 7, = Pr ( P

i =02)<1.

If we assume passive or active learning, these probabilities are updated between
each decision stage. Following Wieland (2000), we use the Bayes operator for updating,
though this is by no means the only possibility (Klumpp, 2006). Formally, the structural

updating equation is

7T LAz,t
T = L 1 L
T Loy +( _ﬁt)' 7t

€)

3 In Peterson, Carpenter, and Brock (2003), passive learning in the context of two competing models was
considered: one in which recycling never occurs at any phosphorus pollution level, and one in which
recycling is always present. We introduce the notion of the critical phosphorus level.



where 7, = Pr(P.

crit

=0.2)and L;,, i =(0.2,0.7) is the likelihood of observing a particular

it
phosphorus concentration in period t+1 (R+1)under the hypothesis of model i (Walters

and Ludwig, 1994). For the ecological model defined by equation (1), this likelihood is

defined by

L exp| (R, - R P = D)’ | "

20

Of course, at any time period t, Pr(P

i« =0.7)=(1-7,) by the properties of a probability
density function.

We can now define the dynamic programming problems that define the certainty
equivalent, passive adaptive management, and active adaptive management decision
rules. Assuming that the manager’s objective is to maximize the expected net present

value of the infinite stream of utility from managing the lake, the objective function can

be defined as

max iyE[U (lejsPepp 73 Bor o007 ) | ), (5)

Il 45

where &'is the discount factor in time t, and the notation explicitly recognizes that the

expected payoffs depend on the beliefs about the true values of P

crit*

The certainty

equivalent problem is defined by the objective in equation (5), subject to the biological

equation (1), and initial condition on FP,and the equation =, ,=7,=0 or
7., =, =1,depending on the manager’s beliefs about the correct model. Note that in

this specification, there is neither learning over time nor uncertainty over the correct

model.



The passive adaptive management problem, or passive learning problem, is
defined by the initial condition, equations (1) and (5), and the probability updating

equation 7,,, =, Passive adaptive management is defined as following the optimal
policy rule from this problem, say 1™ (P,z). As seen by the probability updating
equation, 1°*(P,7) does not anticipate the updating of probability beliefs, or

equivalently, the rule does not incorporate the tradeoff between information collection
and expected utility. However, unlike the certainty equivalent problem, we assume that

after making decision | ,the manager observes P, and updates 7, using updating
equation (3) before making decision |l,,,. This new value of 7,,, becomes the new prior,
and thus forms the information set for decision |,,,.

Finally, the active management, or active learning problem, is defined by the
initial condition, the objective in equation (5), and the constraint set defined by both
equations (1) and (3). We define the associated policy rule for this problem as 1** (P,;r).
In contrast to the passive management problem, then, anticipatory learning is not
decoupled from the optimization step, but rather an opportunity exists for the manager to

deviate from 1" (P,7) in order to capitalize (in the future) on the information gained

about the probabilities related to P. ... Thus, it is natural to define optimal experimentation

crit*
as any non-zero difference 1°(P,7z)—1"(P,xz), as any deviation from the passive
9 b 9

management strategy must be due to information effects (see Bond, 2008, for more
details).

Solution Technique

10



We solve each of the three dynamic programming problems documented above
using value function iteration with policy function acceleration over a discrete grid (with
linear interpolation) in control and state space. Table 1 documents the solution algorithm
parameters. We very briefly describe the method here; for more details, see Judd (1998).

The Bellman equation for each problem can be written as
V (P.z)=max{U (1,P; )+ SE[V (P".z") ]} 6)

where P*and 7" are the appropriate values of the phosphorus concentration state

variable and probability state variable following the current period decision, and V (P, )

is the (unknown) value function representing the expected net present value of utility
along the optimal path as a function of the state variables of the problem. An iterative

value function iteration procedure (with acceleration) is used to solve equation (6) for the

unknown function V (P, ) at each grid point by a) choosing an initial value for V (P, )

at each grid point in the state space; b) calculating the right hand side of equation (6) for

each point along the control and state grid space and choosing the maximum over the

control dimension; ¢) updating the value of V (P,;z) using these values; and d) repeating

b) through c) until convergence occurs. As the grid is discrete, we use linear interpolation
for points between grid values.

Expectations on the right hand side of equation (6) are calculated using sixteen-
point Hermite quadrature. Policy acceleration is implemented between steps b) and ¢) by
using the estimated policy function from b) (the “optimal” control values) to iterate

between the right-hand and left-hand sides of equation (6) at each grid point without the

11



maximization step until convergence. Solutions and simulations were written using the
GAMS 2.0.35.10 development language, and code is available from the senior author.
Results

We begin by characterizing the solutions to the certainty problem, the passive adaptive
management problem, and the active adaptive management problem, and characterizing
the extent of optimal experimentation. We then discuss the evolution of beliefs and
provide an example of alternative management paths for passive and active learning, and
show how to value optimal experimentation both ex ante and ex post.

Optimal Policy Functions

Figure 1 displays the estimated optimal anthropocentric loading (policy function) under
differing prior beliefs. Given the nature of the problem, the optimal strategy for the

manager under certainty (7 =0 and z =1)is characterized by a most rapid approach path
to the deterministic steady state level, which in this case implies loading in each period

such that E (P

.1)=P!, where P! is the optimal steady-state level when

P

crit

=0.2(P, ~0.68) or when P

i =0.7 (P,=0.51). The presence of the stochastic
loading term, however, ensures that the long run equilibrium values of phosphorus
concentrations comprise a distribution around the appropriate steady state.

As such, optimal loadings under certainty are non-continuous, downward-sloping
functions of phosphorus levels, with exactly one discontinuity at the threshold level of

pollution concentration.* Comparing the two policy functions yields the insight that as the

prior belief that P

it = 0.2 1ncreases (from 7 =0 to 7 =1), optimal loadings increase at

* When Pr(P.;=0.2)=0 or Pr(P.;=0.2)=1, the solutions to the passive and active learning problems are
identical.

12



low (less than 0.2) and high (greater than 0.7) phosphorus concentrations, but decrease at
intermediate levels. This results from the interplay between the threshold effects and the
fact that marginal disutility increases with phosphorus concentrations, resulting in
differing optimal steady states.

Turning next to the optimal passive learning policy functions and assuming
0 <z <1,o0ne can gain insight into the effects of introducing parameter uncertainty (but
not anticipatory learning) into the problem. Unsurprisingly, at relatively low and high
phosphorus concentrations, optimal loadings at intermediate values of 7 are associated
with values between the bounds established by the models with complete certainty.
However, at phosphorus levels between 0.2 and 0.7, this relationship does not hold. In the
upper graph of Figure 1, for example, optimal loadings when 7 =0.5 and 7 =0.75 are
actually lower than when 7 =0 or =z =1.Furthermore, at these same intermediate
probability levels, the entire optimal loading function is less (by a constant) than that

same function when 7 =1. As a lower P,

level is associated with a higher steady state
phosphorus concentration level (and lower steady-state utility), these two effects can be
considered manifestations of the “precautionary principle”, in which agents tend to act

conservatively in the face of uncertainty (see Immordino, 2003 for a recent review). This

is not true, however, for 7 =0.25,in which the optimal policy is identical to that under

certainty that P, =0.7.
In contrast, the active learning policy function illustrated in the lower graph of
Figure 1 introduces still more complexity into the optimal decision. While the optimal

active loading response is identical to the passive rule when 7z =0.25,it is more

conservative (lower loadings) at low and high phosphorus concentrations, but more

13



aggressive (higher loadings) at intermediate levels, when 7 =0.5. In other words, the
effects of active, anticipatory learning are of the opposite sign and of greater magnitude
than the precautionary effects at intermediate concentration levels, but are
complementary to it at lower and higher levels. When 7 = 0.75, however, this latter effect
is not observed, though the learning effects are present for intermediate phosphorus
concentrations.
Optimal Experimentation
The deviation in optimal loadings between the passive and active learning/adaptive
management problems is interpreted as optimal experimentation, as it is solely the result
of taking into account the effect of gathering information to reduce uncertainty about the
unknown parameter. Figure 2 provides a graphical illustration of the patterns of deviation
found over the belief space.

Some degree of experimentation over the feasible range of phosphorus
concentrations (zero to one hundred percent) is optimal for all 0.4 <z <1. As such,

experimentation is more generally more prevalent when P, = 0.2 is believed (and hence

crit

the steady state levels of pollution is higher and utility is lower than when P

it = 0.7).
However, the form of this experimentation differs with both beliefs and pollution
concentration. For example, when 7 =0.425 and 7 =0.975,1t is optimal under active
learning to experiment only at low and high concentration levels, and by setting optimal
loadings lower than the passive case.

In contrast, when 7 =0.7, experimentation (active management) is optimal at

intermediate concentration levels, and by setting loadings higher than the passive case.

However, the solutions are identical at more extreme pollution levels. Finally, when the

14



manger is completely uncertain about which model is correct (7 =0.5), experimentation

is optimal over the entire range of feasible concentration levels. As described in the
previous subsection, loadings under active learning are lower at extreme concentration
levels for this case, but higher at intermediate levels.

Thus, we conclude that optimal experimentation is state-dependent in both
manager beliefs and pollution concentrations, and may involve loadings that are either
more conservative or more aggressive than management under passive learning. For this
problem, aggressive experimentation (higher loading) is optimal only at intermediate
pollution concentrations for beliefs of 0.45< 7 <0.95, while experimentation under
relatively low and high concentration levels is optimal (and conservative) only at
0.425<7<0.525 and 0.925< 7 <0.975. Experimentation of any sort is not optimal for
7 <0.4.Note that these results are likely specific to this problem and the chosen
parameter values, and may not generalize to other contexts, but illustrate the
(endogenous) tradeoffs between information collection and current period utility.
Evolution of Beliefs and Management Simulation

As seen in equation (4), the likelihoods of each realization depend only on the
error between actual realized phosphorus concentrations and their expectation regardless
of the coupling or decoupling of the probability updating and the optimization steps. As

this expectation is dependent on the pollution level P, due to the threshold effect,

difference in likelihoods between the passive and active learning models begin occurring

values (i.e., P" <P

only when P, in each model are on either side of one of the P it

crit

and P" > P!

crit

for models m and n, i€(0.2,0.7), m=n). Thus, the evolution of beliefs

does not often differ markedly between the active and passive solutions, though one

15



instance of differing errors can be propagated over a number of periods. If, however,
belief evolution is identical over some simulated path of management, it implies that
differences in the path of pollution concentration between passive and active learning are
due solely to experimentation, rather than differences in the evolution of beliefs.

Figure 3 displays several realized simulations of active and passive learning, each
assuming identical stochastic shocks, initial pollution concentrations of 0.5 and initial

beliefs of 7 =0.5,but varying the true P, level. In each case, beliefs converged to the

crit

true P = (.2 simulation, and 31 periods for

crit

level fairly rapidly (19 periods for the P

crit

the P

.« = 0.7 simulation). Deviations between control and stock levels are greatest for
the low threshold simulation, partially due to the fact that pollution levels in period 2 are
0.69 for the passive learning model and 0.78 for the active learning model. This does not
occur in the high threshold simulation, and as such, beliefs are identical for each time

period, and loadings and stock levels are identical after period 4 (when the manager is

almost 99% certain that P

i« = 0.7). In each case, active learning outperformed passive
learning in the sense of maximizing discounted utility, though the effects were small

=0.2and 2.6% when P

crit

(0.4% when P,

it = 0.7 over the first twenty years).

Value of Optimal Experimentation and Monte Carlo Results

In addition to using the obtained policy rules to illustrate when (and by how much) it is
optimal to experiment and to simulate optimal management paths, the dynamic
programming methodology can be used to obtain the ex ante expected value of
experimentation by subtracting the expected value of following the passive learning rules

from the expected value of following the active management rules. For the active

learning paths, this expected value is given by V*'(P,7) from the active adaptive

16



management Bellman equation given by equation (6). However, the value function from
the passive management problem is not the correct value for this model, as probabilities
are, in fact, updated along any simulated path. This fact is not taken into account in the
optimization step when the passive learning policy rule is derived.

Instead, the proper value is the value function associated with the equation
VP (P,x)=U (1™ (P,7x),P; 8)+5E[ V> (P,77)], (7)
where 1°* ( P,7z) represents optimal loading for the passive learning model and all other

variables are as defined previously (Bond, 2008). It can be shown that equation (7)

remains a contraction mapping, and thus V pas(P,;z) can be recovered via a process

identical to the policy acceleration mentioned above (Judd, 1998).

Figure 4 documents the ex ante expected value of experimentation

(V “(P,z)-V P (P,/Z')) as a function of beliefs for three pollution concentration levels

(0.1, 0.5, and 0.9). Overall, the value of experimentation is small, which is unsurprising

given that experimentation and uncertainty is concentrated in earlier time periods, the

discount factor is assumed close to one ( = .99j,and we assume an infinite time

(I+r)

horizon.” However, we observe a similar pattern of the gains regardless of starting
pollution level.

Specifically, the gains from experimentation approximately double at the belief
point where aggressive experimentation begins, and stays relatively constant or slightly

decreasing over the range 0.45<7 <0.75, where uncertainty is fairly substantial. The

> This assumption follows Peterson, Carpenter, and Brock (2003), and reflects a relatively low discount rate
(high weight on the future) relative to market rates.
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value of optimal experimentation is gradually increasing as the belief that

P

.« = 0.2 Increases from zero until 7 = 0.45, but decreasing rapidly for 7z > 0.75. As such,
for this problem, we conclude that experimentation is most valuable under conditions of
considerable uncertainty about the pollution threshold level, especially if the manager
believes that low thresholds are slightly more likely. In other words, in the face of
uncertainty when it is believed the relatively negative outcome is more likely than the
alternative, experimentation is more valuable ex ante.

We can perform a similar ex post analysis using Monte Carlo simulation. Table 2

=0.2and P

displays the results of 1,000 simulations each when P, i = 0.7 for the

crit
passive and active adaptive management models, along with the mean and standard
deviations of the net present value (NPV) of the utility stream over a 100 year time period
and the percentage of the simulations where the sum of discounted utility is greater for
the active model. While the mean NPV of utility is greater for the active model under
both true threshold levels, it is not significantly different for either. Furthermore, we can
rate the performance of the active versus passive learning policy rules by counting the
number of simulations under which the NPV of utility is greater for the model that
includes anticipatory learning. Active learning outperforms passive learning decisively at
high threshold levels (89% of the simulations), but underperforms when the threshold
level is low (45% of the simulations). It seems likely that this result is directly related to
the quadratic term on pollution concentrations in the utility function, as aggressive
experimentation when the threshold is low will tend to decrease utility as a result of

increased pollution.

Conclusions

18



This paper has illustrated the use of numerical dynamic programming techniques
to aid researchers, policy makers, and resource managers in defining the optimal extent
and value of experimentation when underlying ecosystem parameters are unknown.
Although greatly simplified relative to many complex ecosystems, the shallow lakes
management model used here includes an uncertain parameter representing a threshold
effect that may be fairly common in real world systems, and provides a natural way of
defining experimentation through loading deviations from a passive learning path. It was
shown that experimentation is optimal over a large segment of the state space, which
included both pollution concentrations and beliefs about the threshold level, but that ex-
ante gains were relatively small and that ex-post gains depended on the true (but
unknown) threshold level.

Although many of our results are likely specific to the model and
parameterization used in this paper, a few general conclusions can be deduced. First,
these adaptive control/dynamic programming techniques can be used to identify optimal
policy paths under models of active and passive adaptive management, or help evaluate
potential (possibly non-optimal) experiment sets ex ante. This includes not only the level
and extent of experimentation, but also the expected values of that experimentation. As
such, application of these methods and models can aid in the implementation of adaptive
management (AM) programs and help AM managers make better, more informed
decisions in the presence of significant uncertainty. Specifically, the information from
these models can be used to help choose between experiments, provide expected values
of experiments, and augment more traditional benefit cost analysis to account for the

value of future information, as well as simulate potential AM paths (Bond, 2008).

19



Second, regardless of the problem, the subjective beliefs of the decision maker
will likely be a factor in the value and optimal extent of experimentation. While this may
be troubling to those more comfortable with “objective” analysis, it seems unlikely that
purely objective recommendations exist regarding optimal management in models of
learning. Perhaps one benefit is that the relevant values can be calculated over the entire
belief space, which can subsequently be used to make decisions when experts disagree.

Finally, our Monte Carlo analysis suggests that the realized gains from an active
adaptive management/learning approach may depend critically on the (initially unknown)
true parameter values, and despite expected ex ante gains from anticipating future
information, passive learning may perform equally as well. In the case explored here,
following the optimal experimentation path can exacerbate environmental problems when
the underlying threshold value is low, and this can lead to relatively disappointing active
learning results.

Clearly, this method will not be applicable for all AM applications, especially
when the number of unknown parameters is large and continuous distributions are
assumed. The “curse of dimensionality” is a very real problem when means, variances,
and covariances must be modeled jointly, and despite recent advances in numerical
techniques, these problems may remain intractable. However, as computing power
advances and better solution algorithms are derived, dynamic programming techniques
may prove to be a powerful tool for economists and others looking to improve adaptive

environmental management.
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Table 1. Maintained parameter and solution algorithm values used in numerical
optimization and simulation.

Description Variable  Value Nature of Variable
Model Parameters

Threshold beyond which recycling occurs P (0.2,0.7) Fixed, unknown parameter

Decay rate of Phosphorus concentration 4 0.1 Fixed, known parameter

Natural baseline loading b 0.02 Fixed, known parameter

Phosphorus recycling parameter r 0.2 Fixed, known parameter

Discount factor o 0.99 Fixed, known parameter

Relative marginal utility of loadings B 1.5 Fixed, known parameter

Standard deviation of stochastic shock o 0.141421  Fixed, known parameter

Phosporus concentrations (range) Py 0.0-1.0 State variable

Belief that P,=0.2 (probability range) V4 0.0-1.0 State variable

Phosphorus loadings (range) Iy 0.0-0.8 Control variable
Solution Parameters

# grid points, phosphorus concentration n/a 41 n/a

# grid points, belief probability n/a 41 n/a

# grid points, phosphorus loadings n/a 161 n/a

# Hermite nodes and weights n/a 16 n/a

Value function error tolerance n/a 0.001 n/a

Note: Where possible, model parameters closely followed Peterson, Carpenter, and Brock (2003).



Figure 1. Optimal loadings as a function of phosphorus concentrations for certainty,
active, and passive learning under selected belief probabilities.
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Passive learning optimal loading functions (upper panel) identical for Prob=(0,.25) and Prob=(.5 ,.75).
Optimal Control (I;), Active Learning,
as a Function of P Concentrations
0.7 q
0.6 ----
0.5 A Prob=0,
Prob=.25,
04 Prob=.5
Loadings '
| el e
W o3 e Prob=.75
0.2
0.1 ~ Prob=1
O T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
P Concentration (Py)
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Active learning optimal loading functions (lower panel) identical for Prob=(0,.25,.5).
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Figure 2. Optimal experimentation (active less passive optimal loadings) as a
function of phosphorus concentrations under selected belief probabilities.
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Figure 3. Realized optimal loadings and pollution concentrations for simulations
under passive and active learning.
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Figure 4. Ex ante expected value of experimentation (active vs. passive control rule)
for selected phosphorus concentration levels.
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Table 2. Ex post Monte Carlo simulations under alternative values of P under

passive and active learning.

NPV Utility (100 yrs) % of Simulations where NPV Utility

True P,y  Passive Active

Greater under Active Learning

0.2 6.870 6.872
(1.43) (1.44)
0.7 22021  22.050

(1.54) (1.55)

45%

89%

Std. errors of NPV Utility in parentheses.

Discount factor = 0.99.
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