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Policy-Induced Technology Adoption: Evidence from the 
U.S. Lead Phasedown 

Suzi Kerr and Richard Newell 

Abstract 
 
The theory of environmental regulation suggests that economic instruments, such as taxes 
and tradable permits, create more effective technology adoption incentives than conventional 
regulatory standards. We explore this issue for an important industry undergoing 
technological responses to a dramatic decrease in allowed pollution levels—the petroleum 
industry’s phasedown of lead in gasoline. Using a panel of refineries from 1971 to 1995, we 
provide some of the first direct evidence that alternative policies affect the pattern of 
adoption in expected ways. Importantly, we find that the tradable permit system used during 
the lead phasedown provided incentives for more efficient technology adoption decisions. 
Where environmentally appropriate, this suggests that flexible market-based regulation can 
achieve environmental goals while providing better incentives for technology diffusion. 
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Policy-Induced Technology Adoption: Evidence from the U.S. 
Lead Phasedown 

Suzi Kerr and Richard Newell∗  

1. Introduction 

Economic and policy discussions have become increasingly permeated by issues related 

to technological change, particularly in the environmental arena. Understanding the process of 

technological change is important for at least two broad reasons. First, the environmental impact 

of economic activity is deeply affected by the nature of technological change, with new 

technologies potentially either creating increased pollution or facilitating its reduction. Because 

many environmental problems and policy responses are evaluated over long time horizons, the 

cumulative impact of these technological changes on the severity of environmental problems is 

likely to be large.  

Second, policy interventions themselves create constraints and incentives that influence 

the process of technological change. These induced effects of environmental policy on 

technology may have substantial implications for positive analysis of the impact of alternative 

policies, as well as the normative analysis of policy decisions. The theoretical literature has long 

recognized that alternative types of environmental policy instruments can have significantly 

different effects on the rate and direction of technological change, typically finding that 

                                                 
∗  Kerr is Director and Senior Fellow at Motu Economic and Public Policy Research (Suzi.Kerr@motu.org.nz), and 
Newell is a Fellow at Resources for the Future (newell@rff.org). We thank Nancy Bergeron, Oscar Melo, and Kelly 
See for research assistance. We also thank Severin Borenstein, William Pizer, Robert Stavins, and participants in 
seminars at the NBER, the University of California at Berkeley, the American Economic Association meetings, and 
the University of Maryland for useful comments on previous versions of the paper. Aspects of the research would 
not have been possible without permission from several firms to use certain confidential lead-trading data. We 
acknowledge support from the U.S. Environmental Protection Agency Grant No. CX827515. 
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economic incentive–based instruments (e.g., pollution taxes and tradable pollution permits) 

provide more effective incentives for technology adoption than conventional regulations (e.g., 

technology and performance standards).1 Despite a reasonable amount of theoretical attention, 

little empirical evidence exists on the dynamic effects of environmental regulation, particularly 

with respect to the relative effects of alternative policy instruments.2 We provide some of the 

first such evidence. 

This paper reports a detailed empirical study of these issues for an important industry 

undergoing technological responses to a dramatic decrease in allowed pollution levels. As 

described below, the phasedown of lead in gasoline by petroleum refineries during the 1970s and 

1980s was the first major success in implementing a market-based environmental policy. We 

assess the pattern of technology adoption by refineries during this period, both across refineries 

and across time, with the intent of understanding how various economic incentives, market 

factors, and the stringency and form of regulation influenced this process. 

Toward this end, we develop a model of the technology adoption decision in the presence 

of environmental regulation and derive an econometrically testable duration model.3 The model 

suggests that firms will gradually adopt the technology as its costs fall and increased regulatory 

                                                 
1 Jaffe et al. (2000) provide a broad review of the literature on technological change and the environment. Zerbe 
(1970), Orr (1976), and Magat (1978) provide early theoretical discussions of the firm’s incentives to innovate and 
adopt pollution-reducing technology. More recently, Downing and White (1986) look at firms’ incentives, Malueg 
(1989) compares the differential effects of tradable permits and performance standards on high- versus low-cost 
pollution controllers, Milliman and Prince (1989) consider the effects of different instruments when market effects 
are taken into account, and Fischer et al. (1998) extend this by considering the welfare effects of incentives to adopt 
from different policy instruments. 
2 Nelson et al. (1993) consider the effect of constraints on the use of economic instruments on capital turnover in the 
electric power industry. Jaffe and Stavins (1995) estimate the factors determining adoption of energy-efficient 
building insulation. Newell et al. (1999) study the effects of energy prices and government regulation on energy-
saving product innovation. 
3 Our basic approach is related to that taken by several previous applied industrial organization studies of 
technology adoption. See Hannon and McDowell (1984) and Saloner and Shepard (1995) on adoption of ATMs, 
Karshenas and Stoneman (1993) on adoption of computer-assisted machine tools, and Rose and Joskow (1990) on 
electrical utility adoption of supercritical coal-fired steam-electric generation. 
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stringency increases the value of adoption; firms with lower benefits or higher costs will adopt 

more slowly. We also test the proposition that there will be a divergence in the adoption 

propensities of low versus high compliance cost plants during periods with a tradable permit 

system versus an individually binding performance standard. Plants with relatively low costs of 

compliance (i.e., sellers in a permit market) will have greater incentives for cost-saving 

technology adoption within a trading regime. At the same time, relatively high-cost plants (i.e., 

permit buyers) will have decreased adoption incentives under the permit system (Malueg 1989).  

Intuitively, the tradable permit system encourages all plants to take action until their 

marginal costs equal the permit price. Plants that have marginal costs below the market permit 

price (sellers) can capture even greater profits under the permit system by adopting new 

technology that further reduces costs. This is in contrast to plants that have marginal costs above 

the permit price (buyers), for whom buying permits is a less costly option than installing the new 

technology. Thus, the tradable permit system provides incentives for more efficient adoption, but 

it can lower adoption incentives for some plants with high compliance costs.4 Under a 

nontradable performance standard, such opportunities for flexibility do not exist to the same 

degree. If plants face individually binding standards, they will be forced to take individual 

action—such as technology adoption—regardless of the cost, with the resultant inefficiency 

reflected in a divergence across plants in the marginal costs of pollution control. 

We employ a unique time-series, cross-sectional dataset on petroleum refineries covering 

the full period of the U.S. lead phasedown, which began with a requirement that new cars after 

1974 use unleaded gasoline. This was followed by performance standards on lead in gasoline, a 

tradable permit market controlling the lead in leaded gasoline (1983–1987), ending with a more 

                                                 
4 Whether any of these policies provide incentives for fully efficient technology adoption depends on a comparison 
with the social benefits of technology adoption and the usual weighing of marginal social costs and benefits.  
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stringent performance standard and ultimately a ban in 1996. The adoption of pentane-hexane 

isomerization technology was one of the major responses to the increased severity of regulation.  

We find that increased stringency (which raised the effective price of lead) encouraged 

greater adoption of lead-reducing technology. We also show that larger and more technically 

sophisticated refineries were more likely to adopt the new technology. Importantly, we further 

find that the tradable permit system provided incentives for more efficient technology adoption 

decisions. The relative adoption propensity of refineries with low versus high compliance costs 

was significantly greater under the tradable permit regime than under a nontradable performance 

standard. 

1.1. The Regulation of Lead in Gasoline 

The decision to reduce lead in gasoline in the United States came in response to two main 

factors. First, as is summarized in Tables 1 and 2, the phasedown of lead in gasoline began in 

1974 when the U.S. Environmental Protection Agency (EPA) introduced rules requiring the use 

of unleaded gasoline in new cars equipped with catalytic converters. The introduction of catalytic 

converters for emissions control required that motorists use unleaded gasoline, because lead 

destroys the emissions control capacity of catalytic converters. A large proportion of the eventual 

phasedown of lead in gasoline is in fact attributable to the decreasing share of leaded gasoline 

that resulted from the transition to a new car fleet. To help promote the supply of unleaded 

gasoline, EPA also scheduled performance standards requiring refineries to decrease the average 

lead content of gasoline beginning in 1975, but these were postponed until 1979 through a series 

of regulatory adjustments.  

Second, by the 1980s studies showed adverse effects of atmospheric lead on the IQ of 

children and on hypertension in adults (U.S. EPA 1985). In 1982, new rules changed the basis of 

the standard from a refinery performance standard measured in terms of lead content per pooled 

volume of leaded plus unleaded gasoline, to a standard that specifically limited the allowable 
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content of lead in leaded gasoline to a quarterly average of 1.1 grams of lead per gallon (glpg). 

Very small refineries faced less stringent standards until 1983. During 1985 the standard was 

reduced to 0.5 glpg, and beginning in 1986 the allowable content of lead in leaded gasoline was 

reduced to its final level of 0.1 glpg. Lead was banned as a fuel additive in the United States 

beginning in 1996.  

To ease the transition for refineries, the regulations permitted both trading and banking of 

lead permits through a system of “inter-refinery averaging.” Trading of lead permits among 

refineries was allowed from late 1982 through the end of 1987. Banking was allowed during 

1985–1987. Beginning in 1988, EPA reimposed a performance standard of 0.1 glpg applicable to 

individual refineries. See Hahn and Hester (1989) and Nichols (1997) for a general overview of 

trading behavior and other aspects of the lead trading program. 

Before late 1979 and from late 1982 through the end of 1987, refineries had extensive 

flexibility in their response to the lead regulations. They could choose how much unleaded 

gasoline to produce and could purchase lead permits to maintain a high level of lead in leaded 

gasoline if they chose. We characterize the form of regulation during these periods as an 

economic instrument. In contrast, from late 1979 through late 1982 and after 1987, each refinery 

faced an individual performance standard. We characterize the form of regulation in these 

periods as a performance standard. 

Decreasing lead in gasoline led to an increase in gasoline production costs. Lead was 

used in gasoline to raise octane levels cheaply.5 At the aggregate level there are two basic 

approaches to reducing the need for lead. The first is the use of other additives, such as methanol 

                                                 
5 Octane is a characteristic of fuel components that improves the performance of engines by preventing fuel from 
combusting prematurely in the engine. The availability of high-octane fuel allows more powerful engines to be built. 
Cars will not operate efficiently with a lower-octane fuel than that for which they were designed. In addition, some 
older cars need more than a minimum level of lead (less than 0.1 glpg) to prevent a problem called valve seat 
recession. 
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and ethanol. These are more expensive than lead and only a part of the long-term solution. The 

second approach, which we analyze, is to increase refineries’ abilities to produce high-octane 

gasoline components. In the short run, existing equipment can be run more intensively to 

increase octane production, but eventually new investment is required. At an individual level, a 

refinery can also adjust by altering the type of crude oil it purchases, by buying intermediate 

products with higher octane content, or by changing its output mix to one requiring less octane. 

Pentane-hexane isomerization (henceforth referred to simply as isomerization) is one 

technology that can be used to directly replace lead through octane enhancement. Isomerization 

was a new technology in the early 1970s, but by 1985–1988, investments in isomerization were 

projected to provide around 40% of additional octane requirements.6 Isomerization can be used 

in a refinery of any size and complexity and can be installed at any time in an existing refinery.7 

In 1986, the minimum investment required for a 5,000-barrel-per-day unit was around $2.6 

million (Oil and Gas Journal 1986), which is a relatively small investment in the refining 

industry. Because the primary purpose of isomerization is to create octane for gasoline, the 

specialization of the technology makes it ideal for assessing the impact of lead regulation on 

technology adoption.8 

                                                 
6 Additives including MTBE provided about one third, and alkylation, catalytic cracking, and reforming together 
provided most of the remaining increase. Prior to 1986, isomerization played a smaller role in octane production, 
and increased severity of reforming and fluid catalytic cracking provided much of the octane increases (Oil and Gas 
Journal 1986). 
7 Many new technologies must be adopted when other changes are being made to the existing plant or when old 
technology is replaced. Rose and Joskow (1990) show how to control for this situation econometrically. This is not 
the case for isomerization.  
8 Unlike some other refining technologies, isomerization was relatively unaffected by the other major changes in the 
refinery industry during the 1980s because of its low level of previous adoption. The two other technologies that 
were key in replacing lead in gasoline were catalytic reforming and alkylation. The industry had large amounts of 
these technologies before the lead phasedown began because these technologies produce intermediate inputs used in 
the production of a wide range of outputs. The most important change in the industry during this period is the 
removal, in 1981, of price and allocation controls on crude oil, which had effectively subsidized the crude oil used 
by smaller refineries (Energy Information Administration 1993). After 1981, many small refineries closed and larger 
refineries took over their supply of gasoline. Refinery technologies such as catalytic reforming and alkylation were 
rationalized in response to this restructuring. Whereas a change in the level of either of these technologies could be 
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In Section 2 we develop an analytical and econometric model of the incentives to adopt 

technology as a function of economic and regulatory variables and individual characteristics. 

Section 3 describes our data and the results of our empirical application using a panel of 378 

refineries from 1971 to 1995. We conclude in Section 4.  

2. Technology Adoption in Response to Regulation 

2.1. A Model of the Technology Adoption Decision 

We consider a situation where a new technology is available to each refinery at a cost 

( , )tC tZ  at time t where Zt is a vector of refinery-specific characteristics that may affect the cost 

of adoption. We treat the adoption decision as a discrete choice, which is reasonable for the case 

at hand.9 We define 0Π as the profit without isomerization and 1Π  as the profit after adoption 

(gross of the cost of adoption). Each refinery is a profit maximizer and chooses T, the time of 

adoption, to solve the following dynamic optimization problem: 

 0 1

0

max ( , , , )e ( , )e ( , , , )e
T

rt -rT rt
t t t t t t tT

T

R K t dt C t R K t dt
∞

− −Π − + Π∫ ∫Z Z Z , (1) 

where the set of refinery-specific characteristics Zt also affects profits, Kt is the stock of capacity 

of the new technology already installed in the industry, Rt represents the stringency and form of 

regulation faced by each refinery, and r is the discount rate. The variables Zt, Rt, and Kt can 

change over time. 

A refinery will adopt at the first time T where the investment is profitable as long as it is 

not even more profitable to wait until a later period because of falling investment costs. This is 

known as the arbitrage condition: 

                                                                                                                                                             
interpreted as a response to many factors other than the regulation of lead, a change in the level of isomerization can 
be interpreted primarily as a response to the phaseout of lead from gasoline. 
9 Isomerization capacity in our data was always added as a discrete one-time investment. 
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 ( , )( , , , ) ( , ) 0T
T T T T

C TV R K T rC T
t

∂− + ≥
∂
ZZ Z , (2) 

where 1 0( , , , ) ( , , , ) ( , , , )T T T T T T T T TV R K T R K T R K T= Π − ΠZ Z Z  is the gross value of the adopted 

technology at time T. The arbitrage condition is a sufficient condition if the adoption cost is 

nonincreasing and convex, and the gross value of adoption, V, is nondecreasing with respect to 

time.10 We also note that in order for adoption to take place in finite time, these conditions 

together imply that adoption must be profitable: 

 ( , , , )e ( , )e 0rt -rT
t t t T

T

V R K t dt C T
∞

− − >∫ Z Z .  

The gross value of adoption varies across refineries, as do the cost and the change in cost 

over time. Refineries with the highest value will tend to adopt first; then, as the costs of 

technology adoption fall or its benefits rise (e.g., because of increased regulatory stringency), 

other refineries begin to adopt. This is known as the rank effect because refineries are ranked by 

the profitability of the new technology (Karshenas and Stoneman 1995). The gradual sweeping 

across this distribution of values tends to produce the S-shaped pattern that is typically found for 

the diffusion of new technologies. A second important effect is known as the stock effect. As 

more refineries adopt the technology and the stock of installed capacity rises, the supply of high-

octane intermediate products will rise and the price of octane will fall, as will the return to 

adoption. We allow for each of these effects within our econometric model. 

In addition to the above representation of adoption behavior, which models adoption as 

the result of value-maximizing decisions by heterogeneous adopters, the literature on technology 

diffusion has traditionally emphasized the role played by the gradual dissemination of 

information about a new technology. Adopting technology can be a risky undertaking requiring 

                                                 
10 Specifically, the second-order condition that is sufficient if it holds everywhere is:

2 2 0( , , , ) / ( , ) / ( , ) /t t t t trV X R K t t C Z t t C Z t t− + ≥∂ ∂ ∂ ∂ ∂ ∂ . These conditions are likely to hold over our period of 
analysis because regulatory stringency was increasing and because adoption costs generally fell at a decreasing rate 
over time, eventually tending to a constant level; the general pattern is convex.  
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considerable information. It takes time for information to diffuse sufficiently, and the diffusion 

of technology is limited by this diffusion of information. In the epidemic model of technology 

diffusion (Griliches 1957; Stoneman 1983), this process is represented in a manner similar to the 

spread of a disease, with adoption rates depending on the interaction between adopters and 

potential adopters. The presumption is that one of the most important sources of information 

about a new technology is firms that have already adopted. Under typical assumptions, the 

epidemic model also yields the characteristic S-shaped diffusion pattern. As described below, 

within the duration framework used in our econometric analysis, this information dissemination 

process can be represented through the baseline hazard function, and its importance ascertained 

by assessing the degree of duration dependence of the baseline hazard.  

2.2. Econometric Model of the Timing of Technology Adoption 

Econometric modeling of technology adoption decisions lends itself naturally to the use 

of statistical techniques developed for analysis of duration data. Duration data describe processes 

and events where it is typically not only the duration of the process per se that is interesting, but 

also the likelihood that the event will now occur, given that the process has lasted as long as it 

has. Duration models were originally developed in biomedical science to describe such events as 

the survival times of patients with heart transplants, and in industrial engineering to model such 

events as the risk of equipment failure. Within the economics literature, duration analysis has 

been applied to labor issues, such as the measurement of unemployment spells, and to a more 

limited extent, issues related to technology adoption (Hannan and McDowell 1984; Rose and 

Joskow 1990; Karshenas and Stoneman 1993; Saloner and Shepard 1995). Kalbfleisch and 

Prentice (1980), Kiefer (1988), and Lancaster (1990) provide introductions to duration analysis, 

both in general and in its specific application within economics.  

A duration model of technology adoption is based on formulating the problem in terms of 

the conditional probability of adoption at a particular time, given that adoption has not already 
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occurred and given the characteristics of the individual and its environment. Note the 

correspondence between this conceptualization of the problem and the technology adoption 

decision as framed in the previous section. In addition to the intuitive appeal of framing the 

technology adoption decision in this way, duration models provide a convenient framework for 

incorporating data on explanatory variables that change over time (so-called time-varying 

covariates) and other elements of the dynamic process of technological change. Estimating the 

effect of regulations and other determinants of technology adoption that change over time (e.g., 

technology costs, stocks, epidemic and learning effects) is in fact central to our specific research 

interest. After the general structure of the probability model has been specified, along with some 

additional functional form and distributional assumptions, the model can be estimated by 

maximum-likelihood methods. 

We therefore proceed by formulating the timing of technology adoption within a duration 

model as a function of the explanatory variables that we found through the arbitrage condition 

(Equation (2)) to be fundamental to this decision. Specifically, the rate at which individuals will 

adopt the technology in period t, conditional on having not adopted before t, is known as the 

“hazard rate” at time t. The hazard function for each individual is denoted ( , , )th t X θ  and it is 

given by the conditional probability 

 ( , , )( , , )
1 ( , , )

t
t

t

f th t
F t

=
−

X θX θ
X θ

, (3) 

where ( , , ) Pr( )tF t T t= <X θ  is the cumulative distribution function specifying the probability that 

the random variable T (i.e., time until adoption) is less than some value t, 

( , , ) ( , , ) /t tf t dF t dt=X θ X θ  is its density function, Xt is a set of explanatory variables which may 

change over time, (e.g., the superset of Zt, Rt, and Kt from above), and θθθθ is a set of parameters to 

be estimated. The behavior of the hazard function over time depends on the distributional 

assumption for ( , , )tF t X θ  and on the way that the explanatory variables Xt change over time. 

Estimation of the parameters θθθθ can proceed using maximum likelihood.  
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We place further structure on the hazard function by means of a convenient and widely 

used approach in which the hazard function (and parameter set θθθθ) is factored into two parts. One 

part is the baseline hazard, 0 ( )h t , which may depend on time but not on the other explanatory 

variables. The baseline hazard captures any effects on duration that are not represented by the 

other explanatory variables included in the analysis; it is assumed to be common to all 

individuals. In the context of technology adoption, the baseline hazard captures possible 

epidemic effects described above.  

The second part of the factored hazard model depends on the explanatory variables Xt 

and associated parameter vector ββββ in an exponential manner, which both permits straightforward 

estimation and inference and ensures that the hazard is positive without additional restrictions. 

The hazard function becomes 

 0( , , ) ( )exp( )t th t h t ′=X β X β . (4) 

An estimated parameter β is interpretable as the effect on the log hazard rate of a unit change in 

an explanatory variable at time t. If the explanatory variables are normalized to equal zero at 

some sensible reference case (e.g., the variable means), then 0 ( )h t  is interpretable as the hazard 

function for the reference case, and exp( ) 1β −  gives the percentage effect of the explanatory 

variable on the hazard rate relative to the reference case. We employ this type of normalization 

in our empirical application, as explained below. 

Estimation of the hazard model through maximum-likelihood methods (based on 

Equation (4)) can proceed either in a completely parametric fashion by choosing 0 ( )h t  from a 

parametric family, or by using the Cox (1975) partial-likelihood approach, which does not 

require specifying the form of 0h . A variety of alternative parametric functions have been used 

for the first approach. The most widely used is an exponential distribution of duration times (i.e., 

( ) 1 exp( )F t tγ= − −  and ( ) exp( )f t tγ γ= − ), which leads to a constant baseline hazard 0 ( )h t γ= . 

Coupled with specification tests, its simplicity and ease of interpretation make the exponential 

distribution a natural point of departure for analysis.  
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We also estimate models using the Weibull, Gompertz, and gamma distributions, which 

allow for nonconstant baseline hazards (i.e., duration dependence) and include the exponential 

distribution as a special case, thereby enabling specification testing. If, for example, as described 

above, uncertainty about the value of isomerization falls in unobservable ways over time as 

adoption spreads and learning occurs through an epidemic effect, we might expect that the 

hazard rate would rise over time. Nonetheless, because we control for many of the variables that 

are thought to govern the timing of technology adoption, it should not be surprising if the 

remaining baseline hazard is constant. To further check the appropriateness of our parametric 

form of the hazard model, we also estimate the Cox partial-likelihood model. Note, however, that 

within the Cox model we cannot estimate the effect of purely time-series variables, such as 

temporal changes in regulatory stringency and form of regulation, because these cannot be 

identified independently from an arbitrary baseline hazard function. 

3. Estimation of the Technology Adoption Decision 

3.1. Explanatory Variables 

Using information from the Department of Energy, trade journals, EPA, and individual 

oil companies, we compiled a 5,647-observation database of the annual technical and operating 

characteristics of 378 refineries spanning the 25-year period 1971–1995. These data cover 

virtually the entire population of U.S. refineries over a period that predates the first recorded 

adoption of isomerization in the United States, in 1972. We coupled these data with information 

on lead regulations, technology costs, the lead-trading behavior of individual refineries, and 

other relevant economic and refinery market variables. The sources, definitions, and construction 

of individual variables are further described below; basic descriptive statistics of each of these 

raw variables are given in Table 4. To facilitate interpretation of estimated parameters, we 

normalized continuous variables so that a unit change in each transformed variable represents a 
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10% change from its mean value, or in the case of our regulatory stringency variable 

(REGULATE), a 10% change in the level of stringency.11 

Refinery characteristics 

We expect certain characteristics of individual refineries to raise or lower the net value of 

isomerization and thus raise or lower a refinery’s propensity to adopt this new technology. Data 

on the technical and operating characteristics for refineries come from annual issues of the 

Petroleum Supply Annual (Energy Information Administration 1980–1995) and the Oil and Gas 

Journal (1971–1979). These sources and information from the American Petroleum Institute 

(1996) were used to assign refineries to companies and to verify the years in which the refineries 

were in operation. 

Dependent variable—presence of isomerization. The dependent variable is whether a 

refinery has adopted isomerization at each point in time within the sample. Capacity information 

is recorded as of January 1 each year, so a refinery is treated as having adopted isomerization 

during 1985 if it had no such capacity at the beginning of 1985 but did so as of the start of 1986. 

If the refinery had not adopted by 1995 or the refinery shut down, the observation is treated as 

censored in that year. Figure 1 shows the cumulative adoption of isomerization over the period of 

interest.  

Size and industry setting. Theoretical and empirical work on technology diffusion 

suggests that size (e.g., of establishments, firms, plants) may play an important role in adoption 

decisions, perhaps as a proxy for such factors as economies of scale, risk aversion, investment 

hurdle rates, management quality, or participation in research and development activities. The 

                                                 
11 We accomplished this by first dividing each variable by its mean, then multiplying by 10, and finally taking 
deviations from each mean (by subtracting 10), resulting in a mean of zero for the transformed variables. We 
normalized REGULATE by dividing by its maximum and then multiplying by 10, so that it equals zero at its 
minimum and 10 at its maximum. 
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empirical literature generally finds that smaller entities adopt new technologies more slowly.12 

For the specific case at hand, the trade press suggests that small refineries generally have higher 

costs of adopting isomerization (see Oil and Gas Journal 1967). We employ two indicators of 

size—the size of each refinery and the size of the company that owns it. Refinery size 

(REFSIZE) is defined as its operating crude distillation capacity in thousand barrels per calendar 

day (kb/cd). One of the categorical variables used in our test of regulatory form, LARGE, is that 

refinery capacity be greater than 50 kb/cd, the standard industry definition of a larger refinery.  

The expected effect of company size on isomerization adoption is more ambiguous. 

Adoption may be less likely at refineries in larger companies because these refineries tend to 

have better access to high-octane intermediate products from affiliated refineries and may have 

greater flexibility in their output choice because other affiliated refineries supply parts of their 

market. They may also face higher bureaucratic barriers to adoption if decisions are not all made 

at the refinery level. On the other hand, adoption may be more likely at refineries within larger 

companies if larger companies have greater access to capital and to the skills, knowledge, and 

information from affiliated refineries that lower the cost of adoption. We define the size of the 

company that owns each refinery (COSIZE) as the sum of operating crude capacity (kb/cd) in all 

affiliated refineries.  

We also include the variable DENSITY, which measures the number of refineries in each 

region. We expect that refineries in regions with a greater number of other refineries will have 

greater access to intermediate products and greater output flexibility, and may thus have lower 

adoption propensities. On the other hand, if refineries learn about new technologies from 

                                                 
12 Karshenas and Stoneman (1995) and Geroski (2000) provide surveys, and Levin et al. (1987), Rose and Joskow 
(1990), Karshenas and Stoneman (1993), and Saloner and Shepard (1995) provide specific evidence of a positive 
effect of size on adoption propensity. Oster (1982) is one of the few studies finding a negative effect of firm size on 
adoption, attributing the large U.S. steel firms’ “technologically laggard” behavior to their insulation from 
competition. 
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geographically proximate refineries, increased refinery density could have a positive affect on 

adoption. The geographic distribution of refineries across the United States is illustrated in 

Figure 3; Table 3 shows the regional classifications we used in our analysis.13  

Technological sophistication. The variable COMPLEX is a categorical variable indicating 

that a refinery had catalytic reforming capacity, a technology that distinguishes simple from 

more complex refineries.14 One option for installing isomerization is to adapt an existing 

catalytic reforming unit; refineries without this option face higher adoption costs. We also expect 

that simple refineries may have less knowledge of the technology or face greater uncertainty 

about its value. These higher costs of adoption for simple refineries should tend to lower their 

relative adoption propensity, particularly when regulation allows such flexibility. 

Technology cost and stock 

Cost of isomerization. Both theory and common sense suggest that the cost of a 

technology is an important determinant of whether and when it will be adopted. We gathered 

typical costs of construction for an isomerization unit from the trade journal Hydrocarbon 

Processing (1966–1994). We deflated these costs into constant dollars using the Nelson Refinery 

Cost Index (American Petroleum Institute 1998) and then normalized the cost to equal one in 

1971, resulting in the variable COST. 15 As illustrated in Figure 2, the real costs of isomerization 

                                                 
13 The 10 regional definitions we use are from the Department of Energy’s Refinery Evaluation Modeling System. 
These regions were developed to provide a reasonable geographic aggregation for petroleum refining modeling 
purposes, and are derived from a combination of 13 Bureau of Mines districts with five Petroleum Administration 
for Defense (PAD) districts. The additional inclusion of regional dummies in the model did not add significant 
explanatory power. 
14 Alkylation capacity also tends to be present at more sophisticated refineries. We do not include this variable in the 
final results, however, because we found that it had a small and statistically insignificant independent effect. 
15 We also created two other cost variables suggested by theory: RCOST, which is annualized cost where the 
discount rate is the Moody’s AAA corporate bond rate from the Economic Report of the President (Council of 
Economic Advisors 1997), and DCOSTDT, which is the percentage annual change in the cost of isomerization. 
Neither of these variables added any explanatory power to the model once the more basic measure of cost was 
included. 
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dropped by about 30 percent over the period of analysis, to about $5.5 million for a 10,000-

barrel-per-stream-day unit in 1995. Although COST is purely a time-series variable, we also 

capture cross-sectional differences in adoption costs through the variables for size (REFSIZE) 

and technological sophistication (COMPLEX). 

Stock of isomerization capacity. As more refineries adopt isomerization, they increase the 

supply of high-octane intermediate outputs, hence lowering the price differential between leaded 

and unleaded gasoline and the marginal value of octane. This should lower adoption propensities 

as the installed stock of isomerization increases. On the other hand, if the installed stock of 

isomerization acts as a proxy for cumulative experience with this technology, the learning and 

reduced uncertainty associated with it could have a positive effect on adoption. Our STOCK 

variable is defined as the total industry isomerization capacity in thousand barrels per stream day 

(kb/sd), lagged one period to avoid an endogeneity problem.  

Regulatory variables 

See Tables 1 and 2 for a summary of the federal lead regulations that form the basis for 

our construction of the regulatory variables. We explore two types of regulatory variables that 

capture the effects of both the stringency and the form of regulation (i.e., performance standard 

or economic instrument). 

Regulatory stringency. The overall stringency of lead regulations is inversely related to 

the average amount of lead allowed per gallon, which depends on the stringency of the standard 

for leaded gasoline and on the share of leaded gasoline in total gasoline production. As the 

allowable level of lead in leaded gasoline decreases, and the share of leaded gasoline decreases, 

effective stringency will increase. Increased regulatory stringency should increase the propensity 

to adopt isomerization because isomerization is a substitute for lead in octane production. 

Because octane responds in an approximately log-linear manner to the addition of lead (Leffler 
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1985), this suggests the following definition for our regulatory stringency variable 

(REGULATE): 

 ( ) ( ) ( )ln 1 lnREGULATE S B L S B U= + − , (5) 

where S is the share of leaded gasoline, B is the baseline unregulated level of lead per gallon, L is 

allowable content of lead per leaded gallon, 1-S is the share of unleaded gasoline, and U is the 

(very low) content of lead per unleaded gallon. L, S, and thus REGULATE vary across refineries 

and over time. 

The share of leaded gasoline, S, varies by location and over time from 1 in 1970 to 0 in 

1995. We construct S using state-level data based on the Petroleum Marketing Monthly (Energy 

Information Administration 1983–1992), a study by Ethyl Corporation,16 and the U.S. Statistical 

Abstract (U.S. Bureau of the Census 1971–1995). We then aggregate values to the regional level 

using the ten regional definitions described earlier (see definitions in Table 3).  

Federal regulations define unleaded gasoline as having a lead level of 0.05 grams of lead 

per gallon or less (U = 0.05). In 1970, leaded gasoline had a preregulation baseline lead level of 

approximately B = 3 grams of lead per gallon (U.S. Department of Energy 1986). REGULATE 

thus varies from 0 in 1970 to a maximum of 4 by 1995, when leaded gasoline was virtually 

eliminated (i.e., REGULATEmax = ln(B/U) = ln(3/.05) = 4.09 prior to our normalization). 

Beginning in 1979, lead in leaded gasoline was restricted to a level L, which was initially the 

pooled gas standard divided by the leaded gas share and then the leaded standard from 

November 1982 on (see Table 1). Small refineries were treated differently from 1979 until July 

1983, and this is also incorporated in our measure of L (See Table 2). L is prorated when 

regulations span partial years. 

                                                 
16 These data for 1980–1982 were kindly provided by Severin Borenstein. 
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Regulatory form. With our regulatory form variable we seek to test the hypothesis that 

firms with relatively low (high) costs of individual compliance (e.g., “sellers” versus “buyers” in 

tradable permit markets) face higher (lower) incentives to adopt under an economic incentive–

based instrument than under an individually binding performance standard. Ideally, we would 

like to observe whether a refinery’s marginal cost of compliance if it acts alone is above or 

below the market price determined by the economic instrument. If a refinery’s marginal costs are 

below the market permit price, it would face higher returns to adoption when the economic 

instrument is employed. If a refinery’s marginal costs are above the permit price, it would face 

higher returns to adoption under an individually binding performance standard.  

Because we have neither individual compliance costs nor the permit price over time, we 

approach this question in two alternative ways. We begin by defining the variable ECON to 

indicate periods during which, at year end, refineries had flexibility in their individual lead use 

(i.e., 1971–1978 and 1982–1986) versus periods when they were subject to individually binding 

performance standards (i.e., 1979–1981 and 1987–1995). We then interact this regulatory form 

variable with indicators of individual refinery compliance costs. These interactions take two 

forms. In the first model, we simply interact ECON with two indicators of low compliance cost, 

LARGE and COMPLEX. We include ECON and these interaction terms in the duration model 

along with the other variables described above.17  

In the second model, we employ a two-stage procedure. First, we take the intermediate 

step of creating a variable SELLER, which represents the expected probability that a refinery is a 

seller of permits, indicating it has relatively low compliance costs. Second, we interact SELLER 

with ECON as in the first model and include it in the main equation. To construct the variable 

                                                 
17 If LARGE or SELLER (see below) are included as separate (not interacted) explanatory variables in the 
estimation, their coefficients are small and statistically insignificant and their inclusion does not qualitatively alter 
the results. 
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SELLER, we use data on lead-trading activity that was generated by the self-reporting 

requirements of the EPA lead-trading program.18 For each refinery, we compute the net 

purchases or sales of lead permits in 1983, the first full year of operation of the trading 

program.19 We then construct a discrete variable indicating whether a refinery was a net seller or 

buyer of permits, and we estimate a probit model of this variable with relevant explanatory 

variables that may affect compliance costs. The results are shown in Table 5; most of the 

variables have the expected sign. Finally, we compute the predicted values from this probit 

equation for the entire sample—this is the variable SELLER that we use in our duration analysis. 

One way to think about the variable SELLER is as a summary measure of relative compliance 

costs across refineries, based on the relationship between the role of the refinery in the larger 

market (i.e., seller versus buyer) and the many variables we have that are indicators of 

compliance costs. This is precisely the type of variable we need to test our regulatory form 

hypothesis.  

3.2. Estimation Results 

As described above, we estimate a duration model of the influence of refinery 

characteristics, market factors, and regulations on the timing of technology adoption using 

                                                 
18 The data were collected confidentially by the U.S. Environmental Protection Agency via Form 40-CFR80.20, 
including information on each refinery’s production of leaded and unleaded gasoline, as well as the number of 
permits bought, sold, and banked each quarter from 1983 through 1987. We have these data for a subset of oil 
companies; more details are given in Kerr and Maré (1998). We have data both on those directly observed and on 
their trading partners. We observe full trading behavior for only 77 refineries, but with their trading partners 
included we have a total of 114 observations. Although we do not observe complete trading for their trading 
partners, we assume that their observed direction of trade is an unbiased proxy for the direction of their total net 
trade. This is not an unreasonable assumption, since most refineries make only one trade per quarter, or around four 
per year. Our fully observed sample accounts for 61% of sales and 49% of purchases by refineries. We observe 48% 
of all trades. One concern we had was that there might be a sample selection problem with regard to the refineries 
for which we observed trading data. However, a Heckman test rejected any sample selection problem. 
19 We chose 1983 rather than another time period to avoid complications from the allowance of permit banking in 
later years. 
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maximum-likelihood estimation.20 The main estimation results are given in Table 6, and Table 7 

provides results for different distributional assumptions for the baseline hazard function. Table 7 

demonstrates the robustness of our results to various distributional assumptions and suggests that 

the use of an exponential baseline hazard function is appropriate in this case.21 The parameter 

estimates changed very little under these more flexible distributional assumptions, including the 

Cox partial-likelihood approach, which leaves the baseline hazard function unspecified. 

Moreover, tests of the exponential distribution relative to more flexible parametric distributions 

in which it is nested do not reject the exponential distribution. Finally, further specification 

checks found that our use of the standard hazard model was appropriate, the functional forms for 

our explanatory variables were adequate, and the model fit the data reasonably well.22 We 

therefore focus our attention henceforth on the results in Table 6, which assumes an 

exponentially distributed baseline hazard.  

The results show a large, statistically significant positive influence of increased 

regulatory stringency on isomerization adoption. The estimate on REGULATE indicates that a 

10% increase in the stringency of gasoline lead regulations was associated with about a 40% 

                                                 
20 Because observations in our dataset represent repeated observations on the same subjects (i.e., individual 
refineries), the usual assumption of independent observations is questionable. We therefore use a robust (Huber-
White) estimate of the variance-covariance matrix for the standard errors of our parameter estimates, which relaxes 
the independence assumption and requires observations to be independent only across refineries. 
21 The robustness also carries over to the model where regulatory form is measured using SELLER rather than 
LARGE and COMPLEX. Unfortunately, the gamma distribution’s flexibility comes at a computational cost, and we 
were not able to achieve convergence of the maximization process with our full model because of nonconcave 
regions of the likelihood function. With a somewhat restricted version of the model that excluded the regulatory 
form variables (see below), the model did converge, and we found that we could not reject the exponential version 
of the model. 
22 Using a test developed by Grambsch and Therneau (1994), we use Schoenfeld residuals from the Cox partial 
likelihood estimates to conduct a joint test of the assumption that the explanatory variables have constant effects 
over time; the test did not reject the assumption ( 2P( (5) 1.74) 0.88χ > = ). We also conducted many visual checks of 
the residuals from the estimation, which had the desired properties (see Lancaster 1990). In addition, we explored 
higher-order functions of our continuous variables (which we found to be small and statistically insignificant), as 
well as their logarithmic transformations (which did not qualitatively alter the results). Finally, we explored whether 
refinery entry or exit had a discernible additional influence on adoption behavior—we found that it did not. 
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increase in probability of new adoptions by refineries. In fact, the magnitude of this effect 

suggests that virtually all isomerization adoption over this period can be explained by the 

increased octane requirements necessitated by the lead regulations on fuel additives and the car 

fleet.  

The form taken by lead regulations—individually binding performance standard or 

market-based regulation—also had a marked influence on the pattern of technology adoption. As 

theory suggests, we found a significant divergence in the adoption behavior of refineries with 

low versus high compliance costs. Namely, the positive differential in the adoption propensity of 

expected permit sellers (i.e., low-cost refineries) relative to expected permit buyers (i.e., high-

cost refineries) was significantly greater under market-based lead regulation compared to under 

individually binding performance standards. High-cost refineries (i.e., small, simple refineries or 

expected permit buyers), in particular, were much less likely to adopt under market-based 

regulation. This is evident in the parameter estimates for variables representing low-cost 

refineries during economic incentive regimes (i.e., ECON*SELLER, ECON*LARGE, and 

ECON*COMPLEX), which are significantly positive, versus the parameter estimates for high-

cost refineries in the same period (i.e., ECON ), which are significantly negative. Overall, our 

results are consistent with the finding that the tradable permit system provided more efficient 

incentives for technology adoption decisions.23 

The other explanatory variables generally had effects consistent with economic 

expectations. Consistent with most empirical research on technology adoption, we found that 

larger refineries had significantly higher adoption propensities. The parameter estimate for 

REFSIZE indicates that a 10% increase from the mean in individual refinery capacity was 

                                                 
23 To check that this is not simply showing that large, complex refineries exhibit some form of duration dependence, 
we tested a range of time breaks from 1983–1990 and found that the likelihood increases monotonically toward the 
break at the end of 1987 and peaks there. This suggests that the change in hazard is indeed in response to the change 
in the form of regulation. 
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associated with a 4% increase in the rate of adoption.24 The influence of a refinery’s company 

size (COSIZE), on the other hand, was found to be negative; a 10% increase in company-wide 

capacity was associated with a 6% decrease in the rate of adoption. As we described above, this 

result is consistent with the tendency for refineries in larger companies to have better access to 

octane-supplementing substitutes for isomerization from affiliated refineries. These factors 

presumably offset any positive influence that company size might have had on adoption. 

Similarly, we found that an increased concentration of other refineries in the same geographic 

region (DENSITY) had a negative effect on isomerization adoption; a 10% increase in the 

number of refineries in a region was associated with a 16% decrease in the rate of adoption. As 

with company size, this result suggests that refineries in close proximity to other refineries have 

greater access to isomerization substitutes, and that any positive geographic spillovers regarding 

learning about isomerization were more than offset. 

We also found that more technologically complex refineries had substantially higher 

adoption propensities, which we would expect because the variable we used to measure 

complexity (i.e., catalytic reforming capability) has a direct effect on the cost of adopting 

isomerization. We estimate that complex refineries were six times more likely to adopt than 

simple refineries whenever the performance standards were binding, with this relative likelihood 

increasing dramatically when flexible regulations were in force.  

Although our direct measure of how the cost of isomerization equipment evolved over 

time (COST) was estimated to have a negative relationship with adoption, the estimated 

coefficient was not statistically significant, even though it was moderately large. The point 

estimate is that a 10% reduction in the cost of isomerization was associated with about a 23% 

increase in the rate of adoption, although a 95% confidence interval on this estimate does not 

                                                 
24 Note that this hazard rate increases for large refineries when flexible regulations are in force, as indicated by the 
coefficient on ECON*LARGE. 
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exclude zero. Finally, our estimate of the influence of the already-installed stock of isomerization 

(STOCK) demonstrates a negative effect on adoption. A 10% increase in the existing stock of 

isomerization capacity was associated with an 8% reduction in the rate of adoption. As discussed 

earlier, this negative “stock effect” of installed capacity on adoption propensity is consistent with 

the prediction that existing investment would decrease the value of further investment. This 

effect seems to have dominated any positive influence of learning from previous installation of 

the technology.  

4. Conclusions 

Theory has long contended that economic instruments for environmental protection 

would lead to the cost-effective adoption of new technologies, thus enhancing dynamic 

efficiency. Our empirical evidence supports this hypothesis. With a natural experiment involving 

a technology intended almost exclusively to eliminate a pollutant, and a detailed panel of 378 

refineries over 25 years, we find evidence of an adoption response to the stringency and form of 

regulation in an expected manner. We found a large positive response of lead-reducing 

technology adoption to increased regulatory stringency, as well as a divergence in the behavior 

of refineries with different compliance cost characteristics during periods of flexible market-

based lead regulation. The relative adoption propensity of refineries with low versus high 

compliance costs was significantly greater under market-based lead regulations than under a 

nontradable performance standard. Where environmentally appropriate, this suggests that more 

flexible regulation can achieve environmental goals while providing incentives for more efficient 

technology diffusion.  

Consistent with previous literature, we also find that larger refineries adopt sooner, which 

is typically attributed to scale economies, lower investment hurdle rates, management quality, or 

participation in research and development activities. On the other hand, refineries that are part of 

larger companies or in regions with many other refineries have lower adoption propensities, 
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likely because the greater flexibility in input and output choice makes adoption less profitable. 

Higher levels of previously installed technology have a dampening effect on adoption, as do 

higher technology costs, although the latter effect was not statistically significant—both of these 

factors tend to lower the profitability of adoption. Finally, we find no evidence of an epidemic or 

learning effect. Once we have controlled for changes in costs, technology stocks, and other 

factors, an exponential specification with a constant baseline hazard fits as well as any other. 

This suggests that information dissemination was not a significant issue for these firms.  
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Figure 1. Cumulative Adoption of Isomerization 
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Figure 2. Cost of Isomerization Equipment 
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Figure 3. Geographic Density of Refineries (average number by state)  
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Table 1. Federal Standards for Lead Phasedown 

Deadline Standard Exceptions 
July 4, 1974 Gasoline retailers must offer unleaded gasoline 

and design fuel nozzles so that cars with 
catalytic converters can accept only unleaded 
gasoline. 

Small retailers that sell less than 
200,000 gallons annually and have 
fewer than six retail outlets are exempt. 

July 4, 1974 Car manufacturers must design tank filler inlets 
to accept only unleaded gasoline and must apply 
“Unleaded Gasoline Only” labels. 

The standard applies only to cars with 
catalytic converters, which became 
mandatory for model year 1975. 

October 1, 1979 Refineries must not produce gasoline averaging 
more than 0.5 glpg per quarter, pooled (leaded 
and unleaded). 

The standard is relaxed to 0.8 glpg until 
October 1, 1980, if a refinery increases 
unleaded gasoline production by 6% 
over prior-year quarter. Small refineries 
are subject to a less stringent standard. 
See Table 2. 

November 1, 1982 Refineries must meet a leaded gas standard of 
1.1. Interrefinery averaging of lead rights is 
permitted among large refineries and among 
small refineries, but not between refineries of 
different sizes. 

Very small refineries are subject to a 
less stringent pooled standard. See 
Table 2. 

July 1, 1983 Very small refineries are also subject to a 
standard of 1.1 (leaded). Averaging is permitted 
among all refineries. 

— 

January 1, 1985 During 1985 only, refineries are permitted to 
“bank” excess lead rights for use in a subsequent 
quarter. 

— 

July 1, 1985 The standard is reduced to 0.5 (leaded). — 
January 1, 1986 The standard is reduced to 0.1 (leaded). — 
January 1, 1988 Interrefinery averaging and withdrawal of 

banked lead usage rights are no longer 
permitted. Each refinery must comply with the 
0.1 standard.  

— 

January 1, 1996 Lead additives in motor vehicle gasoline are 
prohibited. 

— 

Source: United States Code of Federal Regulations, 1996. 
Note: glpg = grams of lead per gallon. 
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Table 2. Small Refinery Standards for Lead Phasedown 

Deadline Standard (glpg) Gasoline 
production in 
prior year (bpd) 

Definition of small refinery 

October 1, 1979 2.65 (pooled) Up to 5,000 50,000 bpd or less crude oil 
throughput capacity and owned by a 
company with 137,500 bpd or less 
total capacity 

 2.15 (pooled) 5,001 to 10,000  
 1.65 (pooled) 10,001 to 15,000  
 1.30 (pooled) 15,001 to 20,000  
 0.80 (pooled) 20,001 and over  
November 1, 1982 2.65 (pooled) Up to 5,000 10,000 bpd or less gasoline 

production and owned by a company 
with 70,000 bpd or less total gasoline 
production 

 2.15 (pooled) 5,001 to 10,000  
July 1, 1983 and after Same as other refineries — — 

Source: United States Code of Federal Regulations, 1996. 
Note: glpg = grams of lead per gallon; bpd = barrels per day. 

 

Table 3. Definition of Geographical Regions 

Region States 
East Coast  CT, DE, FL, GA, MA, MD, ME, NC, 

NJ, NH, NY, PA, RI, SC, VA, VT, WV 
Midwest IL, IN, KY, MI, OH, TN 
North Central  MN, ND, SD, WI 
Prairie  IA, KS, MO, NE, OK 
Texas Inland  NM,TX 
Texas Gulf  TX 
South  AL, AR, LA, MS 
Rocky Mountains  CO, ID, MT, UT, WY 
West Coast  AK, AZ, CA, HI, NV, OR, WA 
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Table 4. Variable Definitions and Descriptive Statistics 

Variable Name Mean Standard 
deviation 

Minimum Maximum 

Dependent Variable       
Isomerization indicator — 0.09 0.28 0 1 
      
Refinery Characteristics      
Refinery size (kb/cd) REFSIZE 67.11 85.75 0.05 640 
Company size (kb/cd) COSIZE 356.27 440.52 0.05 1841 
Large refinery indicator LARGE 0.40 0.49 0 1 
Catalytic reforming indicator COMPLEX 0.71 0.45 0 1 
      
Regulatory Variables      
Leaded gas standard (glpg) L 1.71 1.31 0.10 3.00 
Percent share of leaded gasoline 
consumption in region 

S 0.53 0.32 0 0.96 

Regulatory stringency REGULATE 2.16 1.45 0.15 4.09 
Economic instrument indicator ECON 0.56 0.50 0 1 
Predicted value from seller probit SELLER 0.47 0.24 0.02 0.95 
      
Market Variables      
National isomerization capacity (kb/sd) STOCK 147.71 142.90 0.00 406.95 
Number of refineries in region DENSITY 31.24 12.41 4 61 
Discount rate  R 0.04 0.02 0.00 0.09 
Cost of isomerization ($1995/b/sd) COST 608.16 48.60 554.22 767.11 
Annualized cost of isomerization 
($1995/b/sd) 

RCOST 26.16 12.54 0.62 55.00 

Rate of change in cost of isomerization DCOSTDT -0.01 0.03 -0.12 0.01 

Note: Descriptive statistics are for untransformed data; see the text for a description of how we transformed the data 
for estimation. kb/cd = thousand barrels of capacity per calendar day; kb/sd =thousand barrels of capacity per stream 
day; g/lg = grams per leaded gallon. The number of observations for the full sample is N=5647. 
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Table 5. Influence of Refinery Characteristics on Lead Permit Selling 

Variable Probit model results 
LARGE 0.69* 

(0.33) 
COMPLEX 1.42* 

(0.65) 
REFSIZE -0.03* 

(0.01) 
COSIZE 0.01 

(0.01) 
DENSITY 0.07* 

(0.03) 
Constant -1.38** 

(0.62) 
Log likelihood -69** 
Observations 114 

Note: Asterisks denote statistical significance at various levels: * = 95%, ** = 99%. Dependent variable indicates 
whether the refinery was observed to be a net seller of lead permits in 1983, the first year of the lead-trading system. 
Variables are described in more detail in Table 4 and in the text. Estimation method is probit maximum likelihood. 
Robust standard errors are reported in parentheses. 
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Table 6. Technology Adoption Response to Regulatory and Market Variables 

 Model 1 
(with indicators of low cost) 

Model 2 
(with probability of being a 

SELLER) 
REGULATE 0.33** 

(0.11) 
0.35** 

(0.10) 
ECON -14.02** 

(0.73) 
-3.39** 
(1.33) 

ECON*LARGE 1.83* 
( 0.78) 

— 

ECON*COMPLEX 11.67** 
(1.01) 

— 

ECON*SELLER — 4.25* 
(2.08) 

STOCK -0.08** 
(0.03) 

-0.09** 
(0.03) 

COST -0.26 
(0.56) 

-0.29 
(0.53) 

REFSIZE 0.04** 
(0.01) 

0.05** 
(0.01) 

COSIZE -0.06** 
(0.02) 

-0.07** 
(0.02) 

COMPLEX 1.95** 
(0.75) 

1.77* 
(0.76) 

DENSITY -0.16** 
(0.04) 

-0.19** 
(0.04) 

Constant -7.97** 
(0.91) 

-8.10** 
(0.90) 

Log likelihood -109** -111** 
Observations 5,141 5,141 
Refineries 378 378 

Note: Asterisks denote statistical significance at various levels: * = 95%, ** = 99%. Dependent variable indicates 
whether refinery has adopted isomerization capacity; a total of 63 refineries had adopted isomerization within the 
sample time frame. Variables are described in more detail in Table 4 and in the text. Estimation method is maximum 
likelihood. Robust standard errors are reported in parentheses. Percentage effects of a unit change in a variable on 
the hazard rate are equal to exp(β)–1, where β is the parameter estimate. Given our normalization of the data, a unit 
change in a continuous variable is equal to about a 10% change from its mean, or a 10% increase in the level of 
REGULATE.  
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Table 7. Robustness of Results to Distributional Assumptions 

Variable Exponential Weibull Gompertz Cox partial 
likelihood 

REGULATE 0.33** 
(0.11) 

0.33** 
(0.11) 

0.31** 
(0.13) 

0.31** 
(0.10) 

ECON -14.02 
(0.73) 

-14.34 
(0.72) 

-14.07 
(0.72) 

— 

ECON*LARGE 1.83* 
( 0.78) 

1.83* 
( 0.78) 

-1.83* 
( 0.78) 

— 

ECON*COMPLEX 11.67** 
(1.01) 

11.99** 
(1.01) 

-11.71** 
(1.00) 

— 

STOCK -0.08** 
(0.03) 

-0.08** 
(0.03) 

-0.08** 
(0.03) 

— 

COST -0.26 
(0.56) 

-0.26 
(0.56) 

-0.25 
(0.56) 

— 

REFSIZE 0.04** 
(0.01) 

0.04** 
(0.01) 

0.04** 
(0.01) 

0.05** 
(0.01) 

COSIZE -0.06** 
(0.02) 

-0.06** 
(0.02) 

-0.06** 
(0.02) 

-0.06** 
(0.02) 

COMPLEX 1.95** 
(0.75) 

1.95** 
(0.77) 

1.88** 
(0.76) 

2.33** 
(0.75) 

DENSITY -0.16** 
(0.04) 

-0.16** 
(0.04) 

-0.16** 
(0.04) 

-0.17** 
(0.04) 

Constant -7.97** 
(0.91) 

-7.96** 
(0.92) 

-8.02** 
(0.93) 

— 

Duration dependence 
parameter 

— 0.99 
(0.22) 

0.02 
(0.06) 

— 

Log Likelihood -109** -109** -109** -290** 
No. Observations 5141 5141 5141 5141 
No. Refineries 378 378 378 378 

Note: Asterisks denote statistical significance at various levels: * = 95%, ** = 99%. Dependent variable indicates 
whether refinery has adopted isomerization capacity. Variables are described in more detail in Table 4 and in the 
text. Estimation method is maximum likelihood. Robust standard errors are reported in parentheses. When the 
duration dependence parameter for the Weibull (Gompertz) distribution is insignificantly different from 1.0 (0.0), 
the exponential model is not rejected. 
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