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Abstract 

 

Nonresponse is a pervasive and persistent problem in survey data. This research reviews several 

methods for imputing missing values. A special emphasis is placed on the multiple imputation 

methods as a more generalizable advanced remedy to missingness. An empirical application of 

these methods, along with a regression or conditional mean imputation, is provided. Contingent 

upon certain properties of data, inference based guidance to the choice and implementation of 

these methods is provided. 

 

 

Introduction 

 

Problems of survey nonresponse are not uncommon in social science. Censuses and surveys 

typically suffer from non-response to one or more questions due to sensitivity to disclosure of 

certain types of information, such as income; recall problems and bias; insufficient time to 

complete survey; technical limitations of measurement devices; attrition due to moving or death 

of some panel members in longitudinal surveys, etc. Any of these problems results in missing 

data points or even missing variables altogether (Rubin, 1987). If ignored the missingness creates 

considerable problems for field researchers as most data analysis procedures are designed for 

complete data matrices (Schafer & Graham, 2002). Inadequate treatment of missingness with ad 

hoc methods, such as unconditional mean or regression imputation, may deflate or inflate the 

correlations among variable, and in general increase the rates of Type I error over the nominal 

levels by ignoring the increased uncertainty due imputation (Schafer and Olsen, 1998). 

Missingness due to factors beyond the researcher’s control is inevitable in experimental and 

some survey data, where the experiment or survey designer has maximum control over data 

measurement and recording. Schenker et al. (2011) discuss the considerable proportion of 

missingness in dual-energy x-ray absorptiometry (DXA) data in the National Health and 

Nutrition Examination Survey (NHANES) data, even though the physical measurements are 

carried out by trained professionals in Mobile Examination Centers. Survey data are also subject 

to missingness due to recording mistakes.  

Data missingness can be characterized by the pattern and the mechanism. The missingness 

patterns can be combined in uniform, monotone and random groups (Little & Rubin, 2002, 

Schafer & Graham, 2002). The mechanisms giving rise to missingness are commonly referred to 

as Missing Completely at Random (MCAR), Missing at Random (MAR), and Not Missing at 

Random (NMAR). We define and review these concepts in the Theoretical Setup section below. 

Subject to the patterns and mechanisms of missingness, different imputation methods were 

pioneered by a body of empirical literature (Schenker et al., 2011, Rubin & Schenker, 1991, 

Castillo, et al., 2010, Schafer & Graham, 2002). These studies demonstrate advantages and 

disadvantages of different remedies to missingness using simulated or observational data. 

In the literature the performance of different imputation methods are demonstrated using 

either simulated or observational data. There are some characteristics of both simulated and 

observational data that are noteworthy. In the case of simulated data, the data generation 
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mechanism is known to the researcher by definition. The number of data sets, as the sample sizes 

and the missingness pattern are a part of the design as well. The main advantage of using 

simulated data is that the validation of imputed values is well defined and readily measured: 

actual parameter values, means, variances and covariances are known and can be compared 

against. The disadvantage is that simulated data are not necessarily representative of practical 

cases, where the missingness occurs and needs to be addressed and effectively remedied. Schafer 

& Graham (2002), for example, use 1000 simulated datasets of 50 observations each, to 

demonstrate the performance of the traditional (case deletion, conditional and unconditional 

mean and distribution) and ML estimation and multiple imputation (MI) methods in MCAR, 

MAR and NMAR scenarios. They compare the means, variances and covariances of variables in 

the imputed dataset against actual counterparts used to generate the data. Rubin & Schenker 

(1991) use MI to reconcile occupation category codes in 1970 and 1980 censuses. They 

demonstrate that the confidence intervals around single imputation are too narrow; therefore the 

confidence coverages are lower than their nominal level. 

With observational data, on the other hand, the data generation mechanism is largely 

unknown. Therefore all the parametric inferences are subject to correct model specification 

(Schenker et al., 2011). There is typically one dataset being used for imputing missing values. 

The missingness patterns can be haphazard, thereby reducing the generality and applicability of 

the conclusions to other data, and the assumptions about the missingness mechanism are 

assumptions at best. The sample size restrictions and availability of covariates may or may not 

permit the use of the recommended imputation methods, and the validation methods are limited 

as there is no way of knowing their actual values to compare the imputed values against. Castillo 

et al. (2010) impute missing price variable by merging country level data sets, and demonstrate 

the superiority of Country-Product-Dummy model and the Theil-Goldberger mixed estimator to 

marginal mean imputation. Schenker et al. (2011) impute missing data in 32 different DXA 

variables in NHANES survey dataset; they perform multiple and single imputation, and suggest 

that imputation helps to correct biases and increase the precision of estimates as well. 

Kyureghian et al. (2011) go a step further and use multiple observational data sets to create a 

missingness pattern and mechanism to conduct analysis similar to ones using simulated data. 

They impute prices to ACNielsen (now the Nielsen) survey data (2,101 datasets in total) using 

several single and multiple imputation methods, and report the averages of the bias and coverage 

(percentage of times the confidence interval around the imputed values contains the true value) 

of each imputation method over the 2,101 datasets. 

This study seeks to build on the research by Kyureghian et al. (2011) and proceeds by (1) 

placing more emphasis on the multiple imputation methods as more efficient and generalizable 

(Schafer and Olsen, 1998); (2) interpreting the performance of the imputation methods from the 

points of view of bias and distribution rather than bias and coverage, which are more intuitively 

associated with the premises of underlying imputation methods; and (3) associate the 

performance of the methods to the properties of the data sets such as the price distribution (mean, 

skewness and kurtosis) and sample size. We discuss and implement several multiple imputation 

methods by drawing on the advantages of both methods with simulated and observational data 

sets as much as possible. Initiated as a funded research to impute price variable to NHANES 

dietary recall data, this research identified and utilized a comparable data set, the Nielsen 

HomeScan data sets, to model the price for ingredients that would eventually be used to make up 

recipes or USDA food codes that the NHANES participants reported consumed. The inherent 
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richness of the HomeScan and NHANES datasets made it possible to have 2,101 datasets (one 

per each food ingredient), with an average number of approximately 20,000 observations in each 

dataset, ranging from 75 to almost half a million. We control the missingness mechanism and 

pattern by randomly deleting 20% and 50% of the price variable, thereby making the mechanism 

MCAR and the pattern uniform. We use Markov Chain Monte Carlo (MCMC), regression, 

propensity score matching and expectation maximization (EM) multiple imputation methods to 

impute the missing prices. The single regression or conditional mean imputation results are 

provided as benchmark due to its performance demonstrated by Kyureghian et al., (2011). The 

validation is performed by mean absolute percent errors (MAPE) and two-sample Kolmogorov-

Smirnov asymptotic tests for differences in distributions, for each method in 2,101 datasets. 

 

 

Theoretical Setup 

 

When faced with a missing value problem, practitioners need to address the missingness to force 

the dataset into a rectangular shape in order to use regular analytical methods. The choice 

between case deletion and imputation depends on the pattern and the mechanism of the 

missingness in the data (Little & Rubin, 2002). The former essentially describes which data are 

available and which are missing and group them by the patterns made by the missing data. The 

latter describes the relationship between the values in the data set and the event of missingness. 

To illustrate these concepts, we define an indicator matrix with the same dimensions as the 

data set the elements of which take a value of 1 if the particular cell is observed, and 0 if the 

observation is missing. The matrix R that describes the probabilities of missingness, is a set of 

random variables with a joint probability distribution ( |    ), where   is an unknown 

parameter (Schafer, 1997). We also denote the data set as Ycom = (Yobs, Ymis) = yij, where i = 

1,…,n, j = 1,…,k. By iid assumption, the probability density function of the complete data set is 

 

 ( | )  ∏  (  | )
 
      

 

Using the notation above the missingness pattern can be described as univariate, monotone or 

arbitrary. Univariate missingness occurs when missingness is confined to a single variable such 

that one of the k variables was observed for only 1 < n1 < n rows. Multivariate or monotone 

missingness occurs when a set of variables has missing values on a monotonically increasing 

number of rows. That is, the k variables in Y can ordered in such a way that if an observation is 

missing in Yj, then it is missing in the subsequent Yj+1, …, Yk variables as well (Schafer & 

Graham, 2002).  A more general pattern of missingness is when data are missing in an arbitrary 

pattern, e.g. survey non-response. 

The mechanisms that give rise to missingness are missing completely at random (MCAR), 

missing at random (MAR), and not missing at random (NMAR). The conditional distribution of 

R given Y describes the underlying mechanism that gives rise to the missing data. If  
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 ( |      )   ( |      ) 

  

then the data are said to be MAR. This means that the probability that an observation is missing 

depend on other variables’ values, but not on the missing datum value. The assumption that the 

missingness is not conditioned by the data, both missing and observed, is a strong assumption. In 

this case the data are said to be MCAR. 

 

 ( |      )   ( | ) 

 

In the case of NMAR, the probability of missingness depends on both observed and missing 

values. To demonstrate the concept of the missing data mechanisms, consider a dataset that has 

variables of age and gender. Suppose age has some missing observations. If the probability of the 

outcome of ‘missing’ of a certain age observation is independent of the values of age and gender 

of that observation, then the missingness mechanism is MCAR. If the probability of the outcome 

of ‘missing’ of a certain age observation is independent of the values of age, but is not 

independent of the values of gender for that observation, then the missingness mechanism is 

MAR. That is, the probability of not revealing age is higher if the respondent is a female, for 

example, but the age of that particular female does not condition the probability of not revealing 

age. 

A last assumption we need to make is the distinctness of parameters   and  . This means that 

the joint parameter space of (   ) is the product of parameter space of   and parameter space of 

  (Little & Rubin, 2002; Schafer, 1997). If MAR and distinctness hold, then missing data 

mechanism can be ignored when making likelihood based inferences about   (Little & Rubin, 

2002). 

 

 

Missing Data Imputation Methods 

 

Historically the missingness problems in incomplete data sets were addressed using ad hoc 

methods, such as case deletion or mean imputation. Case deletion, which implies that the 

observations with missing data points be removed from analysis altogether, has been very 

popular for its simplicity and lack of methods and computing power to handle missingness 

otherwise. This is the default option on many statistical programs (Schafer & Graham, 2002). 

The loss of information due to discarding observations has two aspects: loss of precision and 

bias. Although this method can be appropriate when the loss is minimal, usually under very 

stringent conditions (small proportion of missingness, MCAR and uniform pattern of 

missingness), Schafer & Graham (2002) argue that it is still inefficient. 

Unconditional or conditional mean imputations imply replacing the missing values of a 

variable by the unconditional or conditional (regression) mean value of observed or non-missing 

observations for that variable. Once very popular because of computational simplicity, it is not a 
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desirable course of action (Kyureghian et al., 2011). Even if it yields unbiased estimates (under 

MCAR), the other distributional properties are distorted: sample variance of the filled in data set 

underestimates the variance as a result of imputing missing values at the mean of the distribution. 

The conditional mean imputation method fits a regression model for the cases with non-missing 

observations. Then the estimated equation with the parameter estimates and known or non-

missing covariates is used to predict the missing values of the dependent variable. Schafer & 

Graham (2002) do not recommend this method for analyses of covariances and correlations, 

because it overstates the relationship between the dependent variable and independent variables 

by imputing values on the regression line. 

 

Multiple Imputation Methods 

The above mentioned methods fill in the missing data gaps with single values. Multiple 

imputation methods, on the other hand, produce several values for each missing datum and imply 

uncertainty associated with filling in a value that was previously missing. Therefore, 

incorporating a random component in each imputed value rules out the uniqueness of the 

complete data set. Hence a vector of imputed values, rather than a single imputed value, is 

generated for each missing datum. 

To generate multiple imputations by a parametric Bayesian model, following the notation in 

Schafer (1999), suppose   (         ) with    and    number of observed and missing 

observations, respectively.   follows a parametric model  ( | ), where   has a prior 

distribution and the ignorability is satisfied. Then  

 

 (    |    )  ∫ (    |      ) ( |    )   

 

An imputation for      can be created by first simulating a random draw of the unknown 

parameters from their observed-data posterior 

 

    ( |    ), 

 

followed by a random draw of the missing values from their conditional predictive distribution  

 

    
   (    |      

 ) 

 

Since the observed data posterior is not typically easily simulated (Schafer, 1999), techniques 

such as Markov Chain Monte Carlo (MCMC) are utilized to create pseudorandom draws from 

probability distributions. The limiting marginal distribution of this sequence of random draws is 

the target distribution. 

Multiple imputation method makes a use of the posterior distribution of the parameters to 

construct new parameters to calculate new fitted dependent variables. While it is desirable for the 
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single imputation to impute from conditional distribution  (    |      ̂) where  ̂ is an estimate 

derived from observed data, multiple estimation first simulates m independent        , then 

generating a m-vector of     
  from  (    |       ), for t = 1, …, m (Schafer & Graham, 2002). 

Let  ̂  and     represent the estimated parameter and variance in j
th

 imputation. Rubin (1987) 

suggests combining estimates by averaging the vector of m estimates created by multiple 

imputation: 

 ̅     ∑ ̂ 

 

   

 

The variance for  ̅ has two parts: within-imputation variance, denoted as  ̅: 

 ̅     ∑  

 

   

 

and between-imputation variance: 

  (   )  ∑( ̂   ̅)
 

 

   

 

The total variance is calculated as     ̅  (     ) . This estimator is distributed 

approximately as  

 ̅   

 
 
 

            (   ) [  
 ̅

(     ) 
]

 

 

 

MI Methods 

The Expectation Maximization (EM) algorithm capitalizes on the relationship between the 

missing values and parameters of a data model (Schafer, 1997; Schafer and Olsen, 1998). This 

two stem algorithm first predicts the missing values by maximizing the log likelihood function 

using initial assumed parameter values. In the second step it calculates the parameter estimates 

using both observed and imputed data from the first step, which are subsequently used in the first 

step to get new predictions for the missing values, and so forth. The resulting sequence of 

parameters converges to the maximum likelihood estimates. 

Another iterative process, data augmentation (DA), that is used in Markov Chain Monte 

Carlo multiple imputation holds strong affinity to EM in that it too starts with an assumed 

parameter value to produce predictions for the missing data points. In the second step it uses both 

observed and imputed data to randomly draw new parameters from Bayesian posterior 

distribution which are fed into the first step of missing data imputation. This process creates a 

Markov chain of simulated data and parameters that eventually converge in distribution to the 

target distribution. The important difference between these two algorithms is that the in the 

convergence under EM parameters no longer change, but in the convergence under DA the 

distribution of parameters no longer changes (Schafer and Olsen, 1998). 
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Multiple regression imputation for a univariate normal linear regression model is performed 

first generating new stochastic parameters,           , from the posterior predictive distribution 

of the parameter. By Bayesian calculations, 

  
  

 ̂ 
 (    )

 
  and     ̂    , -

    , 

where        
 ,   is the number of non-missing values,    is the number of parameters to be 

estimated,  ̂  and  ̂ 
  are the parameter estimates based on the non-missing values,   ,   -  , 

and Z is a standard normal random variable. The missing values are subsequently filled in as 

              (Rubin, 1997). 

The propensity score method is another multiple imputation technique for monotone missing 

data by assigning each missing value to a particular group conditional to observed covariates. 

This method creates an indicator variable Rj that takes values of 0 if the j
th

 observation is 

missing, and 1 if it is observed. Then it fits a logistic regression where the dependent variable is 

the probability that the j
th

 observation is missing, conditional on a set of covariates with all 

observed values. Based on the predicted probabilities, the observations are grouped into groups. 

Approximate Bayesian Bootstrap is used to first draw, with replacement, a new set of   values 

from     , and then randomly draw   values from this new set to fill in the missing values in the 

group. This is repeated multiple times and the statistical averages are reported as the value of the 

missing datum. 

 

 

Empirical Application 

 

National Health and Nutrition Examination Survey (NHANES) is a database designed to assess 

the health and nutritional status of adults and children, and associate it with risk factors and 

prevalence of major diseases related to dietary intake. The dietary intake data are based on 24-

hour recall of foods and quantities consumed. The dietary intake in NHANES 2001-2002 is 

recorded in Food and Nutrient Database for Dietary Studies (FNDDS), USDA, food codes. The 

Center for Nutrition Promotion and Policy (CNPP) broke down these food codes into ingredients 

by recipes provided by FNDDS. CNPP matched the ingredients with the foods commercially 

purchased, and therefore with observed prices, from a reference dataset. The reference dataset 

was identified to be The Nielsen Company HomeScan data. For example, a respondent in 

NHANES declares consuming beef stew at home. Since one cannot buy beef stew from a store, 

therefore there is no commercial price for beef stew. But one can buy the ingredients of beef 

stew and cook at home. Suppose FNDDS recipe calls for beef, carrots and onions for preparing 

beef stew. CNPP matched the ingredients in the recipes: beef, carrots and onions, to UPC’s in the 

Nielsen, converted different measurements to a uniform measurement (grams), and provided 

weights for each ingredient needed to make up 100 grams of each recipe. 

The Nielsen Company (formerly ACNielsen) recruits a representative panel of households 

from 48 contiguous states based on demographic characteristics. 8216 and 8685 households 

participated in the panel in 2001 and 2002, respectively. Each participating household is asked to 

scan/record each purchase made throughout each week. The households record the quantities 

purchased and amount paid for the purchase, and whether it was purchased at a regular or 



8 
 

discount price or a coupon was used. Observations from this data set for the UPC’s identified by 

CNPP are used to model price as a function of quantity, poverty-income ratio (PIR, a variation of 

per capita income), region of residence, year and quarter of purchase, outlet status, and if the 

price was promotional or regular. Imputation techniques will be used to eventually merge the 

two datasets and impute the missing price variable for NHANES by combining the estimated 

ingredient prices by recipe weights. This study is a natural extension to the groundwork laid by 

Kyureghian et al. (2011), for analyzing the choice of the adequate imputation method to impute 

prices to NHANES dietary intake data. 

 

Variables 

The choice of variables was guided first and foremost the desire to obtain maximum possible 

explanatory power (Schafer, 1997, pp. 138-143; Rubin & Schenker, 1991). Although possible 

collinearity issues may arise for the analyst models using NHANES imputed price variable in the 

case of single conditional mean imputation, we suppressed this issue here and do not perform 

sensitivity analysis for different model specifications. 

The price variable is expressed in cents per 100g. Since this variable takes only strictly 

positive values, it is typically right skewed. To conform to normality a log transformation is used 

in the models, and transformed back after the imputation (Schafer & Graham, 2002). 

Incidentally, this will also guarantee that the imputed values are strictly positive. Quantities are 

expressed in 100g units. PIR’s are calculated as the midpoint of categorical Income variable 

divided by government issued poverty levels by household size:  

    

                       
 

              (                )
 

 

The region of residence is defined by the four census regions: East, Central, South, and West. 

The fourth quarter of the year and the West region are left out of the models as the base quarter 

and region. Store types provided in the data are grouped as (i) grocery, (ii) drug, (iii) mass 

merchandiser, (iv) supercenters, (v) club, (vi) convenience and (vii) all other. We combined them 

in Grocery (base), Club (includes (iii), (iv), and (v)), and Other (includes the rest).  

The ingredients with sample size of less than 75
1
 observations were not used in this study. 

There were several individual transactions where the price for an item was recorded as zero. As 

mentioned above, in these cases the items were purchased as a part of a deal. We did not attempt 

to examine these instances on a case-by-case basis due to overwhelming sample size, the 

insignificance of the proportions of zero price transactions and the potential complexity of 

promotional deals. Therefore individual transactions with zero prices were discarded. There were 

42,114,592 observations for 2,101 ingredients in the Nielsen dataset. The sample sizes vary from 

75 to 472,204 with an average sample size of 20,045. 

 

                                                           
1
 The Nielsen Company recommends this threshold for calculating average prices. We take the number 75 at face 

value. In the initial analysis these ingredients were assigned the overall mean price value for the particular 

ingredient. 
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Table 1. Summary Statistics of the Variables in the Model 

 

Variable 

 

 

Description 

 

Mean 

Standard 

Deviation 

 

Median 

 

Minimum 

 

Maximum 

Price 

 

Cents per 100g 49.49 48.48 41.62 0.03 43,638.20 

Quantity 

 

Quantity in 100g 8.52 13.57 4.80 0.01 7,838.21 

PIR 

 

Poverty Income Ratio 4.08 2.47 3.66 0.09 14.55 

Promo Deal 

 

Equals to 1 if deal, and 0 o/w 0.40 0.49 0 0 1 

Club Equals to 1 if purchased from 

Club, and 0 o/w 

0.11 0.31 0 0 1 

Other Equals to 1 if purchased from 

Other, and 0 o/w 

0.05 0.22 0 0 1 

Central Equals to 1 if purchase is in the 

Central region, and 0 o/w 

0.20 0.40 0 0 1 

East Equals to 1 if purchase is in the 

East region, and 0 o/w 

0.22 0.41 0 0 1 

South Equals to 1 if purchase is in the 

South region, and 0 o/w 

0.37 0.48 0 0 1 

Year2002 Equals to 1 if purchase is in 

2002, and 0 o/w 

0.51 0.50 1 0 1 

Quarter1 Equals to 1 if purchase is in 

quarter 1, and 0 o/w 

0.26 0.44 0 0 1 

Quarter2 Equals to 1 if purchase is in 

quarter 2, and 0 o/w 

0.25 0.43 0 0 1 

Quarter3 Equals to 1 if purchase is in 

quarter 3, and 0 o/w 

0.24 0.43 0 0 1 

 

 

Imputation 

To create controlled missingness in our data, subsamples of 20% and 50% for each ingredient 

were selected and the values of the price variable were removed from those observations. Since 

these subsamples were selected purely randomly and the selection did not depend either on the 

values of other variables or on the values of the removed prices for corresponding observations, 

the missingness mechanism of MCAR was literally imposed on the data. Imposing missingness 

on one variable – price, resulted in the Univariate pattern of missingness. 

We illustrate the performance of Marcov Chain Monte Carlo (MC), Regression (Reg), 

Propensity Score (Prop), Expectation Maximization (EM) MI methods. Conditional mean (CM) 

imputation results are used as benchmarks (Kyureghian et al., 2011). The appropriate numbers of 

imputations for each missingness scenario were determined by the efficiency of   imputations 

relative to one based on infinite number of imputations, expressed as 

(  
 

 
)
  

 

where   is the rate of missingness (Rubin, 1987). We committed our models to 95% efficiency, 

rendering     and      imputations for our 20% and 50% missingness scenarios, 
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respectively. Since the choice of the default imputation number in the software used is 5 

imputations, we settled with 5 and 10 imputations for the 20% and 50% missingness scenarios, 

respectively. 

The price variable is naturally skewed to the right, which is at odds with the normality 

assumption for the multiple imputations. To make this normality assumption plausible, we used 

the natural logarithmic transformation of the price at the imputation stage, which was 

transformed back to the original scale afterwards. Schafer and Olsen (1998) maintain the 

robustness of MI to mild departures from normality.  

 

 

Results 

 

For each imputation method-missingness proportion combination two types of validation 

methods were used. The first method deals with measuring the goodness or distance of each 

imputed datum from the true or observed value of that datum. To measure this we used the mean 

percent absolute error (MAPE). The second method deals with the goodness of imputation 

measured by matching the distributions of the missing and imputed values. Summary statistics, 

graphical and regression analyses for the price, MAPE and distribution match are used in each 

case.  

The summary statistics of the price variables of the full sample without missing observations 

as well as those imputed by different methods are presented in Table 2. The price imputations by 

multiple imputation exhibited erratic behavior at the extreme values of the price distribution. To 

rule out unrealistic or nonsensical imputed values we imposed a price maximum value of twice 

the observed maximum price. Since the maximum of the observed price was $436.38 per 100 g, 

the imputed prices above $872.76 per 100g were truncated at that value. As can be seen from the 

results in Table 2, MC and EM were the only two methods affected by this restriction. 

With the exception of CM, the imputation methods do a remarkably good job at preserving 

the mean of the price distribution. CM systematically undershoots the mean value, although it 

demonstrates the lowest standard deviation among the methods. While very well behaved at the 

center of the distribution, MC and EM have the highest standard deviations even after truncating 

at the maximum value.  

Although all the methods seem to undershoot the means and overshoot the medians in both 

missingness scenarios, the means and medians migrated closer to each other in 50% missingness 

scenario. The standard deviations for MC and EM have increased, while standard deviations for 

other methods have decreased in 50% missingness scenario. CM, by definition overstates the 

correlations between variables by imputing values on the regression line. Hence the 

unreasonably low standard deviation in CM imputed prices. 

In general, the distributions of prices in two missingness scenarios across all the imputation 

methods appear to be remarkably similar, which, in part, might be attributed to MCAR 

mechanism of missingness. The graphical display of the distribution of imputed prices vs. actual 

price for the subsamples with missing prices were not revealing and were therefore omitted. 
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Table 2. Summary Statistics of Full and Imputed Price Variables  

 Mean Median STD Min Max 

Price Full 49.49 41.62 48.48 0.03 43638.20 

      

20% Missingness      

MC 49.46 42.99 51.54 0.00 84,616.20 

Reg 49.45 42.99 46.58 0.00 43,638.20 

Prop 49.50 43.21 46.91 0.04 43,638.20 

EM 49.48 42.99 47.95 0.00 70,253.10 

CM 48.71 42.77 45.78 0.00 43,638.20 

      

50% Missingness      

MC 49.42 44.91 52.20 0.00 87,276.40 

Reg 49.40 44.91 41.61 0.00 43,638.20 

Prop 49.49 45.99 40.56 0.04  43,638.20 

EM 49.42 44.92 54.17 0.00 81,289.20 

CM 47.54 44.09 39.16 0.00 43,638.20 
 

Defined as the absolute difference between the imputed and observed values as percentage of 

the observed value, the MAPE’s are a useful method to measure the distance between the 

imputed value and the true or observed value. Figures 1 and 2 depict the kernel distributions of 

MAPE’s for 20% and 50% missingness scenarios, respectively
2
. 

The comparison across the graphs, once again, reveals that at higher missingness rates all 

five distributions roughly preserve the shape. From the graphs it is clear that the CM imputation 

clearly outperforms other imputation methods. MC, EM and MR have similar performance and 

although they have more mass to the right from the CM distribution, they clearly outperform 

propensity score method.  

The distributional characteristics of MAPE in Table 3 demonstrate what was visually 

apparent in Figures 1 and 2 above. The CM imputation results the lowest mean MAPE in 20% 

and 50% missingness scenarios, demonstrating precision of being off the true value by 

approximately 28% only, or 28 cents in each dollar. Although the comparison of the sensitivity 

of imputation methods to model specification was not a part of the objective of this research, we 

can draw from and compare to other research in this area. For example, Kyureghian (2009), 

compares conditional and unconditional mean imputation precision, using the same data sets 

from the Nielsen data as this research, but uses a much more parsimonious model specification 

that accounts for regional and seasonal variations in price only. The average MAPE reported in 

that research is 34-35% compared to 28% found in this study. Given the ceteris paribus 

condition, we attribute this decline to the choice of variables in the model. 

 

  

                                                           
2
 Again, for the convenience of visual display we restricted the MAPEs to values less than or equal to 80. As a result 

the graphs do not show the performance of the methods at the extreme values. The remaining samples represent the 

1996 (95.00%) and 1988 (94.62%) of 2101 food codes for the 20% and 50% missing subsamples, respectively. 
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Figure 1. Kernel Densities the Mean Absolute Percent Errors (MAPE) for Imputation Methods for 20%   

Missingness. 

 

 

Figure 2. Kernel Densities the Mean Absolute Percent Errors (MAPE) for Imputation Methods for 50%   

Missingness. 
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The MAPEs for the multiple regression method – Reg, are very close to CM results. MC and 

EM have outlier problems again, giving rise to very large standard deviations and means. The 

graphical display of these methods, which ignores the behavior at the tails of distributions, 

reveals that although very erratic at the tails, these methods can be reasonably good. This is also 

evidenced by the proximity of MC and EM distributions to Reg distribution. Provided the 

generality of these methods, they appear to provide evidence of superiority over the CM method. 

 

Table 3. Mean Absolute Percent Errors (MAPE) of Imputation Methods.  

Statistic Name Mean Median STD Min Max 

20% Missingness      

MC_MAPE 86.25 33.15 1,234.00 4.93 42,047.02 

Reg_MAPE 34.49 33.10 23.00   4.74   497.17 

Prop_MAPE 42.49 38.26 40.01 6.57 1,260.87 

EM_MAPE 51.98 33.11 761.67 5.05 34,915.78 

CM_MAPE 28.20 28.02 12.39   4.65   203.07 

      

50% Missingness      

MC_MAPE 59.25 32.21 461.53 5.48 14,299.31 

Reg_MAPE 33.48 31.84 22.05   4.47 457.28 

Prop_MAPE 41.42   37.01 43.96 6.33 1,512.75 

EM_MAPE 61.20 32.19 505.49 5.65 17,574.67 

CM_MAPE 28.50 28.09 12.25 4.35 202.08 
 

 

The second line of the comparison of imputation methods is based on the distribution match 

between the imputed and missing values for the five imputation methods for both missingness 

scenarios. We calculated two-sample asymptotic Kolmogorov-Smirnov tests statistic D as  

 

      |  (  )    (  )|,   

 

where              and F(x) is the empirical distribution function. 

The p-value for this test is the probability that D is greater the observed d under the null 

hypothesis of no difference between the distributions of missing and imputed. An auxiliary 

statistic – Diff, which is a binary variable that measures if D is significant at 1% level, is 

constructed to help interpret D across 2101 tests. Diff equals to 1 if the null is rejected and 0 

otherwise. The summary statistics are reported in Tables 4 and 5 below. 

The results indicate overall low match between missing and imputed distributions. EM, MC 

and Reg have the highest probabilities of failing to reject the no difference in both missingness 

scenarios. Propensity score method has the lowest average probability of failing to reject the null. 
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Table 4. Summary Statistics of P-values of the Asymptotic Kolmogorov-Smirnov Statistic 

Statistic Name Mean Median STD Min Max 

20% Missingness      

MC_KS 0.0573 0 0.1585 0 0.9971 

Reg_ KS 0.0566 0 0.1559 0 0.9718 

Prop_ KS 0.0249 0 0.0896 0 0.9251 

EM_ KS 0.0579 0 0.1613 0 0.9898 

CM_ KS 0.0375 0 0.1261 0 0.9639 

      

50% Missingness      

MC_ KS 0.0154 0 0.0713  0 0.8386 

Reg_ KS 0.0139 0 0.0612 0 0.6744 

Prop_ KS 0.0029 0 0.0221 0 0.5038 

EM_ KS 0.0154 0 0.0737 0 0.9272 

CM_ KS 0.0129 0 0.0677 0 0.9272 

 

 

Table 5. Summary Statistics of the Auxiliary Statistic Diff 

Statistic Name Mean Median STD Min Max 

20% Missingness      

MC_KS 0.7587 1 0.4280 0 1 

Reg_ KS 0.7625 1 0.4257 0 1 

Prop_ KS 0.8391 1 0.3675 0 1 

EM_ KS 0.7611 1 0.4265 0 1 

CM_ KS 0.8296 1 0.3761 0 1 

      

50% Missingness      

MC_ KS 0.8948 1 0.3069 0 1 

Reg_ KS 0.8967 1 0.3044 0 1 

Prop_ KS 0.9676 1 0.1770 0 1 

EM_ KS 0.8948 1 0.3069 0 1 

CM_ KS 0.9148 1 0.2792 0 1 

 

 

This is not surprising as this imputation method uses the covariate information only to associate 

it with whether the variable is missing or not. CM does a poor job at retaining the distributional 

properties which is closely related to the nature of this method. The results in Table 5 are similar 

to those in Table 4. CM and Prop have the highest proportion of instances that the null is rejected 

at 1% confidence level in both missingness scenarios. The other three methods performance is 

roughly similar. As expected, in the 50% missingness scenario the performance of all methods is 

strictly worse. The kernel densities of the p-values of this statistic are presented in Figures 3 and 

4 below. To maintain the null of no difference between the distributions, we want these density 

functions away from 0. The graphical results support the summary evidence from Tables 5 and 6. 
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Figure 3. Kernel Densities the Kolmogorov-Smirnov          Figure 4. Kernel Densities the Kolmogorov-Smirnov 

(KS) Statistic for Imputation Methods for 20%          (KS) Statistic for Imputation Methods for 50% 

 Missingness.               Missingness. 
    

 

Finally we would like to be able to generalize our findings on the statistics created for 

performance check. That is we would like to associate the properties of our data sets to these 

statistics and draw inference rather than report averages and other summary statistics. For this 

reason we regress certain data properties against the validation statistics: MAPE, the p-value of 

the statistic Kolmogorov-Smirnov statistic - P_KSA, and Diff. The advantage of this approach is 

rendering a richer framework to interpret partial correlations conditional upon data properties, 

such as the average price level, skewness, kurtosis and sample size. This meta-analytic approach 

will produce empirical evidence to be generalizable to the extent as to help other researchers that 

face the problems of missingness to associate their method of choice with the properties of their 

data sets. 

For this purpose we created a data set where each observation corresponds to one food code 

or original dataset. The entries are the MAPE, KS and Diff for that particular dataset (these are 

the dependent variables), average price level, skewness, kurtosis and the sample size 

(covariates). Therefore, the resulting final data set has 2,101 observations. The regression 

estimates, along with the fit statistics are reported in Tables 6 and 7. 

 

Three models were estimated for each imputation model: 

                                                              ( ) 

                                                     ( ) 

                                                    ( ) 

where                *                 +. Therefore 15 equations were estimated 

altogether. Models in (1) and (2) were estimated by the least square and the model in (3) was 

estimated by logit estimation methods. 
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Table 6.  MAPE Regression Parameter Estimates (P-values) for the Imputation Methods in 20% 

and 50% Missingness Scenarios. 

 MC Reg Prop EM CM 

20% Missingness      

Intercept 113.4159 

(0.0015) 

29.8222 

(<.0001) 

31.3107 

(<.0001) 

58.7528 

(0.0078) 

25.2895 

(<.0001) 

Mean Price -0.1665 

(0.4702) 

0.0358 

(<.0001) 

0.1316 

(<.0001) 

-0.0451 

(0.7510) 
0.0152 

(<.0001) 
SK -0.8756 

(0.8127) 

0.2799 

(<.0001) 

0.4973 

(<.0001) 

-0.0676 

(0.9764) 
0.1804 

(<.0001) 
KT 0.0025 

(0.8239) 

-0.0008 

(0.0002) 
-0.0013 

(0.0001) 

0.0002 

(0.9738) 

-0.0005 

(<.0001) 

Sample Size -0.0035 

(0.3493) 

0.0004 

(<.0001) 

0.0004 

(0.0013) 

-0.0009 

(0.6828) 
0.0003 

(<.0001) 
      

F Value 0.37 

(0.8327) 

31.34 

(<.0001) 

100.20 

(<.0001) 

0.07 

(0.9920) 

42.36 

(<.0001) 

R2 0.0007 0.0564 0.1605 0.0001 0.0748 

Adj R2 -0.0012 0.0546 0.1589 -0.0018 0.0730 

      

50% Missingness       

Intercept 69.2058 

(<.0001) 

28.5486 

(<.0001) 

28.7971 

(<.0001) 

72.3879 

(<.0001) 

25.4222 

(<.0001) 

Mean Price -0.0344 

(0.6896) 

0.0433 

(<.0001) 

0.1595 

(<.0001) 

-0.0423 

(0.6542) 
0.0195 

(<.0001) 
SK -0.4922 

(0.7216) 

0.2629 

(<.0001) 

0.4325 

(0.0003) 

-0.5391 

(0.7216) 
0.1752 

(<.0001) 
KT 0.0013 

(0.7478) 

-0.0007 

(0.0002) 
-0.0011 

(0.0018) 

0.0015 

(0.7475) 

-0.0005 

(<.0001) 

Sample Size -0.0006 

(0.2704) 

0.0001 

(<.0001) 

0.0001 

(0.0037) 

-0.0007 

(0.2702) 

0.0001 

(<.0001) 

      

F Value 0.40 

(0.8101) 

41.70 

(<.0001) 

121.54 

(<.0001) 

0.41 

(0.8036) 

48.20 

(<.0001) 

R2 0.0008 0.0737 0.1883 0.0008 0.0842 

Adj R2 -0.0011 0.0719 0.1867 -0.0011 0.0825 

 

Given the fact that, in general, we are interested in reducing (or at least not increasing) 

MAPE and Diff, and increasing (or at least not decreasing) P_KSA, we would favor methods 

that have the largest negative (or smallest positive) coefficient in the first two models and the 

largest positive (or smallest negative) coefficients in P_KSA model across each covariate. 

In the MAPE model (Table 6) the results indicate that the MAPEs under MC and EM 

methods are not associated with data properties in any meaningful way, in both missingness 

scenarios. The signs and significance of the parameters in other methods are remarkably similar. 

In all of these methods higher level of average prices are associated with higher MAPEs. In other 

words, the percentage error of prediction increases for higher-priced foods. Similarly the error of 

prediction increases if the data are skewed, which is quite normal as these methods impute at the 

conditional mean, therefore skewness would distort any measure of the proportional departure 

from the mean. Logically, as data become more peaked and thinner tailed or kurtosis increases, 

the MAPEs decrease. Interestingly, the prediction error increases with the sample size. These 

results are robust to the change in the level of missingness. The best method choices across the 

relevant covariates are boldfaced in Table 6. 
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Table 7.  Kolmogorov-Smirnov P-value Regression Parameter Estimates (P-values) for the 

Imputation Methods in 20% and 50% Missingness Scenarios. 

Variables MC Reg Prop EM CM 

 P_KSA Diff P_KSA Diff P_KSA Diff P_KSA Diff P_KSA Diff 

20% Missingness             

Intercept 0.0758 

(<.0001) 

0.6790 

(<.0001) 

0.0748 

(<.0001) 

0.6816 

(<.0001) 

0.0334 

(<.0001) 

0.7879 

(<.0001) 

0.0771 

(<.0001) 

0.6817 

(<.0001) 

0.0523 

(<.0001) 

0.7763 

(<.0001) 

Mean Price 0.0001 

(0.0087) 

-0.0003 

(0.0009) 

0.0001 

(0.0103) 

-0.0002 

(0.0048) 

0.0000 

(0.1211) 

-0.0002 

(0.0019) 

0.0001 

(0.0155) 

-0.0002 

(0.0013) 

0.0000 

(0.9812) 

-0.0002 

(0.0007) 

SK -0.0022 

(<.0001) 

0.0085 

(<.0001) 

-0.0021 

(<.0001) 

0.0084 

(<.0001) 
-0.0010 

(0.0003) 

0.0057 

(<.0001) 

-0.0022 

(<.0001) 

0.0085 

(<.0001) 
-0.0013 

(0.0007) 

0.0060 

(<.0001) 
KT 0.0000 

(<.0001) 

-0.0000 

(<.0001) 

0.0000 

(<.0001) 

-0.0000 

(<.0001) 

0.0000 

(0.0013) 

-0.0000 

(<.0001) 

0.0000 

(<.0001) 

-0.0000 

(<.0001) 

0.0000 

(0.0025) 

-0.0000 

(<.0001) 

Sample Size -0.0000 

(<.0001) 

0.0000 

(<.0001) 

-0.0000 

(<.0001) 

0.0000 

(<.0001) 

-0.0000 

(<.0001) 

0.0000 

(<.0001) 

-0.0000 

(<.0001) 

0.0000 

(<.0001) 

-0.0000 

(<.0001) 

0.0000 

(<.0001) 

           

F Value 28.30 

(<.0001) 

 28.16 

(<.0001) 

 16.11 

(<.0001) 

 27.85 

(<.0001) 

 16.97 

(<.0001) 

 

R2 0.0512 0.1170* 0.0510 0.1138* 0.0298 0.0731* 0.0505 0.1155* 0.0314 0.0784* 

Adj R2 0.0494  0.0492  0.0280  0.0487  0.0295  

Mean  0.7587 

(0.4280) 

 0.7625 

(0.4257) 

 0.8391 

(0.3675) 

  0.7611 

(0.4265) 

 0.8296 

(0.3761) 

Sigma  0.4021 

(<.0001) 

 0.4006 

(<.0001) 

 0.3537 

(<.0001) 

 0.4011 

(<.0001) 

 0.3609 

(<.0001) 

           

50% Missingness             

Intercept 0.0177 

(<.0001) 

0.8579 

(<.0001) 

0.0189 

(<.0001) 

0.8680 

(<.0001) 

0.0040 

(<.0001) 

0.9555 

(<.0001) 

0.0188 

(<.0001) 

0.8585 

(<.0001) 

0.0163 

(<.0001) 

0.8955 

(<.0001) 

Mean Price 0.0001 

(<.0001) 

-0.0001 

(0.0433) 

0.0000 

(0.2291) 

-0.0002 

(<.0001) 

0.0000 

(0.8995) 

-0.0000 

(0.5865) 

0.0000 

(0.0005) 

-0.0001 

(0.0334) 

0.0000 

(0.0171) 
-0.0003 

(<.0001) 

SK -0.0007 

(0.0017) 

0.0045 

(<.0001) 

-0.0006 

(0.0009) 

0.0045 

(<.0001) 

-0.0001 

(0.1008) 

0.0013 

(0.0177) 

-0.0006 

(0.0031) 

0.0044 

(<.0001) 
-0.0005 

(0.0108) 

0.0035 

(<.0001) 
KT 0.0000 

(0.0062) 

-0.0000 

(<.0001) 

0.0000 

(0.0037) 

-0.0000 

(<.0001) 

0.0000 

(0.1469) 

-0.0000 

(0.0361) 

0.0000 

(0.0096) 

-0.0000 

(<.0001) 

0.0000 

(0.0251) 

-0.0000 

(0.0002) 

Sample Size -0.0000 

(<.0001) 

0.0000 

(.) 

-0.0000 

(<.0001) 

0.0000 

(.) 

-0.0000 

(0.0027) 

0.0000 

(.) 

-0.0000 

(<.0001) 

0.0000 

(.) 

-0.0000 

(<.0001) 

0.0000 

(.) 

           

F Value 15.70 

(<.0001) 

 11.20 

(<.0001) 

 3.31 

(0.0103) 

 11.97 

(<.0001) 

 8.73 

(<.0001) 

 

R2 0.0291 0.0474* 0.0209 0.0527* 0.0063 0.0127* 0.0223 0.0472* 0.0164 0.0464* 

Adj R2 0.0272  0.0191  0.0044  0.0205  0.0145  

Mean  0.8977 

(0.3032) 

 0.8967 

(0.3044) 

 0.9676 

(0.1770) 

  0.8948 

(0.3069) 

 0.9148 

(0.2792) 

Sigma  0.2949 

(<.0001) 

 0.2962 

(<.0001) 

 0.1758 

(<.0001) 

 0.2945 

(<.0001) 

 0.2726 

(<.0001) 

           

* The R
2
 values are calculated as the squared Pearson correlation between the observed and the predicted dependent 

variable values. 

   

Ceteris paribus, with the increase of the price level and skewness, the increase in MAPEs is 

much milder in models imputed under the CM method compared to Reg and especially to Prop. 

On the other hand if the data happen to have higher kurtosis, Prop appears to be a better choice 

for reducing the prediction error, ceteris paribus. The effect of the sample size is rather uniform 

across these methods. 

In 20% missingness scenario the results from the P_KSA models reveal that, with the 

exception of MC, the average price level has no effect on the probability of the missing and 
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imputed distributions being not different at 1% confidence level. MC seems to do a better job of 

mimicking the distribution for higher-priced foods. As expected, the more skewed the data, the 

lower the probability that any imputation method will preserve the distributional likeness in 

predictions. Nevertheless, skewness under the Prop and CM methods has the minimal negative 

effects on P_KSA. Increase in kurtosis will on the other hand improve the probability of 

distributional match. Just as the increased sample size increased the error in prediction in the 

MAPE models it decreases the probability of distribution match in this case. Although the 

coefficients of these two covariates are significant in majority of the estimations, the parameter 

estimates are virtually identical in all cases; therefore these variables do not increase our ability 

as to the choice of the method. Consequently, we will not consider them any further. 

In conclusion, for both missingness levels MC outperforms the other methods for higher-

priced foods, and Prop does a better job in skewed data. In the 20% missingness scenario CM 

does a comparably good job in imputing values to skewed data. These models have reasonably 

good fits witnessed by the F-values. 

In 20% missingness scenario the kurtosis and sample size variables had identical parameter 

estimates for all of the methods, and therefore were excluded from consideration as in P_KSA 

models above. The results from the Diff models favor choice of methods identified in P_KSA 

models: in higher-priced food data MC does a better job of decreasing the probability of the 

distributions being different. Prop and CM do comparably good job when the data are skewed. 

Interestingly, in 50% missingness scenario, the Prop models exhibit a rather poor fit. In this 

missingness scenario the CM truly stands out and outperforms the other methods where both the 

average price level and skewness are concerned. 

The auxiliary variable, sigma, reported in the outcomes indicates the improvement of the 

standard error of the mean dependent variable, and is the equivalent of the root mean square 

error in the models with continuous dependent variable. For comparison purposes with 

calculated the R
2
 values for these models as the squared correlations between the fitted value and 

the actual value of the dependent variable. Prop and CM consistently have the lowest fit levels in 

both scenarios. 

The estimation results for P_KSA and Diff models are reported in Table 8. The best method 

choices across the relevant covariates are boldfaced. 

A note of warning is in place before we conclude. The definition of the higher-level 

dependent variable may seem not well defined and subject or data specific, and therefore not 

very well applicable to other researches or data in general. Nonetheless it is hard to deny its 

usefulness and generalizability for food price data, and the Nielsen HomeScan data in particular. 

Therefore, other researchers using consumer level food consumption data may still find the 

results insightful. Also a reminder is in place that the results from imputation methods based on 

explicit models are subject to model specification. 
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Discussion and Conclusion 

 

The focus of this research is to examine, validate and recommend techniques for handling the 

problem of missingness in observational data. The widespread nature of the problem of 

missingness and the wide variety of idiosyncrasies of different data sets make such 

recommendations incredibly hard and of little practical value. With this in mind, we tackle the 

problem using a rich observational data set, the Nielsen data, which effectively combines 

elements from simulated data sets: large number of observations and variables allowing elements 

of ‘design’ that typically come with simulated data, and is observational in nature. 

We created 20% and 50% missingness in our datasets and employed several widely used 

multiple imputation methods to fill in the data gaps. We then compared these methods by 

utilizing the mean absolute percent error of prediction and Kolmogorov-Smirnov two-sample test 

statistic for testing the null hypothesis of no difference in distributions of missing and imputed 

values. The summary statistics of imputed prices reveal that the prices imputed under the MI 

methods consistently perform better at preserving the full sample mean price level. But these 

methods perform rather erratically at the tails of the distribution and have the higher standard 

deviations compared to the prices imputed under CM. When comparing the percentage 

difference between the true value and imputed value for each data point, we clearly arrive at CM 

as the method that on average outperforms the others. It comes as no surprise that on average 

MC, Reg and Prop perform better in mimicking the distributions, than CM and Prop. 

We extend our results from the summary statistics to regression inference by estimating the 

association between MAPE and distributional match and data properties. Based on our results, if 

the researchers interested in increased prediction precision and facing missingness in data with 

higher level dependent variable and increased skewness would be advised to opt for CM 

imputation method in both 20% and 50% missingness scenarios. Data exhibiting increased level 

of kurtosis would be better predicted by Prop. On the other hand, if the researchers are interested 

in preserving the distributions of the missing data rather than improving the precision of the 

prediction, MC is the method to adopt for data with higher-level dependent variable and Prop is 

the method if the data are skewed, in 20% missingness scenario. In data sets with larger 

proportion of the data missing, CM appears to perform better from both high-level dependent 

variable and skewness points of view. 
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