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Abstract 
Improved technology is often cited as a means to alter the otherwise difficult trade-off between 

the economic burden of regulation and environmental damage. Focusing on energy-saving technologies 
that mitigate the threat of climate change, we find that both energy prices and financial health influence 
technology adoption among a sample of industrial plants in four heavily polluting sectors. Based on a 
model linking technology adoption to growth in aggregate efficiency, we estimate that a doubling of 
energy prices, after raising the growth rate to 2.1%, would require slightly more than 50 years to generate 
a 50% improvement in aggregate efficiency relative to the baseline forecast. 
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Technology Adoption and Aggregate Energy Efficiency 

William A. Pizer, Winston Harrington, Raymond J. Kopp, 
Richard D. Morgenstern, and Jhih-Shyang Shih* 

1. Introduction 

Many environmental problems pose a trade-off between environmental damage and 
expensive mitigation policies. This is particularly true of policies designed to mitigate global 
climate change, because carbon dioxide and other greenhouse gases remain in the atmosphere for 
centuries and mitigation is achieved primarily through reductions in the level and carbon 
intensity of energy use. Yet changes in technology could significantly alter these trade-offs. It is 
argued that public policies affecting the development and spread of new technologies may, over 
the long term, be one of the most important tools for environmental protection (Kneese and 
Schultz 1978).  

But how can public policy encourage “environmentally-friendly” technological changes 
and how long will it take for them to substantially alter the mitigation cost–environmental 
damage trade-off? In the past, technology mandates have generally been used to deal with 
narrow environmental concerns within particular industries. However, the breadth of the problem 
faced by efforts to mitigate climate change and reduce the level and carbon intensity of energy 
use—energy used for a multitude of purposes across industries and time—defies such an 
approach. No one knows which technologies should be used in which industries, especially 
looking decades into the future. Instead, public policy must create incentives for economic 
agents to discover and adopt energy- and carbon-saving technologies of their own choosing. 

To guide the design of incentive-based policies, this research examines some of the 
factors that influence the adoption of new energy-saving technologies by U.S. manufacturing 

                                                 
*The authors are Fellow, Senior Fellow, Senior Fellow, Senior Fellow, and Fellow, respectively, Quality of the 
Environment Division, Resources for the Future. The authors gratefully acknowledge financial support from the 
U.S. Department of Energy (Office of Energy Research, Integrated Assessment of Global Climate Change Research 
Program), and the U.S. Environmental Protection Agency (Office of Policy, Office of Economy and the 
Environment). Phillip Haberkern provided excellent research assistance. The research in this paper was conducted at 
the Center for Economic Studies, U.S. Bureau of the Census. Mary L. Streitwieser, Gordon M. Phillips, and Arnold 
P. Reznek have provided considerable assistance for which the authors are greatly appreciative. Research results are 
those of the authors and do not necessarily indicate concurrence by the Bureau of the Census or the Center for 
Economic Studies. 
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plants. We then take this analysis one step further and link changes in the rate of adoption to 
changes in the growth rate of aggregate energy efficiency. Using a unique dataset linking plant-
level data from the Census Bureau’s Longitudinal Research Database, technology use data from 
the Manufacturing Energy Consumption Survey, and parent-firm financial data from the 
Quarterly Financial Reports, we explore the adoption of four technologies in four industries. We 
analyze their adoption individually, focusing on diffusion speed, and then jointly, examining the 
influence of plant and firm characteristics on the adoption rate. Based on a model linking 
technology adoption to growth in aggregate energy efficiency, we extrapolate these results to 
determine the influence of these characteristics—primarily prices—on long-term energy 
efficiency improvements. 

Our estimates of diffusion speed establish a remarkable consistency across technologies 
and industries. Once a technology has diffused to 10% of the plants, we estimate, the remainder 
of the plants will adopt it within an average of about nine years, regardless of the industry or the 
type of energy-saving technology. 

When we consider the influence of plant and firm characteristics on the decision to adopt 
any new, energy-saving technology, we find that energy prices, plant size, and financial health 
have statistically significant effects. However, even dramatic changes in these variables generate 
only modest changes in aggregate energy efficiency for many years, based on the less invasive, 
incremental technologies that we examine. A doubling of energy prices, for example, requires 50 
years to generate a 50% increase in energy efficiency over forecast levels at constant prices. The 
results also suggest that a policy to increase technology adoption through higher energy prices 
could backfire if financial health is compromised—a 50% reduction in profit, for example, more 
than offsets a 10% increase in energy prices in terms of the effect on technology adoption. 

In the remainder of the paper, we start with a brief overview of the existing literature and 
theory on technology diffusion. In Section 3 we develop a simple model of technology adoption 
that establishes a link between plant-level adoption of energy-saving technologies and aggregate 
growth in energy efficiency. Section 4 presents our results and Section 5 concludes. 

2. Background 

Research by economists on the subject of technology diffusion dates back more than four 
decades. The single most important conclusion of previous work—well summarized by Jaffe and 
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Stavins (1994)—is that diffusion of new, economically superior technologies is a gradual rather 
than instantaneous process.1 Specifically, diffusion is often portrayed as a classic s-shaped, or 
sigmoid, curve over time. That is, the rate of adoption begins slowly, speeds up, and then 
eventually slows down again as market saturation approaches.  

One justification for the sigmoid curve is based on an epidemic model of diffusion. 
Because of lack of knowledge or confidence on the part of potential users, the odds that a 
nonuser will adopt a new technology increase with the growing popularity of the technology. If 
we let ,i tN  represent the presence of the new technology at time t for user i, we can write this 

relation as 

 ( ), , 1 11| 0 4i t i t tP N N c N- -D = = = ◊  (1) 

where , 1i tN -  is the average level of adoption—or popularity—at the beginning of period t and c is 

a constant (the “4” normalization is explained below). ( ), 11| 0i t tP N N -D = = is the probability of 

a change in adoption status conditional on being a nonuser in the previous period. Since the 
likelihood of being a nonuser prior to time t is ( ), 11 i tN -- , the overall likelihood of a change in 

adoption status is 

 ( ) ( ), 1 11 4 1i t t tP N c N N- -D = = ◊ ◊ -  (2) 

Note that the parameter c reflects the maximum probability or speed of adoption that is obtained 
when the fraction of users , 1i tN -  and nonusers ( ), 11 i tN --  is each equal to 50%. 

Following this intuition, it makes sense that the rate of adoption will be slow in the 
beginning ( , 1i tN -  is small when there is little popularity) and in the end ( , 11 i tN --  is small when 

there are few nonusers). In this model, the probability of adopting the technology depends 
entirely on the number of other firms in the industry that already have adopted it.  

The pioneering work of Griliches (1957) extends this model by establishing that the 
diffusion of new technology can be understood in an economic framework by allowing the rate 
of diffusion to be partly determined by the expected economic return to adoption. Mansfield 
(1968) elaborates on this idea by considering the size of adopting plants, the perceived risk of the 
new technology, and the size of the required investment as potential determinants. The parameter 

                                                 
1 See Griliches (1957), Mansfield (1968), David (1966), Davies (1979), Oster (1982), and Levin et al. (1987). 
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c in Equation (2) becomes a function of the economic return to adoption, primarily associated 
with technology characteristics but also determined by the broader environment for adoption. 

The idea of a technology-specific diffusion speed has been explored by many authors. 
The size of potential users has been argued to have both positive and negative effects on 
adoption.2 Arguments for the former are based on the resources (financial, experience, expertise) 
associated with large plants, and arguments for the latter hinge on potentially oligopolistic 
market structure retarding the competitive pressures to innovate. The possibility of varying 
diffusion rates for different technologies has been qualitatively described by Cohen and Levin 
(1989) as the difference between type “A” and “B” innovations.3 Type A innovations are minor 
and presumably diffuse quickly, whereas type B innovations are considerably more invasive and 
diffuse more slowly.  

Looking beyond the aggregate determinates of adoption, David (1966) focuses on the 
idiosyncratic features of individual adopters via the use of more detailed microeconomic data. 
These features, which influence the value of the technology to individual plants, might include 
the cost of equipment, cost of learning about a new technology, cost of adapting existing 
processes, or future benefits of the technology. Specifically, one can imagine a threshold above 
which it pays to adopt the new technology and below which it does not. The threshold differs 
across plants and, over time, the cost of the innovation may fall and/or the quality may improve, 
thereby lowering the threshold. By regressing a plant’s decision to adopt on variables that 
describe differences among plants, one can empirically identify those differences that affect a 
plant’s valuation of the innovation.  

3. Linking Technology Adoption and Aggregate Energy Efficiency 

Like many of the aforementioned microeconomic studies, we use plant-level data on four 
incremental, energy-saving technologies to understand how both plant and technology 
characteristics influence the probability of adoption and speed of diffusion in four industries. 
However, we want to do more: We want to link these plant-level adoption decisions to 
macroeconomic changes in aggregate energy efficiency growth and, in the long run, to changes 
in aggregate energy use. Higher energy prices, for example, ought to encourage more rapid 
adoption of energy-saving technologies and lead to faster aggregate efficiency growth. Starting 

                                                 
2 See Davies (1979), Oster (1982), and Boyd and Karlson (1993). 
3 See also Davies (1979). 
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with microeconomic estimates that relate energy prices to technology adoption, if we can 
connect technology adoption to efficiency growth, we can then quantify the effect of energy 
prices on aggregate efficiency growth. To develop such a connection, we first consider the 
aggregate implications of a standard diffusion model, and then modify the model to permit this 
linkage. 

3.1. Aggregate Implications of Standard Diffusion Model 

When we consider the economy-wide impact of plant-level decisions to adopt energy-
saving technologies, we can presume that any increase in the number of plant-level adoptions 
will, on average, raise aggregate energy efficiency. However, the diffusion model by itself fails 
to explain changes in the long-term growth in energy efficiency. Suppose, for example, that 
technology X has just begun to diffuse through the economy. Technology Y becomes available in 
5 years and technology Z after 10. All three can raise aggregate efficiency by 10% once they are 
adopted by all plants. If each diffuses completely over 5 years, we would observe a 20% 
improvement after 10 years and 30% after 15 years. The solid line in Figure 1 shows graphically 
how adoption of these technologies would affect aggregate energy efficiency, assuming a 
constant diffusion rate. 

Now imagine a policy that hastens the diffusion and leads to complete adoption in only 4 
years for each technology, indicated by the dashed line in Figure 1. Note that this fails to change 
the long-term improvement in energy efficiency. Assuming technology Y still becomes available 
after 5 years and Z after 10 years, the total improvement in energy efficiency after 10 years is 
still 20%, and after 15 years 30%, even though the technologies diffuse more quickly in the first 
4 years of each 5-year interval. The problem is that diffusion models focus on specific 
technologies but ignore the process by which those technologies become available—the process 
that eventually controls long-term growth in energy efficiency.  

But consider what happens if we instead assume that technology options are always 
available: Just as one technology is adopted, another becomes available. In the previous example, 
imagine that technology Y becomes available after a 10% aggregate efficiency improvement and 
technology Z after a 20% improvement, regardless of when these improvements occur. Further, 
imagine that this pattern does not stop with technology Z; there is a never-ending stream of 
technologies that become available just as the previous ones are adopted. Perhaps technology 
purveyors foresee quicker returns when technologies diffuse faster, encouraging them to 
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innovate faster. Or perhaps the marketability of successive technologies simply requires adequate 
diffusion of the preceding technology.4 Although this view seems inappropriate for the large, 
radical, type B innovations discussed by Cohen and Levin (1989), it might be a reasonable 
approximation for smaller, frequent, and incremental type A technological improvements. 

If we are willing to make this assumption, we can translate influences on plant-level 
adoption into persistent changes in the aggregate rate of technological change. For example, 
suppose that every year 100 plants adopt generic, energy-saving technologies, and that these 
adoption decisions are entirely responsible for an observed 1.3% annual growth rate in aggregate 
energy efficiency.5 Now suppose that a 10% rise in energy prices increases the number of annual 
adoptions from 100 to 107, a 7% rise. Based on the assumption that successive energy-saving 
technologies become available as soon as the preceding ones are adopted, this rise in the annual 
number of adoptions can persist as long as the incentive—higher energy prices—remains. We 
can then translate this 7% increase in adoptions into a 7% rise in the annual growth rate in 
aggregate energy efficiency—that is, from 1.3% to 1.4% (= 1.07 × 1.3%). 

In this view of the world, the relationship presented in Equation (2) becomes 
inappropriate. To the extent we are concerned with improving aggregate efficiency, there is no 
need to evaluate or even identify individual technologies—we only need to track the generic 
decision to adopt new technologies each period. When a firm decides that its individual 
circumstances warrant an improvement in energy efficiency, it explores the menu of off-the-shelf 
technology options and chooses which ones to purchase. 

Focusing on the decision of whether to invest each period in new energy-saving 
technologies, we can easily quantify the effect of different variables on the decision by using our 
cross-sectional dataset on plant-level technology choices. Our story linking plant-level adoption 
and aggregate energy efficiency then translates any estimated adoption effects into persistent 
effects on the annual growth rate of energy efficiency: More adoption leads to faster efficiency 
growth, and faster efficiency growth generates faster technology development, sustaining the 
initial increase in adoption and efficiency growth. 

That link between technology adoption and aggregate growth in energy efficiency is 
exactly what we need so that we can use our microeconomic data on technology adoption to 
estimate effects on aggregate energy efficiency. Qualitatively, we can already see the necessary 

                                                 
4 Many authors have discussed the process of innovation in greater detail; see Jaffe et al. (2000). 
5 Growth in aggregate energy efficiency averaged 1.3% between 1949 and 1999. See Section 4.4 and Figure 4. 
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assumptions. First, the efficiency improvement associated with each adoption decision needs to 
be constant unless we can predict how the size of discrete projects changes over time or in 
response to different incentives. Second, the availability of increasingly advanced technologies 
must be linked to the current technology level and divorced from calendar time—that way, new 
technologies are available as soon as the previous one is adopted. Third, we have to believe that 
technology adoption—specifically, adoption of incremental technologies of the sort contained in 
our dataset—is primarily responsible for aggregate efficiency growth. 

Formalizing this story, we can develop insight about the precise assumptions that make 
the heuristic story work and about the dynamic link between plant-level adoption decisions and 
efficiency that we estimate. In particular, what do we need to assume about plant behavior and 
technology development to make sustainable increases in the adoption rate? How do we estimate 
and interpret an adoption model from a single cross section of plants? 

3.2. An Alternative Model of Technology Adoption and Energy Efficiency 

Suppose that each member i of a fixed population of I plants faces the decision of 
whether to invest in a discrete energy-saving project each period. The project permanently raises 
an adopting plant’s energy efficiency (output per unit energy) by a fraction δ and incurs an 
annualized cost Ji,t. Assuming that this project is irreversible, Ji,t should also incorporate the 
option value of waiting to invest. If xi,t is an index of plant i’s current efficiency, the plant should 
adopt if 

 ( ) ( ) ( ), , ,

cost of current energy costs energy costs with projectenergy-saving project

exp exp expi i t i i i t i i tQ x V Q x V Jd- - - - >  (3) 

with 

 ,
, 1

,

if plant  does not adopt
if plant  does adopt

i t
i t

i t

x i
x

x iδ+


=  +

 (4) 

That is, the plant should adopt if the reduction in annual energy costs is greater than the 
annualized project cost, where Qi is the output level of plant i, exp(xi,t) is the energy efficiency of 
plant i (output per unit of energy), and Vi is the energy price faced by plant i. So far, our model 
follows the more micro-oriented analyses of David (1966) and others, with adoption depending 
on differences among adopters. 

The only controversial assumption is that the project size has been fixed for all plants and 
all time at δ. This is important: If we want to relate the plant-level adoption rate to growth in 
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aggregate energy efficiency, the size of the adopted technologies must remain constant—
otherwise we have to consider changes to the size as well as the rate of adoptions. It seems 
reasonable to fix the size of the project as we consider the small, incremental, type A projects 
noted above. This is also a necessary assumption because we have little information about the 
size of the technologies in our dataset and therefore little ability to relax the assumption in 
practice. 

Taking the log of both sides of (3) we can develop further assumptions about Ji,t. That is, 
firms adopt when 

 ( )( ) , ,log 1 expi i i t i tq v x jd+ + - - - >  (5) 

where lowercase letters denote the logarithm of the corresponding uppercase variable—qi is the 
log of the output level, vi is the log of the energy price, xi,t is the log of the energy efficiency 
(which we will frequently refer to as simply “energy efficiency”), and ji,t is the log of adoption 
costs. From this relation, we can make the following observation: Our assumptions about ji,t will 
determine the growth rate of aggregate energy efficiency. If we assume that ji,t declines linearly 
over time, for example, then so will xi,t. That is, xi,t needs to keep pace with ji,t for Equation (5) to 
remain roughly in balance and for optimal plant behavior to include both adoption and 
nonadoption over time.  

To break the link between adoption costs and calendar time, thereby making the growth 
rate of energy efficiency endogenous, we assume that adoption costs ji,t decline one-for-one with 

tx , the average energy efficiency across all plants.6 This is the second controversial assumption 

we require, and it should not be surprising. We want to link a sustained increase in the adoption 
rate with a sustained increase in the growth rate of energy efficiency—regardless of the growth 
rate. Therefore, adoption costs need to be constantly matched to the current efficiency level 
because the efficiency level reflects the current energy cost savings from adoption. Adoption and 
efficiency growth cannot continue if adoption costs do not keep pace with the associated energy 
savings. 

Consider how a δ = 10% efficiency improvement saves less energy and less money as the 
absolute level of energy use and expense declines. The savings from technology adoption would 
be $10 on a $100 energy expenditure but only $5 on a $50 expenditure. When the average energy 

                                                 
6 An entirely different approach would be to assume that ji,t remains constant and that energy prices must rise to 
encourage further technology adoption. 
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bill is eventually reduced to $50, thanks to improvements in energy efficiency, adoption costs 
need to roughly equal $5 if adoption and efficiency improvements are going to continue—
regardless of when the average energy expenditure reaches $50. In this way, adoption costs must 
be linked to energy expenditures and/or the level of energy efficiency. 

Based on the assumption that adoption costs fall one-for-one with mean efficiency tx , we 

write 

 , ,i t i i i i t tj j v q xb g e= + ◊ + ◊ + -  (6) 

This further specifies that the remaining portion of adoption cost depends on plant output, iqg ◊ , 
the price of energy, ivb ◊ , an idiosyncratic plant component, ji, and a stochastic disturbance εi,t. 

Common sense dictates that 0 < β < 1.7 Note that with the introduction of a stochastic term in the 
cost of adoption and the dependence on average efficiency, the achievement of a particular level 
of efficiency x (e.g., technology diffusion) will occur gradually even when plants are identical. 
This incorporates the thinking in earlier epidemic models of technology diffusion that did not 
rely on heterogeneous adopters (Griliches 1957; and others). 

From (6), the adoption condition becomes 

 ( ) ( ) ( )( ) ( ), ,1 1 log 1 expi i i t t i i tq v x x jg b d e- + - + - - - - - >  (7) 

Assuming the stochastic element has a mean-zero normal distribution with variance s2, we can 
write the probability of adoption as 

P(adopt) = 
( ) ( ) ( )( ) ( ),1 1 log 1 expi i i t t iq v x x j

s
g b dÊ ˆ- + - + - - - - -

FÁ ˜
Ë ¯

 (8) 

where Φ is the cumulative standard normal density function.  

3.3. Long-Run Behavior 

With plant-level adoption decisions given by Equation (8), what sort of adoption 
behavior do we expect over time? Rewriting the adoption probability as  

                                                 
7 That is, higher energy prices encourage technology adoption; see Equation (7). 
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 P(adopt) = 
( ) ( ),, i t t ii t i t x x g gx g x g

s s s

Ê ˆ- - -- -Ê ˆ
F - = F - +Á ˜Á ˜Ë ¯ Ë ¯

 (9) 

and 

 ( ) ( ) ( )( )1 1 log 1 expi i i ig q v jg b d= - + - + - - -  (10) 

where gi summarizes a plant’s exogenous adoption tendency, the last expression in Equation (9) 
suggests a convenient distinction between the mean g  across all plants and the deviations at a 
particular plant gi – g . The mean adoption tendency g  determines an overall adoption rate (the 
adoption rate for the mean plant), and the plant-level deviations both gi – g  and xi,t – tx  

determine the relative adoption likelihood for a specific plant. 

 Over time, we expect the difference between energy efficiency and adoption tendency xi,t 
– gi to evolve to an ergodic distribution centered about tx . Plants with high adoption tendency (gi 
>> g ) and/or low initial efficiency (xi,t << tx ) will tend to adopt more rapidly, raising their 
value of xi,t relative to the mean, but plants with low adoption tendency (gi << g ) and/or high 
initial efficiency (xi,t >> tx ) will adopt less rapidly, lowering their value of xi,t relative to the 

mean. Absent any changes over time to the plant-level adoption tendency, gi, this implies that 
eventually the adoption probability each period will be independent of these plant characteristics. 

For example, imagine that there are two groups of plants, half with high adoption 
tendency, gi = ghi = 0.2, and half with low adoption tendency, gi = glow = –0.2 < ghi (so g = 0). 

Let us assume that the initial energy efficiency xi,0 is randomly distributed across all plants and is 
initially uncorrelated with adoption tendency. Figure 2 shows both the initial distribution of 
efficiency xi,t alongside the initial difference between efficiency and adoption tendency xi,t – gi 
for this hypothetical population of plants. The pattern in the left panel, showing efficiency, 
reflects our assumption about the random distribution of efficiency levels, which is based on a 
mean-zero normal distribution with a standard deviation of 0.025. The right panel, showing the 
difference between adoption tendency and efficiency, reflects the assumption about two groups 
of plants—one characterized by high adoption tendencies (the left mode) and the other 
characterized by low adoption tendencies (the right mode). Here, the average distance between 
the two modes (ghi – glow) equals 0.4. The spread about each of these modes arises from the 
variation in xi,t, so the standard deviation is once again 0.025. 

Now imagine we allow time to pass. We let each period represent three years, 
corresponding to the three-year period in our data (1991 to 1994). The mean rate of adoption 
when gi = g and xi,t = tx  equals 50% over the three-year period, also matching our data (see last 
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column of Table 3). Given the initial conditions, however, we know that some plants have a 
higher probability of adoption than others: In the right panel of Figure 2 we have also plotted the 
adoption probability based on Equation (9) with an assumption that the standard deviation s of 
the stochastic disturbance εn,t equals 0.1. Plants with high adoption tendency (left mode) adopt 
with an initial probability of about 98%, and plants with low adoption tendency (right mode) 
adopt with an initial probability of about 2%. Assuming a δ = 0.06 improvement with each 
adoption—reflecting a three-year growth rate of 3% in energy efficiency when half the plants 
adopt—plants in the two modes will intermingle within seven periods because the initial 
variation in xi,t – gi is only 0.4. 

Figure 3 shows the results after 10 periods (30 years) of plant adoption behavior, 
simulated using Equations (9) and (4) with the parameter values given in the text: g  = 0, δ = 

0.06, and s = 0.1. In the left panel we see that plants with the higher adoption tendency have 
distinguished themselves from those plants with the lower adoption tendency by adopting more 
frequently and moving ahead in efficiency. Plants in the right mode, identified by the higher 
adoption tendency ghi = 0.2, have an efficiency index xi,t that is about 0.34 higher on average than 
those plants in the left mode with glow = –0.2. In another 30 years the difference in average 
efficiency xi,t between the two groups is 0.39, and in another 30 years after that the difference is 
0.40—exactly the difference between ghi and glow. That is, the plants with a higher adoption 
tendency move ahead in energy efficiency just to the point where their higher relative efficiency 
offsets their naturally higher tendency to adopt. At this point, the likelihood of adoption is 
unrelated to the adoption tendencies measured by gi. 

The right panel again makes this point: The difference between efficiency and natural 
adoption tendency, xi,t – gi, is eventually indistinguishable across plants with different adoption 
tendencies. Because the adoption rate depends on this difference (as indicated by the overlaid 
plot of adoption probability), plants with lower values tend to adopt more rapidly and further 
raise their efficiency xi,t relative to the average. This brings them back toward the mean of the xi,t 
– gi distribution and simultaneously slows their adoption rate by lowering their gain to further 
adoption. Here, the original difference between the high- and low-tendency plants visible in the 
right panel of Figure 2 is gone 10 periods later in the right panel of Figure 3. 

This convergence in adoption rates among plants is not unlike the convergence in income 
levels across countries suggested by standard growth models (Barro 1991). In that case, higher 
returns to investment inspire faster capital accumulation in poorer countries, whereas here, 
higher returns to energy-efficient technologies inspire faster technology adoption. In both cases, 
as laggards converge to the mean, the incentive to catch up is diminished. 
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Although the cross-sectional relation between adoption rate and natural adoption 
tendency may disappear, this does not contradict a persistent aggregate relation between the 
average adoption rate and the average adoption tendency—the link that motivates our effort. A 
change in the average adoption tendency—a rise in the average value g —will raise the adoption 

rate for all plants, a change that does not vanish with future adoptions. Put another way, the 
adoption rate for the average plant (where xi,t – gi = tx g− ) has permanently risen, a fact 

unaffected by any pattern of future adoptions based on Equation (9). The average plant will still 
observe an adoption rate given by Φ( g / s). 

3.4. Observable Variation 

From the preceding discussion, it is apparent that variation in adoption rates across plants 
will be unrelated to any fixed plant characteristics gi—eventually. For example, we would expect 
plants facing higher energy prices to be more likely to adopt energy-saving technologies, all 
other things equal. But if price variation across plants remains fixed over time, those plants 
facing higher energy prices will eventually move ahead in efficiency, reducing their gain from 
further adoption. That is, in terms of Equation (9), a plant’s higher value of gi due to higher 
prices will eventually be offset by a relatively higher value of xi,t and, without conditioning on 
xi,t, the adoption rate will appear to be independent of prices. 

This is problematic. The purpose of this paper is both to identify plant-level determinants 
of adoption and to extrapolate changes in adoption to changes in the aggregate growth rate in 
energy efficiency. This model, in seeking to do the latter, suggests that the former, simpler goal 
of estimating the determinants of adoption is in jeopardy. In essence, a plant that has a high 
propensity to adopt energy-saving technologies (because it faces relatively high energy prices, 
for example) may have just installed the preceding technology, making adoption unlikely in the 
current period. Despite the persistent relation between average adoption tendency g  and the 
average adoption rate Φ( g / s), we will be unable to estimate the particular determinants of gi 

from cross-sectional variation.  

There are two ways to resolve this problem. First, plant characteristics are not completely 
fixed, despite the assumptions implied by Equation (3), where only the adoption cost and 
efficiency are explicitly time dependent. When we consider plant and firm characteristics in 
1991—energy prices, employment, profit, and working capital, for example—it is easy to believe 
there have been plant-level changes in these variables in the not-too-distant past. Therefore, we 
are not yet in the long-run situation where plant characteristics are unrelated to plant adoption. 
Put another way, if we are closer to some initial period, such as the one depicted in Figure 2, we 
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would expect to see variation in adoption decisions based on plant characteristics. If we are 
closer to some later period, such as the one depicted in Figure 3, we would not. 

Second, the eventual lack of a relationship between plant-level characteristics and 
adoption is due to a lack of conditioning on the current level of efficiency xi,t—in other words, an 
omitted variable bias. The direction of this bias will be negative because efficiency is positively 
correlated with adoption tendency and negatively correlated with the adoption rate. We can see 
this in the right panel of Figure 3, where the positive correlation of xi,t and gi conceals the 
underlying distribution of gi when viewing the related distribution of xi,t – gi. If we conditioned 
on xi,t and only considered plants with xi,t = 0.3, for example, we would see a mode at xi,t – gi = 
0.5 corresponding to glow = –0.2 and a mode at xi,t – gi = 0.1 corresponding to ghi = 0.2. Based on 
the plot of adoption probabilities, those with glow = –0.2 would have virtually no chance of 
adoption, but those with ghi =0.2 would adopt with virtual certainty. 

Unfortunately, we do not have good direct measures of efficiency xi,t to correct the 
potential bias. When we estimate our model, we will attempt to control for current efficiency 
using previous technology adoptions. However, their effectiveness as proxies also implies that 
these previous adoptions will be correlated with adoption tendency measured by the other 
predictors of adoption. This correlation suggests that the usefulness of the proxy in revealing the 
effect of other adoption predictors could be thwarted by problems with collinearity and that we 
should carefully interpret the results: If we are close to the steady state depicted in Figure 3, 
controls for previous technology adoptions ought to be helpful, but if we are close to the initial 
conditions depicted in Figure 2, these technology controls may confound our identification. 

3.5. Aggregate Effects 

With some idea of how to identify the model with cross-sectional data, we now consider 
how to extrapolate from our model of energy-saving technology adoption to growth in aggregate 
energy efficiency. Our adoption model connects the rate of technology adoption to changes in 
the average efficiency among the population of potential adopters. From Equation (4), we have 

 
( )1t t t

yx x f y dy
s

δ
∞

+
−∞

 = + ⋅Φ − 
 ∫

 (11) 
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where ,i t i ty x g x= − − , xi,t is energy efficiency at plant i and time t, gi is adoption tendency at 

plant i, tx  is the mean efficiency at time t, Φ is the standard normal cumulative 
density, ( )y sΦ −  is the probability of adoption from Equation (9), s is a scale parameter,8 and ft 

(y) is the density function of (xi,t – gi – tx ).9 The expression ( ) ( )tf y y s dy
∞

−∞

⋅Φ −∫  reflects the 

average adoption probability at time t, which for a density ft that is relatively concentrated 
compared with the scale parameter s and not particularly skewed approximately equals ( )g sΦ . 

We can therefore approximate the growth in energy efficiency among our population of plants as 

 ( )1t tx x g sµ δ+= − ≈ ⋅Φ  (12) 

where µ is the periodic growth in energy efficiency. Note that any increase in ( )g sΦ  translates 

into a proportional increase in µ. 

The further extrapolation from efficiency growth among our sample of manufacturing 
plants to economy-wide efficiency rests on two assumptions. We need to assume that adoption 
decisions within our sample of manufacturing plants are representative of energy-saving 
technology adoption decisions throughout the economy. We also need to assume that aggregate 
growth in energy efficiency is governed primarily by these kinds of adoption decisions.10 The 
first assumption is necessary because we have adoption data only on manufacturing plants and 
want to draw general conclusions—although there seems to be little reason to suspect that 
decisions at manufacturing plants are biased in one direction or another vis-à-vis the decisions 
made by other economic agents.  

The second assumption is similarly necessary because we have little information 
concerning other sources of efficiency improvements. However, we have reason to suspect 
biases in this case: There are trends other than adoption that contribute to increasing energy 
efficiency at the aggregate level, such as a shift from manufacturing to service activities and the 
development and diffusion of larger, more radical technologies. To the extent these trends are 
exogenous to the policy changes we consider, we can view calculations based on our 

                                                 
8 The standard error of the random component of technology cost ji,t in (6). 
9 Depicted in the right panels of Figure 2 and Figure 3. As discussed in Section 3.3, this evolves to an ergodic 
distribution. 
10 One could also consider general equilibrium effects. For example, a reduction in energy use would lead to a 
reduction in the demand for intermediate goods to produce energy and a further indirect reduction in energy use per 
unit of final demand. This suggests that our partial equilibrium modeling would understate the aggregate effect. 
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assumptions as generous. That is, if we assume that all growth in energy efficiency is attributable 
to incremental technology adoption decisions, and then compute a fractional increase in growth 
based on an increase in the adoption rate, this will overstate the effect if some growth is 
exogenously related to other trends and unaffected by the increase in adoptions. On the other 
hand, if there are other endogenous trends, such as the adoption of larger, more radical, type B 
technologies, our analysis may understate the estimated effect on aggregate growth. 

One thing that we can happily ignore is differences in energy usage across plants. For 
example, if large plants always adopted more frequently than small plants (for the moment 
assuming γ < 1 in (8)), we would be concerned that a simple measure of the average adoption 
rate would be a misleading indicator of changes in aggregate efficiency. The large plants should 
be counted more. However, we know that eventually such cross-sectional differences in the 
adoption rate cannot persist. Eventually large plants will reach a position of relatively high 
efficiency compared with small plants, at which point smaller savings per unit of output will 
exactly counteract the scale of effect of more output at large plants and they will adopt at the 
same rate as small plants. 

4. Data and Estimation 

So far, we have discussed models of both diffusion for one specific technology and 
adoption from a menu of technologies. We have referred to the fact that we have data on a cross 
section of plants indicating their possession of four different technologies at two points in time—
and therefore their adoption decision during the intervening years. We now discuss the data in 
more detail and present our estimation results. 

4.1. Data on Technology Adoption and Plant Characteristics 

The data come from several large plant-level datasets collected periodically by the 
Census Bureau and the Department of Energy: the Longitudinal Research Database (LRD) 
(including data from the Annual Survey of Manufactures and the Census of Manufactures), the 
Manufacturing Energy Consumption Surveys (MECS), and the Quarterly Financial Report 
(QFR). Prior work by Morgenstern et al. (forthcoming) linked the first two of these to create a 
comprehensive database of operating characteristics over time for a large sample of 
manufacturing plants in four energy- and pollution-intensive industries: petroleum refining, 
plastics, pulp and paper, and steel. Long and Ravenscraft (1993) constructed a bridge linking 
these plant-level data to parent-firm financial data in QFR. 
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The 1991 and 1994 MECS data are of particular interest to this research. These surveys 
ask detailed questions about installed energy-saving technologies, both industry-specific and 
general, in the plant. In this study we focus on the four general energy-saving technologies 
available in all industries: computerized climate controls (HVAC), computerized process 
controls (process), waste-heat recycling (waste heat), and adjustable speed motors (motors).11 
Changes in the presence of these technologies between 1991 and 1994 are used to construct our 
measures of adoption. 

After considering a variety of plant-level characteristics as predictors of adoption, we 
settled on two variables: employment—a proxy for plant size and output—and energy prices. 
Our basic adoption model (3) supports these choices. Further, no other plant-level variables 
provide robust results. The employment variable is based on the LRD measure of total 
employment in 1991 and logged for our analysis. The energy price variable is the state-level 
energy price index in 1991 for the state where the plant is located.12  

One of the novel aspects of this research is our ability to consider firm-level 
characteristics that affect the adoption decision via the cost of adoption Ji,t in Equation (3). 
Through the use of parent-firm identifying codes in LRD, we can link plant-level data with 
financial information from the parent firms in QFR (Long and Ravenscraft 1993). We explored a 
range of financial characteristics that we believed might affect the firm’s cost of capital and, in 
turn, the cost of technology adoption. In the end, we settled on two: working capital and 
profitability. Working capital is defined as the excess of current assets over current liabilities, 
subtracting short-term debt and including installments on long-term debt. We scale this variable 
by total assets in our regression. Profitability is defined as the income (or loss) from operations 

                                                 
11 Computerized climate controls allow the plant to reduce its energy bill by more efficiently controlling heating, 
ventilation, and air conditioning systems. Computerized process controls, in contrast, lead to indirect energy savings 
by improving quality and reducing waste. In the plastics industry, for example, computers are used to quickly 
recognize and remedy aberrations in the cooling conditions surrounding the raw plastic, reducing the amount of 
plastic that must be scrapped. 
Waste heat recovery reduces energy use by substituting otherwise wasted heat for raw energy. In oil refining, for 
example, distilled oil is piped past incoming crude oil to preheat it, reducing the heat required for distillation. In 
steel, heat exchangers on smoke stacks are similarly used to channel steam back into the smelting process. 
Adjustable speed motors offer direct energy savings by eliminating the excess power provided by fixed-speed 
motors as needs fluctuate during production. Without this technology, this excess power is dissipated through 
friction or diverted to empty applications. 
12 The index is taken from EIA (1998). We experimented with price indices constructed from plant-level energy use 
data (expenditures divided by quantity), but this proved to be a very noisy measure. We also considered models with 
both logged prices and price changes; both led to weaker results. 
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divided by net sales. For both variables we construct a five-quarter average from the beginning 
of the second quarter of 1990 through the end of the second quarter of 1991. 

Table 1 provides summary statistics for these variables in our sample. 

4.2. Diffusion of Individual Technologies 

Earlier discussions about diffusion established Equation (2) as a descriptive relation for 
the change in adoption status over time for a single technology. This differential equation can be 
solved for the path of adoption over time to yield 

 

( )
( )( )
( )( )

1
2

1
2

exp 4

1 exp 4

c t t
p t

c t t

◊ -
=

+ ◊ -
 (13) 

where p(t) is the fraction of plants using the specified technology at time t and 1
2

t  is a constant of 

integration and represents the point in time when one-half of the potential users have adopted the 
technology. Using (13) and our data indicating adoption status in 1991 and 1994, we can 
compute the parameter c, measuring the speed of diffusion. In particular, given ( ) 00p p=  and 

( ) 11p p= , we can compute13  

 ( ) ( )0 14 log 1 1 log 1 1c p p= - - -  (14) 

Table 2 reports the diffusion speed c for each of the 16 industry-technology combinations 
available in our data. Standard errors are based on the sampling error in the measurement of p0 
and p1.14 Remarkably, the diffusion speed is essentially the same for all industry-technology 
combinations. That is, with 16 independent estimates of the diffusion speed, a chi-squared test of 
equality fails to reject at any level of significance. Given the three-year interval in the model 
(1991–1994), the estimated value, 0.22c = , indicates that the middle half of the population 
adopts the technology in about seven years.15 Put another way, after the technology has been 
adopted by 10% of the population, the average adoption time for the remaining 90% of the 

                                                 
13 If p0 and p1 are sufficiently close, this expression can be approximated by the ratio of the rate of adoption among 
nonusers, ( ), , 11 0i t i tP N N −∆ = = , to the fraction of potential users that have already adopted, 1tN − , based on (1).  

14 The standard error of p = x / n is given by ( )1p p n- ∏ . 

15 Note that ( )50% 3 years period 7 years
22% period

¥ ª . To get the exact value, we evaluate Equation (13). 
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population is about nine years.16 These estimates are consistent with previous studies of 
technology diffusion as well as estimates of capital depreciation.17 

Of course, our real interest is in how various explanatory variables influence the adoption 
rate and growth in aggregate energy efficiency. At this point we could directly estimate the effect 
of our four predictor variables—energy prices, employment, profit, and working capital—on 
diffusion speed for each of the 16 industry-technology combinations. Doing so, however, would 
not serve our goals. We could conclude, for example, that doubling prices might lower the 
average adoption time noted above from nine to seven years, but this would not allow us to draw 
conclusions about growth in aggregate efficiency.18 As highlighted in Figure 1, raising the 
diffusion speed of one technology without affecting the availability of future technologies leaves 
long-run energy efficiency unchanged. 

4.3. Technology Adoption and Plant Characteristics 

We instead return to our model developed in Section 3. That is, we lump all the 
technologies together and consider how our predictor variables influence the choice to adopt any 
new energy-saving technologies over the period 1991–1994. The fact that the diffusion speed is 
the same across all four technologies (and all four industries) provides some support for our 
assumption that these technologies are similar. 

Among plants that possessed three or fewer technologies in 1991—that is, they had the 
potential to adopt—we define our dependent variable yi to equal one if at least one new 

                                                 
16 This is a trickier calculation of ( ) ( )1

0.9 t

s t dp s
•

-Ú  where t is the time when exactly 10% have adopted and p(s) is 

the cumulative density function for adoption from Equation (13). 
17 Mansfield (1961) presents 12 estimates of the speed parameter c in Table 1 of his paper. Converting from annual 
to 3-year rates (appropriate for our data) and correcting for the factor 4 in Equation (2), his average estimate is 0.22 
(excluding tin containers, which had an outlying estimate nearly 10 times higher than any other value). Fraumeni 
(1997) reports a depreciation rate of 0.11 for industrial equipment. This suggests that after 14 years, newly invested 
equipment is worth only 20% of its original value. If equipment were typically replaced or improved at this point, 
and if there were an even distribution of installation dates, half the population would be installing new equipment—
and potentially adopting new technologies—every 7 years. 
18 Estimating the effect of these variables on diffusion speed, we find only 6 significant coefficients among the 64 
industry-technology coefficient combinations—3 employment coefficients, 2 energy price coefficients (1 negative), 
and 1 profit coefficient. The average across technologies and industries of the energy price coefficient is 0.01 (with a 
standard error of 0.01). Using this estimate, a doubling of energy prices, from $5.56 to $10.12 per Btu, would raise 
the average diffusion speed from 0.22 to 0.27 and lower the average adoption time after 10% penetration to 7 years. 
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technology is acquired in 1994 at plant i, and zero otherwise. We then estimate via maximum 
likelihood the model 

 ( ) ( )( ) ( )( )1, 1i iy y
i i i iL y z z zl l

-
= F -F¢ ¢  (15) 

where zi is a vector of the predictor variables (employment, energy prices, profit, and working 
capital, defined above) for plant i, λ is a vector of coefficients, Φ is the standard normal 
cumulative density function, ( )izlF ¢  is the probability of adoption, and L(yi,zi) defines the 

likelihood function. Table 3 reports the coefficients normalized to measure their effect on the 
probability of adoption at the mean z , e.g., ( )zf l l¢ , where φ is the standard normal 

probability density function.  

From Equations (9) and (10) and our discussion in Section , we know that the current 
level of energy efficiency, xi,t, is an important control variable. Because we do not have a good 
direct measure of energy efficiency, we use the presence of energy efficiency technologies in 
1991 as proxies and include them in the zi vector: Plants that have recently adopted energy-
saving technologies in the past should, other things equal, have higher efficiency. Because it is 
unclear how effective these proxies might be at explaining the relative differences in efficiency, 
however, we present estimates both with and without these controls in Table 3. 

The sample size for individual industries tends to be small with correspondingly large 
standard errors. Only 2 or 3 of 16 coefficients (4 coefficients × 4 industries) are significant, 
depending on the presence of technology controls. For that reason, we focus our discussion on 
the pooled estimates that combine observations across all 4 industries.19 In the pooled model, we 
find significant coefficients on employment and profit with technology controls, and significant 
coefficients on profit and energy prices without technology controls. With the exception of the 
coefficient on employment, the estimated coefficients are similar in magnitude and sign 
regardless of the presence of technology controls. 

As discussed in Section , the desirability of technology controls hinges on whether the 
relative efficiency of different plants has equilibrated in response to each plant’s natural adoption 
tendency. If relative efficiency has equilibrated, these controls are necessary to reveal any 
underlying relation. If not, their inclusion may introduce an unnecessary collinearity. In Table 3, 
we see these opposing effects. Employment, which is relatively constant for long periods and 

                                                 
19 Note that a chi-squared test of equality among coefficients across the four industries fails to reject at the 10% 
level for all 4 coefficients. 
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presumably has allowed equilibration, is insignificant unless technology controls are included 
(the value of 0.13 in the top panel is reduced to 0.01 in the bottom panel). On the other hand, 
coefficients on prices and financial characteristics, which change more frequently and are less 
likely to have allowed equilibration, change only slightly but loose some significance in the 
presence of technology controls. 

In addition to their significance, the signs on each coefficient also coincide well with our 
theory. More working capital and profit, which should indicate improved financial health and 
lower financing and adoption costs, leads to increased adoption as predicted by the negative sign 
on adoption cost jn in Equation (8). Higher energy prices also increase adoption, as predicted by 
the positive coefficient 1 – β on prices vn in Equation (8). Although theory argues for both 
positive and negative size effects—the coefficient 1 – γ on output qn is unsigned—we find 
positive effects. We cannot individually identify the underlying parameters γ, β, and s in the 
analytic model because we observe only the ratios (1 –γ )/s and (1 –β )/s.  

4.4. Prices, Profit, and Aggregate Energy Efficiency 

Now that we have a general understanding of the pattern of signs and significance in 
Table 3, we can consider their quantitative implications for adoption and aggregate energy 
efficiency. We focus on prices and to a lesser extent profit because they are both potentially 
influenced by policy choices. Calculations for all variables are summarized in Table 4. 

Working with the estimates without technology controls (bottom panel of Table 3), we 
find that the coefficient on energy prices is 0.06. From Table 1 we know that the mean energy 
price is $5.56 per Btu, so a 10% increase in energy prices would raise the adoption rate at the 
mean plant by 3.3% ($0.56 × 0.06). That is, the mean adoption rate—approximately the adoption 
rate at the mean plant—would rise from 49.1% (last column of Table 3) to 52.4%.  

Based on Equation (12), growth in aggregate energy efficiency is proportional to the 
mean adoption rate. If the adoption rate rises from 49.1% to 52.4%, then growth in energy 
efficiency should rise from 1.28% to 1.36%. That is, based on a historical growth rate of 1.28% 
per year,20 we would expect a 10% increase in energy prices to raise this growth rate to 
( )0.524 0.491 1.28 1.36¥ =  % per year, a 0.08% increase. Note that a doubling of energy prices 

                                                 
20 Between 1949 and 1999, aggregate energy efficiency rose from $48.57 to $91.60 per MBtu (constant 1996 
dollars; EIA 2000). This reflects an annualized growth rate of 1.28%.  
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(a 100% increase) would have roughly 10 times the effect, raising growth in energy efficiency to 
2.05%. Column (6) of Table 4 summarizes these growth calculations. 

The estimates of price effects match up well with estimates based on aggregate data, 
despite our extrapolation from individual plant behavior and heroic assumptions about 
innovation, technology costs, and the growth in aggregate efficiency. Figure 4 shows the growth 
in energy efficiency (averaged over 5 years) alongside energy prices since 1970. The doubling of 
energy prices from 1970 to 1980 was associated with a 2–3% growth rate in energy efficiency 
during the early 1980s versus an average of 1.3% over the past 50 years. A regression of 
aggregate efficiency growth on energy prices suggests that a doubling of energy prices would 
raise efficiency by 1.4% (with a standard error of 0.7%), from 1.3% to 2.7%.21 Both of these 
observations are consistent with our plant-level estimates. 

In addition to statistical significance and aggregate consistency, we can also ask about the 
practical significance of these estimates. In particular, how much will these changes in the 
growth rate affect future energy efficiency? Consider that energy efficiency would rise from $92 
per MBtu today to $173 per MBtu by 2050 based on an extrapolation of the historical rate of 
energy efficiency growth, 1.28%. Raising that growth rate to 1.36% via a 10% increase in energy 
prices would imply that energy efficiency reaches $180 per MBtu by 2050—an improvement 
over the baseline energy efficiency of only 4.3% after 50 years. However, doubling energy prices 
and raising the growth rate to 2.05% would achieve an efficiency of $253 per MBtu by 2050, a 
46% improvement over the baseline. These calculations are summarized in columns (7) and (8) 
of Table 4.  

All of this suggests that small increases in the price of energy will have marginal 
consequences for future efficiency, and even large price increases will require years to have a 
significant impact. Such results are consistent with our historical observations of gradual 
efficiency improvements—even during the energy price shocks of 1970s, we did not see 
dramatic, rapid reductions in energy use. 

A final cautionary note arises from the consequences associated with profit. Applying the 
above calculations to the profit coefficient, we find that a 10% increase in profit, from a rate of 
0.045 to 0.050, would raise the adoption rate from 49.1% to 49.9% based on the parameter 

                                                 
21 Based on a simple regression of efficiency growth on energy prices that allows for first-order autocorrelation of 
the errors, the coefficient on energy prices is 1.35 with a standard error of 0.65 (the estimated error autocorrelation 
of 0.73 is also significant). 
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estimate of 1.72 without technology controls. This would correspond to an increase in the growth 
rate of energy efficiency from 1.28% to 1.30%. The cautionary note arises if we believe that 
increased energy prices might lower profit. If, for example, a 10% increase in energy prices 
cannot be passed on to consumers, this might lower profit—perhaps by more than 10%.22 For 
example, a 50% decline in profits would more than offset the effect of a 10% rise in energy 
prices and lead to a decline in adoption and the growth rate of aggregate energy efficiency, rather 
than an increase. 

5. Conclusion 

From those results we draw two qualitative conclusions. Because we find that financial 
health has a significant effect on adoption, it will be important to carefully consider the broader 
economic impact of public policy to spur greater energy efficiency. A policy that immediately 
raises energy prices without allowing firms to anticipate the change may lead to a declining 
adoption rate if their financial health is adversely affected. Second and more significantly, the 
results suggest that improved technology will not generate significant improvements in energy 
efficiency for many years. Because improvements in energy efficiency currently progress at only 
1.3% per year, even a large increase in this growth rate will take many years to translate into 
significant reductions in energy use below the baseline forecast.  

Both of those conclusions follow naturally from what we know about past trends in 
aggregate energy efficiency as well as what we can observe in a simple model relating adoption 
to plant and firm characteristics. A novel part of this paper, however, is a model of technology 
adoption that quantitatively links individual plant behavior to aggregate energy efficiency. We 
can then estimate the actual change in energy efficiency growth arising from higher energy 
prices. Doing so, we find that for every 10% rise in prices, the annual growth rate of energy 
efficiency rises by 0.08%—that is, from 1.28% to 1.36%. A 10% increase itself leads to only 
marginal reductions in energy use even after 50 years. A doubling of energy prices, however, 
generates about a 2% growth rate in energy efficiency and an overall increase in efficiency of 
about 50% after 50 years (a one-third reduction in energy use).  

                                                 
22 The 1997 share of energy expenditures in total costs were, 0.05, 0.05, 0.02, and 0.10 in pulp and paper, plastics, 
petroleum, and steel, respectively (U.S. Department of Commerce 1997). Given that the mean profit rate was 0.05, 
this suggests that a 10% rise in energy prices would lower profit by 5% to 20%, ignoring any demand effects. 
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This research casts doubt on the idea that modest incentives can lead to large energy 
savings but demonstrates that more dramatic incentives—such as a doubling of energy prices—
can eventually generate a substantial effect. Yet there are important caveats. We have focused on 
incremental technologies that do not fundamentally change the way plants operate—type A 
improvements in the literature. It is entirely possible that larger, type B innovations could be 
encouraged along with the incremental technologies, and that these larger innovations could 
offer substantial improvements in the nearer term. A second possibility is that aggregate changes 
in energy prices may bring forth faster technological development than revealed by our cross-
sectional analysis, a problem inherent whenever cross-sectional data are applied to aggregate 
questions. Finally, some of our assumptions linking technology adoption to aggregate energy 
efficiency (e.g., the constant size of the efficiency gain) could prove to be too conservative. 
Despite our conclusions that large incentives and long horizons are necessary to substantially 
alter aggregate energy efficiency, these caveats suggest ways that the economy-versus-the-
environment trade-off could be altered even in the near term, as well as indicate potentially 
fruitful areas for further research. 
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Table 1: Descriptive Statistics in 1991 

 
Mean 

Standard 
deviation 

   
Employment (logged) 6.050 1.085 
   
Energy prices ($ per MBtu) 5.563 1.265 
   
Working capital (fraction of total assets) 0.085 0.116 
   
Profitability (fraction of net sales) 0.045 0.055 
   
Dummy variables   
   

Installed computer HVAC 0.165  
   
Installed computer process controls 0.661  
   
Installed waste heat recycling 0.579  
   
Installed variable-speed motors 0.589  
   
Pulp and paper plant 0.399  
   
Petroleum refinery 0.231  
   
Steel mill 0.174  
   
Plastics plant 0.196  
   

Total plants 316  
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Table 2: Estimates of Diffusion Speeda 

(standard errors in parentheses) 

 Pulp and paper Steel Plastics Petroleum 

HVAC 0.25 0.12 0.22 0.24 
 (0.05) (0.06) (0.06) (0.06) 

Process 0.26 0.42 0.29 0.23 
 (0.05) (0.10) (0.08) (0.06) 

Waste heat 0.15 0.17 0.20 0.24 
 (0.04) (0.05) (0.05) (0.08) 

Motors 0.30 0.33 0.17 0.24 
 (0.07) (0.07) (0.06) (0.05) 
     
Plants (n) 126 55 62 73 
 
Precision weighted average:0.22 (0.01) 

Simple average:0.24 (0.02) 

Chi-squared test:18.2 (p-value of 0.31) 

(all equal to 0.22; ~ χ2 (16)) 

aDiffusion speed is the fraction of the population adopting a technology each period at the diffusion midpoint (50% 
adoption). 
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Table 3: Probit Model of Technology Adoption 
(dependent variable is adoption of one or more new technologies during 1991-1994) 

*Asterisks indicate significance at the 5% level. 
aTechnology controls reflect the presence of four dummy variables indicating whether or not each of the 
four technologies was installed in 1991. 
bPooled model includes dummy variables for each industry (not reported). 

  increase in adoption probability for a unit change in:   

 working energy       mean 
 capital prices employment profit  sample adoption
  (% of assets) ($/btu) (logged) (% of sales)   size rate 
           
with 1991 technology controls:

 

        
  pulp and paper 1.45 0.05 0.05 2.03  112 0.455 
 (0.85) (0.05) (0.06) (1.15)    
  plastics 0.16 -0.05 0.17 5.67*  56 0.500 
 (0.68) (0.07) (0.12) (2.21)    
  petroleum -0.90 0.07 0.17* -0.97  66 0.500 
 (0.68) (0.06) (0.08) (1.58)    
  steel 1.46* -0.02 0.11 0.42  51 0.549 
 (0.70) (0.11) (0.10) (1.75)    
 
             
  pooled 0.23 0.04 0.13* 1.54*  285 0.491 
 (0.31) (0.03) (0.04) (0.65)    
            

   
 
          

without 1991 technology controls:         
  pulp and paper 1.19 0.09* -0.05 1.99  112 0.455 
 (0.74) (0.04) (0.05) (1.04)    
  plastics -0.21 -0.02 0.03 3.69*  56 0.500 
 (0.57) (0.06) (0.09) (1.57)    
  petroleum -0.45 0.07 0.07 -0.61  66 0.500 
 (0.62) (0.05) (0.06) (1.51)    
  steel 1.05 -0.04 -0.01 0.98  51 0.549 
 (0.56) (0.09) (0.07) (1.43)    
 
             
  pooled 0.26 0.06* 0.01 1.72*  285 0.491 
 (0.28) (0.03) (0.03) (0.60)    
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Table 4: Changes in Plant and Firm Characteristics and Future Energy Efficiency 

 
aColumn 1 indicates the estimated coefficients from the pooled model without technology controls, bottom panel of Table 3, except employment. 
bColumn 2 indicates the change in the corresponding right variable, computed from the mean reported in Table 1. 
cApproximate indicates the product of the variable coefficient multiplied by the specified change, approximating the change in the adoption probability. Exact 
indicates the exact change in adoption probability for the mean plant, taking into account the curvature of the probit function. 
dColumn 5 is computed as 0.49 + (previous column) ÷ 0.49, where 0.49 is the adoption rate of the mean plant. 
eThe baseline level of energy efficiency after 50 years is $173 of GDP per MBtu (based on a growth rate of 1.28%). 

 Change in adoption rate (%) 
 Changeb Estimated 

coefficienta 
Approximatec Exactc 

New ÷ old 
adoption rated 

Growth in energy 
efficiency (%) 

$GDP per MBtu 
after 50 years 

Relative to 
baselinee (%) 

 (1) (2) (3) (4) (5) (6) (7) (8) 
          
 Baseline      1.28 173  

         
10% increase         

Working 
capital 0.01 0.26 0.2 0.2 1.00 1.29 174 0.3 

Energy prices 0.56 0.06 3.3 3.3 1.07 1.36 180 4.3 

Employment 0.61 0.13 7.7 7.7 1.16 1.48 191 10.4 

Profit 0.005 1.72 0.8 0.8 1.02 1.30 175 1.0 
         
100% increase         

Working 
capital 0.09 0.26 2.2 2.2 1.04 1.34 178 2.9 

Energy prices 5.56 0.06 32.5 29.5 1.60 2.05 253 46.1 

Employment 6.05 0.13 77.2 48.2 1.98 2.54 321 85.5 

Profit 0.05 1.72 7.7 7.7 1.16 1.48 191 10.4 
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Figure 1: Effect of Diffusion Speed on Aggregate Energy Efficiency 

 

(dashed line reflects faster diffusion) 
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Figure 2: Initial Distribution of Plant Efficiency and Efficiency Minus Adoption Tendency 
(simulated data) 
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Figure 3: Distribution of Plant Efficiency and Efficiency Minus Adoption  
Tendency after 30 Years (simulated data) 
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Source: Table 1.5 (growth in energy efficiency) and Table 3.3 (energy prices), EIA (2000); Table 
B-7 (GDP price index), CEA (2000). 

Figure 4: Growth in Aggregate U.S. Energy Efficiency versus Energy Price Level 
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