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Measuring the Contribution to the Economy of Investments in 
Renewable Energy: Estimates of Future Consumer Gains 

Molly K. Macauley, Jhih-Shyang Shih, Emily Aronow, David Austin, Tom Bath, and 
Joel Darmstadter 

Abstract 

In this paper we develop a cost index–based measure of the expected consumer welfare 
gains from innovation in electricity generation technologies. To illustrate our approach, we 
estimate how much better off consumers would be from 2000 to 2020 as renewable energy 
technologies continue to be improved and gradually adopted, compared with a counterfactual 
scenario that allows for continual improvement of conventional technology. We proceed from 
the position that the role and prospects of renewable energy are best assessed within a market 
setting that considers competing energy technologies and sources. We evaluate five renewable 
energy technologies used to generate electricity: solar photovoltaics, solar thermal, geothermal, 
wind, and biomass. For each, we assume an accelerated adoption rate due to technological 
advances, and we evaluate the benefits against a baseline technology, combined-cycle gas 
turbine, which experts cite as the conventional technology most likely to be installed as 
incremental capacity over the next decade. We evaluate benefits against both the conventional 
combined-cycle gas turbine prevalent at this time and a more advanced combined-cycle gas 
turbine expected to be employed during the coming decade. We estimate the model for two 
geographic regions of the nation for which renewable energy is, or can be expected to be, a 
somewhat sizable portion of the electricity market—California and the north central United 
States.  

In present-value terms we find that median consumer welfare gains over 20 years vary 
markedly among the renewable technologies, ranging from large negative values (welfare losses) 
to large positive values (welfare gains). The effect of uncertainty can lead to estimates that are 
20% to 40% larger or smaller than median predicted values. Our results suggest that portfolios 
that give equal weight to the use of each generation technology are likely to lead to consumer 
losses in our regions, regardless of the role of the externalities that we consider. However, when 
the portfolio is more heavily weighted toward certain renewables, consumer gains can be 
positive. 
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Measuring the Contribution to the Economy of Investments in 
Renewable Energy: Estimates of Future Consumer Gains 

Molly K. Macauley, Jhih-Shyang Shih, Emily Aronow, David Austin, Tom Bath, and 
Joel Darmstadter∗ 

Executive Summary 
In the wake of calls for increased accountability in public sector investments, federal 

agencies are being asked to design and demonstrate performance results for their programs and 

policies. In addition to satisfying statutory reporting requirements, such as those set forth in the 

1993 Government Performance and Results Act, measures of the effectiveness of federal 

investments can provide useful information for program managers and other decisionmakers in 

guiding the allocation of scarce resources. 

In this paper we develop a cost index–based measure of the expected consumer welfare 

gains from innovation in electricity generation technologies. To illustrate our approach, we 

estimate how much better off consumers would be from 2000 to 2020 as renewable energy 

technologies continue to be improved and gradually adopted, compared with a counterfactual 

scenario that allows for continual improvement of conventional technology. We proceed from 

the position that the role and prospects of renewable energy are best assessed within a market 

setting that considers competing energy technologies and sources. We evaluate five renewable 

energy technologies used to generate electricity: solar photovoltaics, solar thermal, geothermal, 

wind, and biomass. For each, we assume an accelerated adoption rate due to technological 

advances, and we evaluate the benefits against a baseline technology, combined-cycle gas 

turbine, which experts cite as the conventional technology most likely to be installed as 

                                                 
∗ Contact:  macauley@rff.org. We thank the Department of Energy, under project DE-FG01-00EE10758, and 
Resources for the Future for their support of our project. Responsibility for errors and opinions rests exclusively 
with the authors. Macauley, Shih, Aronow, and Darmstadter are at Resources for the Future. Austin was at 
Resources for the Future during part of the project and is now at the Congressional Budget Office. None of the 
views in this paper represent those of the CBO. Bath is an independent consultant. 
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incremental capacity over the next decade. We evaluate benefits against both the conventional 

combined-cycle gas turbine prevalent at this time and a more advanced combined-cycle gas 

turbine expected to be employed during the coming decade. We estimate the model for two 

geographic regions of the nation for which renewable energy is, or can be expected to be, a 

somewhat sizable portion of the electricity market—California and the north central United 

States.  

Among the most important issues to consider in comparing future electricity generation 

technologies from the perspective of social welfare are external effects, both negative and 

positive, on the environment, human health, and important attributes of society. For example, 

undesirable air emissions of conventional power produced by coal or even combined-cycle gas 

turbines are often cited by advocates of renewable energy as a major disadvantage of fossil-based 

technologies; wind turbines’ effects on migrating birds or noise pollution for neighboring 

residents are externalities mentioned in discussions of wind power. Our model is able to 

explicitly incorporate a wide range of such externalities but for now is limited by the absence of 

quantifiable data about many of them. Few external effects of renewable energy technologies 

have been addressed systematically, and some gaps remain in the understanding and 

measurement of external effects associated with conventional power. Thus, we incorporate in our 

model two negative externalities that have been subjected to at least tentative empirical 

treatment: the effects of carbon dioxide on global warming and thermal pollution on water 

quality. We find that rigorous attention to a wider array of externalities constitutes a major area 

for further research in understanding the comparative economics of renewable and conventional 

energy.  

Our model extends previous work by Bresnahan (1986). Using well-developed index 

number theory, he constructs an index for comparing realized welfare gains from past investment 

in new technologies. His index compares the price and performance of a new product against the 

price and performance of a best-available product had the technical advance not occurred. The 

approach is similar to the familiar consumer price index, which to the extent possible 

incorporates quality differences among goods and services. An advantage of an index-based 

approach is that under certain general mathematical assumptions, the index is a function only of 

observed costs, adjusted for quality differences, and the share of expenditure represented by the 
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product in total expenditures. The index is also ideal for applying to derived demand rather than 

final demand for a product. For example, Bresnahan applies the index to consumer demand for 

new computer technologies as inputs into financial and other sectors of the economy. By 

analogy, we apply our index to derived demand for electricity generation.  

We extend the model in two directions. The first extension makes the index prospective 

(Bresnahan’s was retrospective) so that we can evaluate the potential future gains from new 

technologies. We allow for gradual diffusion of renewable energy electricity generation 

technologies, and we express the model’s parameters as probability distributions to reflect 

uncertainty over future or estimated parameter values for both the renewables and the 

conventional, defender technology—combined-cycle gas turbine. We also extend the model to 

include externalities that may not be fully reflected in capital and operating costs. We conduct 

sensitivity analyses, in which we shift parameter locations, to test the robustness of our 

assumptions about uncertain parameters. The result is a theoretically grounded economic model 

of future welfare gains embedded within a cost-index simulation model. The output is a rigorous 

yet transparent measure that can be used to assemble research and development (R&D) 

portfolios from a selection of competing projects, or to indicate performance of prospective 

investment in new technologies. It is important to note that neither our approach, nor 

Bresnahan’s original model, is representative of overall public net benefit, as we do not subtract 

public or private expenditures on energy R&D or other expenditures that represent the costs of 

obtaining these benefits. However, our results are a starting point toward measuring net benefit 

(a no doubt daunting task).  

In present-value terms we find that median consumer welfare gains over 20 years vary 

markedly among the renewable technologies, ranging from large negative values (welfare losses) 

to large positive values (welfare gains). For example, wind power consistently leads to potential 

gains, and photovoltaics leads to potential losses. Although many observers would agree that 

wind power is the renewable technology most “likely to succeed” in the near term, the sizes of 

these effects, their sensitivity to adoption rates and inclusion of externalities, and their regional 

differences would be difficult to predict without the framework we offer. For example, our 

results show that including carbon and thermal water externalities can increase the relative 

benefits of some renewables on the order of 20% to 40% compared with combined-cycle gas 
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turbines. Including a water externality but not a carbon externality increases the relative benefits 

of wind and geothermal technologies by 15% to 20% and worsens the relative performance of 

solar thermal and biomass compared with combined-cycle gas turbines, even though there is also 

a water externality associated with the turbines.  

Our results also indicate the importance of considering technical innovation in the 

defending technology. Comparing advanced with conventional combined-cycle gas turbines and 

holding all other assumptions constant, we show that surplus values are overstated by around 5% 

when innovation in the defending technology is omitted.  

The effect of uncertainty can lead to estimates that are 20% to 40% larger or smaller than 

median predicted values. These are rather large differences even though our uncertainty bounds 

are rather small (generally, plus or minus 10% of the reported data values). But the effects of 

uncertainty increase as the time period extends into the future. These results also suggest that 

comparing future scenarios without taking uncertainty into account could lead to misleading 

conclusions.  

The 20-year, median discounted present value of potential consumer surplus for 

parameterizations of the model leading to welfare gains can range from about $111 to $556 per 

household in California and $300 to $600 per household in the north central region. For rough 

comparison, annual household expenditures on electricity are about $388 and $378 in each 

region, respectively. The discounted value of the largest potential surplus, then, is about 40% to 

60% more than one year’s household electricity expenditure.  

The model also permits exogenous construction of hypothetical portfolios or 

combinations of energy generation technologies. Our results suggest that portfolios that give 

equal weight to the use of each generation technology are likely to lead to consumer losses in our 

regions, regardless of the role of the externalities that we consider. However, when the portfolio 

is more heavily weighted toward certain renewables that give positive surplus values in pairwise 

comparisons with the defending technology, consumer gains can be positive. The different 

allocations in the variable-weight portfolios for our regions illustrate the usefulness of models 

that can be separately evaluated on a geographic basis rather than nationally aggregated. In a 
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future extension of our research, we would like to allow for an endogenous optimization of the 

portfolio. 

I. Introduction 

In the wake of calls for increased accountability in public sector investments, federal 
agencies are being asked to design and demonstrate performance results for their programs and 
policies. In addition to satisfying statutory reporting requirements, such as those set forth in the 
1993 Government Performance and Results Act, measures of the effectiveness of federal 
investments can provide useful information for program managers and other decisionmakers in 
guiding the allocation of scarce resources. 

In this paper we develop an index-based measure of the performance of research and 
development (R&D) investment in renewable energy technologies for the production of 
electricity. To illustrate our approach, we estimate how much better off consumers would be 
from 2000 to 2020 as renewable energy technologies continue to be improved and gradually 
adopted, compared with a counterfactual scenario that allows for continual improvement of 
conventional technology. Specifically, the application of our model in this paper singles out the 
use of renewables in electricity generation, the sector where an expanded role for renewables 
probably has greatest promise.1 We proceed from the position that the role and prospects of 
renewable energy can be assessed only within a market setting that considers competing energy 
technologies and sources. We evaluate five renewable energy technologies used to generate 
electricity: solar photovoltaics, solar thermal, geothermal, wind, and biomass. For each, we 
assume an accelerated adoption rate due to technological advances, and we evaluate the benefits 
against a baseline technology, combined-cycle gas turbine, which experts cite as the 
conventional technology most likely to be installed as incremental capacity over the next decade. 
We evaluate benefits against both the conventional combined-cycle gas turbine prevalent at this 
time, and a more advanced combined-cycle gas turbine expected to be employed during the 
coming decade. We discuss and, where available data permit, adjust for several environmental 
externalities associated with these technologies. We estimate the model for two geographic 

                                                 
1 The model can be generalized or extended to measure gains from investment in other technologies; for example, 
some of the authors have previously used it to consider gains from investments in new space technologies and new 
digital data storage devices.  
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regions of the nation for which data on production costs and social costs are available and for 
which renewable energy is, or can be expected to be, a somewhat sizable portion of the 
electricity market—California and the north central United States.  

The model we develop is an index-based measure of the expected gains accruing to 
consumers, known formally as consumer welfare gains, from innovation in energy technologies. 
The framework (1) compares future welfare gains from renewable energy with those expected 
from conventional energy technology; (2) takes into account uncertainty surrounding anticipated 
future costs of producing renewable and conventional energy, including, importantly, cost 
reductions expected from technical innovation in both technologies; and (3) explicitly considers 
other social costs and benefits associated with energy technologies, such as environmental 
externalities. In addition, the model incorporates a spatial dimension that accounts for differences 
in the geographic distribution of renewable energy supplies, enabling the estimation of welfare 
gains for regions of the country or by the nation as a whole.  

The approach goes beyond traditional measures of energy efficiency and energy balance 
(see discussion in Bath 1999) to combine these factors in a conceptually consistent and 
empirically estimable framework. The approach can balance investments in renewable energy on 
the basis of cost, performance, risk, and the potential contribution over time to energy and 
environmental goals. It is important to note that our approach is not representative of overall 
public net benefit, as we do not subtract public or private sector expenditures on energy R&D or 
other expenditures that represent the costs of obtaining these benefits. However, our results are a 
starting point toward measuring net benefit (a no doubt daunting task). We speculate further on 
net benefits in our conclusion.  

The rest of the paper proceeds as follows. In section II we describe the model, our 
assumptions, and our incorporation of uncertainty. In section III we describe the specific energy 
generation technologies we address together with our data, their sources, and their limitations. 
Section IV gives results of numerous scenarios we construct for evaluating the model and testing 
its sensitivity to our assumptions. In this section, our scenarios include several “portfolios” that 
combine renewable technologies to estimate consumer surplus that might be associated with a 
portfolio approach to energy management. Section V presents our conclusions.  

II. The Model 

The model involves estimation of a quality-adjusted cost index that we use to calculate 
future consumer welfare gains. The index is based on well-developed index number theory and 
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its application by previous researchers to measuring realized gains from technological change. 
We modify the framework to be forward looking, measuring prospective gains and, as a result, 
incorporating uncertainty. In our application, we also extend the framework such that the quality 
adjustments that are employed in traditional index measurement become adjustments to account 
for externalities associated with energy generation.  

In this section we discuss the concept of the index and the simulation model we 
developed to estimate the index and calculate the value of consumer surplus. We also discuss our 
assumptions about adoption rates, the role of externalities, and the method by which we 
incorporate uncertainty about future generation costs and other data in the model. 

Details about the Index 

We extend an approach pioneered by Bresnahan (1986) to develop an index for 
comparing realized welfare gains from past investment in new technologies. Bresnahan’s index 
compares the price and performance of a new product against the price and performance of a 
best-available product had the technical advance not occurred. The approach is similar to the 
familiar consumer price index, which to the extent possible incorporates quality differences 
among goods and services. An advantage of an index-based approach is that under certain 
general mathematical assumptions, the index is a function only of observed costs, adjusted for 
quality differences, and the share of expenditure represented by the product in total expenditures. 
The index is also ideal for applying to derived demand rather than final demand for a product. 
For example, Bresnahan applies the index to consumer demand for new computer technologies 
as inputs into financial and other sectors of the economy. By analogy, we apply our index to 
derived demand for electricity generation.   

Our index, based on Austin and Macauley (2000 and 2001), extends Bresnahan’s 
approach in two directions for applicability to the case of investment in renewable energy. The 
first extension is to make the index prospective (Bresnahan’s was retrospective) so that we can 
evaluate the potential future gains from investment in the technologies. We allow for gradual 
diffusion of renewable energy electricity generation technologies, and we express the model’s 
parameters as probability distributions to reflect uncertainty over future or estimated parameter 
values for both the renewables and the conventional, defender technology—combined-cycle gas 
turbine (CCGT). We also extend the model to account for externalities associated with the 
technologies, although data gaps somewhat limit the empirical application of this extension. We 
also conduct sensitivity analyses, in which we shift parameter locations to test the robustness of 
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our assumptions about uncertain parameters. The result is a theoretically grounded economic 
model of future welfare gains embedded within a cost-index simulation model. The output is a 
rigorous yet transparent index that can be used to assemble R&D portfolios from a selection of 
competing projects, or to indicate performance of prospective investment in new technologies.   

Figure 1 illustrates the index. It shows the expected welfare gain from changes in 
electricity costs (including externalities) brought about by investment in renewable energy. The 
demand curve is given by D. Period 0 supply, SO

DT, is the baseline, where only the defender 
technology, DT, is available. Investment in renewables shifts their supply curve to S1

RE because 
of a combination of cost reductions and net social benefits (see second panel). Meanwhile, 
continuous improvement in the defender technology means the baseline supply curve would shift 
to S1

DT. The shaded area represents the welfare gain due to the investment in renewables. It is 
measured with respect to the future S1

DT curve rather than the observed SO
DT.  
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Figure 1. Derived demand for renewable energy technologies: Illustration of net surplus change 

 

If S1RE lies to the right of S1DT, the investment offers an improvement over the 
defender technology. In this case, the index is greater than unity, meaning costs are higher under 
the baseline and consumers will be better off if the investment occurs.2 In the absence of 
adjustments for social benefits and costs, the index may be less than unity (implying that 
investment in renewables does not appear to produce a welfare gain). However, these 
adjustments are likely to increase it significantly. Note that even if after adjusting for net social 
benefits the index is less than unity, the index permits useful comparisons across investments 
(favoring those that yield indexes as close to 1 as possible) and can indicate progress over time 
as continued investment results in innovation that nudges the index upward. This interpretation 
furthers the usefulness of the index for policymakers to measure performance over time.  

To illustrate the underpinnings of the index, expression (1) below underlies the concept 
of the cost index. In (1), 

dtC *
 is the minimum cost of achieving “utility” 

dtu , or the socially 
optimal combination of conventional energy technology (for electricity) and other goods and 
services, expressed relative to the cost of 

dtu  given the investment in renewables that brings 

                                                 
2 An important note is that we measure the welfare gain gross of the investment expenditure made in renewables.  



Resources for the Future Macauley et al. 

 10  

about reductions in their costs (or increases in their social benefits). Similarly, 
IC *
 is the cost of 

achieving optimal utility uI under the investment scenario with conventional energy costs 
dtW  

relative to the cost of renewables with postinnovation costs 
REW .  

 

 
),,(
),,(

*

*
*

REIdt

dtdtdt
dt

WPuE
WPuEC =  and 

),,(
),,(

*

*
*

REII

dtdtI
I

WPuE
WPuEC = . (1) 

 

Because we assume an innovation is adopted gradually, the quality-adjusted cost of 
renewables (i.e., adjusted for social benefits and costs) is a combination of use of renewables and 
use of conventional technology, such that dtIRE WWW )1( ρρ −+=  where ρ  is the adoption 

rate of the renewables and IW  is their cost if fully adopted. Prices P  of other goods and services 
can change over time, but we assume they are unaffected by renewables: REdt PP =  at all times.  

Figure 2, which is counterpart to figure 1 on the basis of duality theory (linking demand 
curves to expenditure functions), depicts the relationship among the expenditure functions E*, 
utility, and the two cost indexes represented by C*dt and C*I.3 A welfare-enhancing innovation 
lowers consumers’ costs of achieving a given level of utility, shifting the expenditure function 
downward from E*(u,Wdt) to E*(u,WRE). The vertical distance between the two curves depends 
on the share of electricity generation costs in total consumption expenditures; their ratio is given 
by C*. Given a welfare-enhancing innovation I, consumers’ optimal utility rises to U*I > U*dt. 
With separable utility and other prices unaffected, the relative cost to achieve u*I with higher 
baseline prices Wdt versus reduced, postinnovation prices WRE exceeds the relative cost to 
achieve U*dt.  
 

                                                 
3 The indexes are a Laspeyres index, measuring consumer willingness to accept compensation to give up the gains 
from innovation, and a Paasche index, measuring their willingness to pay to receive gains from innovation. The 
Tornqvist index is an equally weighted average of the two. See Varian (1992) for details. As is well known from the 
theory of index numbers, no single index satisfies all “desirable” properties or tests (such as tests related to 
scalability, transitivity, symmetry, and proportionality). The Tornqvist index satisfies many of the tests (see Diewert 
and Nakamura 1993).  
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$Exp Cost Index

Cost Index C*

E*(u,Wdt) 

E*(u,    WRE) 

Utility u*dt u*I

C*I 
C*dt

0 

1 

 

Figure 2. Relationship between expenditures, cost index4 
 

Simplifying (1) based on cost index theory (see Caves et al. 1982) and assuming, as is 
routine in expenditure theory, that the consumer expenditure function E* can be represented by a 
translog functional form,5 we obtain the index in (2): 

 ( ) 















⋅+=× RE

dt
IdtIdt

W
WssCC ln)(2

1**ln2
1 . (2) 

 

The terms Idt ss +  give, respectively, electricity expenditures as a share of personal 
consumption expenditure (PCE) under the baseline and investment-in-renewables scenarios. 
These expenditure data serve as “weights” in the index. The monetary value to consumers of the 
investment is just the product of their predicted PCE times the exponent of the cost index. This 

                                                 
4 To simplify figure labeling, prices P have been omitted from the expenditure functions. 
5 The translog well approximates many production and expenditure functions.  
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corresponds to the area of the shaded rectangle in figure 1.6 Thus, the index lets us ask, “How 
much better off are we (i.e., society in general) as a result of investment in renewables for the 
production of electricity, taking into account the alternative (conventional technology) and 
differences in the social benefits and costs between renewables and conventional technology?”  

To summarize, the index can be used as, first, a measure of performance, and second, a 
tool for allocating investment across different renewable energy technologies. The index allows 
an apples-to-apples comparison among renewables and between renewables and a conventional 
technology. It illustrates “how much better off” we are likely to be as a result of the investments, 
taking into account innovation in the conventional technology as well as in renewables.  

The Simulation Model 

We construct a computer-based model to estimate the index and consumer surplus. The 
model uses Monte Carlo techniques to predict values of the two measures based on data that we 
parameterize using probability distributions, rather than point estimates, to characterize 
uncertainty. The model is implemented using Analytica, a software package optimized for 
conducting uncertainty analysis.  

Figure 3 illustrates the model. It begins with data on generation costs for each of our 
technologies. We add to these private costs the monetized costs of externalities to obtain the sum 
of private and social generation costs. We then use our assumptions about the rate at which new 
technologies will be used (which we label adoption rates) to estimate factor shares for the index, 
following equation (2). The cost index itself is the ratio of two alternative outcomes: generation 
costs weighted by the shares of PCE devoted to generation in the baseline, or defending 
technology scenario (combined-cycle gas turbine generation), compared with the innovating 
technology scenario (renewables). In the last step, we use the index to estimate the discounted 
present value of the stream of benefits to consumers over time. We use the shares together with 
the end use price of electricity and total personal consumption expenditures to estimate consumer 

                                                 
6 Because costs and expenditure shares of nonelectricity consumption in personal consumption expenditure are 
assumed to be unchanged by the results of investment in renewables, separability assumes that these parameters 
cancel in (2).  Also, changes in relative energy technology prices will affect the mix of inputs used in production of 
goods and services requiring electricity. However, it is not necessary to make any assumptions about input 
substitutions because the functional form of the cost function underlying the index places no restriction on technical 
substitution among inputs. Nor does the function restrict the income and price elasticities of demand for electricity-
using services.   
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surplus7 that would be expected from the innovating, renewable technologies, measured in 
comparison with the baseline, defending technology, given our assumptions and data. Surplus is 
expressed as the discounted present value of consumer benefits over the period 2000–2020.  

The cost ratio indicates relative costs of the competing technologies, and the expenditure 
shares adjust for levels of demand. A superior new technology might generate a large quality-
adjusted cost ratio, but since expenditures on electricity generation are small relative to PCE, 
consumers’ cost of living will not be much affected. In other words, we expect our index 
numbers to be smaller or larger than 1, but in any case, very close to 1. Consumer surplus, or 
total benefits, can be very large, however.  

 

 

Generation
Unit Costs

Monetized Quality
Adjustments
(Emissions

Externalities)

Market
Conditions

(Adoption Rates)
Cost Indices

Quality
Adjusted

Generation
Costs

Net Benefit
Personal

Consumption
Expenditure

 
Figure 3. Structure of simulation model 

                                                 
7 From figure 1 it can be seen that the end use price of electricity (i.e., the price determined by generation, 
transmission, and distribution) rather than the fraction of the end use price represented by generation only is the 
relevant measure for consumer surplus.  

Discounted   
Present Value 

Benefit      
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As noted, we parameterize all our data inputs using probability distributions to 
characterize uncertainty that may be present in imperfectly observed data as well as that which 
naturally surrounds expectations about the future. We discuss this parameterization below. In 
addition, we note that our modeling approach is independent of our choice of technologies and 
thus is useful for consideration of other technologies; it is also easily extended to include 
additional externalities and different assumptions about adoption rates and uncertainty. We 
believe its major limitation is data, which we discuss further below.  

Adoption Rates  

We assume that the adoption of new renewable technologies gradually displaces adoption 
of new combined-cycle gas turbine units but does not force early retirements. (Our measurement 
and estimation of growth in CCGT and renewables generation capacity are somewhat complex, 
and we discuss them further in the data section.)  

In the model, the generation shares of renewable technologies, which replace the CCGT 
generation increments, increase monotonically with time according to the following Weibull 
process: 

 

( ) 1 exp( )F t t γλ= − −             (3) 

 

Equation (3) describes the Weibull probability distribution that generates the S curve 
typically used to characterize the adoption of new technology. In (3), t is time in years; λ is a 
scale parameter, 0 1λ< < , having the interpretation of a hazard rate (which is therefore assumed 
to be constant); and 0γ >  is a shape parameter. Different pairs of λ and γ  give differently 

shaped curves. In general, larger values of lambda imply a faster adoption rate. Larger values of 
gamma will delay the time at which the inflection point occurs. The box below gives the values 
we assume to characterize two adoption rates, “fast” and “slow,” in our model.  

 
         
Scenario 

       
Parameters 

     Fast Adoption  0.1,  =3.5λ γ=   

    Slow Adoption  0.05,  =3.5λ γ=   
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Figure 4 shows the renewable generation shares over time for these two adoption rates 
using Weibull functions. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Weibull adoption rate curves 
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Accounting for Externalities  

Among the most important issues to consider in comparing future electricity generation 
technologies from the perspective of social welfare are external effects, both negative and 
positive, on the environment, human health, and important attributes of society. To illustrate, 
undesirable air emissions produced by coal or even combined-cycle gas turbines are often cited 
by advocates of renewable energy as a major disadvantage of fossil-based technologies; wind 
turbines’ effects on migrating birds or noise pollution for neighboring residents are externalities 
mentioned in discussions of wind power. Our model is able to explicitly incorporate a wide range 
of such externalities but for now is limited by the absence of quantifiable data about many of 
them. Few external effects of renewable energy have been addressed systematically, and some 
gaps remain in the understanding and measurement of external effects associated with 
conventional power. Thus, we incorporate in the quantification of our model two negative 
externalities that have been subjected to at least tentative empirical treatment: the effects of 
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carbon dioxide on global warming and thermal pollution on water quality.8 As we note later in 
the report, rigorous attention to a wider array of externalities constitutes a major area for further 
research in understanding the comparative economics of renewable and conventional energy.  

From a conceptual perspective, the external effects that count for an apples-to-apples 
comparison—and with which we are largely concerned in this report—are technological 
externalities, or the uncompensated effects of one party’s actions on another party. When these 
effects harm the other party, they increase the full cost to society, above and beyond the private 
resource costs, of the activity. External costs shift up the supply curves in figure 1 to the dashed 
lines in figure 5 and alter the corresponding consumer surplus area that we seek to measure. For 
meeting environmental requirements, utilities may incur costs—for pollution control equipment, 
for example—that are considered internalized environmental costs because they are included in 
the electricity rates.9 However, there are other costs that are not reflected in the rates, such as 
mercury emissions, which are not currently controlled, and these are considered externalities.  

 

                                                 
8 Carbon dioxide releases, widely regarded as a major contributor to greenhouse warming and the ensuing damages 
from climate change, are a clear-cut instance of externalities. Even so, the fact that the carbon content of natural gas 
is the lowest of the fossil fuels, coupled with the high conversion efficiency of CCGT technology, makes these 
releases relatively modest. As for thermal releases, all combustion involves heat rejection, whose magnitude 
depends on the efficiency of the conversion process. The condensation and dispersal of such waste heat can take 
varying forms—different types of cooling towers, cooling ponds, or discharge into “common property” water bodies 
(such as rivers, lakes, or coastal water). It is such releases, with their putative impact on aquatic integrity and 
activities, that merit treatment as an externality.  
9 A good example is nitrogen oxide (NOx) emissions from CCGT combustion. These are already capped under 
Clean Air Act statutes at exceedingly low levels. Releases below the permissible threshold are assumed not to 
represent an externality. Moreover, there is no empirical basis for estimating such residual damages, if any.  
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Figure 5. Derived demand for renewable energy technologies: Illustration of net surplus change with external 

costs 

 

A different class of externalities is pecuniary externalities. Their effects are largely 
distributional, and for this reason their effects in figure 5 cancel out. The siting of a power plant 
can have a negative effect on neighborhood property values, for instance, but the full effect is a 
transfer of income in that it reallocates income to those who benefit by the new power capacity 
from those whose property values decline. From the perspective of the society-wide accounting 
ledger of benefit and costs, the wins and losses cancel out, and the net effect to society, the 
bottom line, is zero. Although the distinction between technological and pecuniary externalities 
can be blurred if households suffering reduced property values also benefit from use of power 
from the new plant, pecuniary externalities are generally thought to have no effect on economic 
efficiency. However, they can be politically important precisely because of their wealth effects.  

Box 1 illustrates a gamut of external effects in the case of energy technologies. 
Externalities can arise at any stage of the electricity cycle, from development and extraction of a 
resource, to transportation, processing, manufacturing, and assembly of materials and facilities, 
to generation, transmission, and disposal of all wastes or residuals from various activities and 
processes. To keep our model tractable, and because fully accounting for these effects is outside 
the scope of our project in any case, we include only externalities arising during electricity 
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generation.10 Thus, we exclude any “upstream” externalities—say, leakages from gas 
transmission lines or “uninternalized” risks of energy disruptions. In addition, we focus on 
external costs, not the avoided external costs of nonpolluting systems. It is important to note, for 
example, that by accounting for the negative effects of carbon emissions from CCGT, we are 
implicitly adjusting for the external benefits of technologies that do not produce carbon 
emissions. In this relative sense, then, we implicitly account for some external benefits as well as 
external costs when we compare our technologies. We note also that effects can vary by 
geographic region and over time. For instance, the extent of environmental and health effects 
depends on the affected population and may include both short- and long-term effects.11  

                                                 
10 Portney (1993—94) discusses the complexities of life-cycle approaches. 
11 In a 1995 study, the General Accounting Office (U.S. GAO 1995) reviewed approaches taken by states in 
considering externalities associated with electricity production. GAO found significant variation among approaches.  
As of the time of the survey, half of the states did not have requirements considering externalities; 16 states assigned 
a quantitative value to the externalities associated with coal-fired plants; and 9 states and the District of Columbia 
treated externalities qualitatively, by using, for example, a subjective ranking system for anticipated environmental 
impacts.   
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As box 1 indicates, the external effects—both technological and pecuniary—associated 
with energy generation range widely and include effects on health and the environment 
(including climate change), effects on occupational health in energy-producing sectors, 
employment in energy sectors, fiscal effects in the form of government revenues affected by 
differential tax and subsidy treatment of energy technologies, road damage from transportation 

BOX 1. EXTERNALITIES AND THE ELECTRICITY CYCLE 

The fuel cycle. The electricity cycle ranges from development and extraction of a resource and 
transportation, processing, manufacturing, and assembly of materials and facilities, to generation, 
transmission, consumption, and disposal of all wastes or residuals from various activities and processes. 

The generation stage. The potential list of external effects is large. For example, in the generation 
of power, external effects include the following: 

Technological (lacking prices or other internalization mechanisms but influencing the generation 
 technology): 

  Atmospheric emissions (local, regional, global)  
  Water impacts  

  Geology and soils impacts (contamination, land disturbance) 
  Cultural resources impacts (archaeological resources) 
  Biological resources and terrestrial ecosystems impacts (plants, wildlife) 
  Recreational impacts (wilderness values) 
  Visual impacts (including light pollution) 
  Noise emissions (e.g., wind turbines) 
  Interference with electromagnetic communication systems 
 
Pecuniary (influencing generation technology but reflected in prices; may have significant income 

and other job-related distributional effects): 
  Resource use (for resources for which “correct” market prices are in place) 
  Socioeconomic impacts (e.g., transportation, housing, employment) 
  Land value impacts 
  Tax revenues 
 
Both direct costs and external effects can vary by geographic region (e.g., differences in resource 

endowments such as wind, geothermal), by time (season, time of day), and of course, by resource input 
(e.g., fuel type, solar).  
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of fuels, and a host of energy security implications, such as the economic cost of oil supply 
disruptions and the cost of military expenditures to secure international trade.12 Without entering 
into discussion about which effects are technological, which are pecuniary transfers, or which are 
sizable enough to matter, our choice of external effects to include in our model is significantly 
restricted by a lack of empirical information. That is, the limitation is imposed not by the index 
but by data.  

Specifically in regard to the technologies we consider, the list below presents the 
externalities most often cited in the relevant engineering studies, environmental impact 
statements, and other public discussions. Of these, we have monetized values for two effects—
carbon, in the case of combined-cycle gas turbines, and thermal effluent, in the cases of solar 
thermal, biomass, and combined-cycle gas turbines.  

• For biomass energy generation: a dedicated feedstock and thus neutral effects on the 
carbon cycle, soil erosion, and other impacts; a potential problem of thermal 
discharges; and mitigation of emissions of particulates, ash, sulfur dioxide, and 
nitrogen oxide in compliance with environmental regulations.  

• For photovoltaics: potential occupational health effects arising during manufacture of 
some types of materials, and possible leachate of harmful materials during disposal 
and recycling of cells. 

• For geothermal energy production: waste heat, ejected gases, and sludge, depending 
on the specific production technique. 

• For wind power production: the effects of turbines on birds, including endangered 
species and species protected under the migratory bird treaty, plus noise, visual 
effects, electromagnetic interference, possible leakage of potentially toxic or 
hazardous lubricating oils and hydraulic and insulating fluids, and the large amounts 
of land typically used for wind farms (although because landowners are typically 
compensated in the purchase of the land, the use of land can be a pecuniary effect).13 

                                                 
12 See discussion in Krupnick and Burtraw (1996); also Bohi and Toman (1992) and Green and Leiby (1993). 
13 Property owners near a new wind facility in Wisconsin recently accepted the facility’s offer to buy their 
properties to settle a dispute over noise and other disamenities that the property owners claimed were caused by the 
facility. Bonseke, K. “WPS offers to buy land near wind turbines.” The Algoma-Record Herald 16 May 2001. 
Online: http://www.algomarecordherald.com/page.html?article=100534 (accessed December 26, 2001). 



Resources for the Future Macauley et al. 

 21  

• For solar thermal energy production: the possibility of spills or leaks from heat 
transfer fluids, wastewater, and thermal discharges.  

• For combined-cycle gas turbines: thermal discharges and carbon releases, which are 
yet to be covered by environmental regulation of fossil-fuel generators.  

 

The literature review and analysis in Lee et al. (1995), European Commission (1995), 
Hagler Bailly Consulting (1995), President’s Committee of Advisors on Science and Technology 
(1997), Oak Ridge National Laboratories and Resources for the Future (1998), Hunt (2001), and 
RESOLVE (2001) contain in-depth discussions of the epidemiological and environmental 
effects. Krupnick and Burtraw (1996) summarize much of this literature, focusing on the effects 
for which researchers have developed monetized values.  

We use estimates of the monetized values of the carbon and thermal discharge effects as 
median values and parameterize them using probability distributions (the estimates and the 
distributions are discussed in the next section). We use the Krupnick and Burtraw review for the 
estimate for carbon externalities and develop our own estimates for thermal discharges. We also 
note for our modeling effort that the Energy Information Administration’s (EIA) Annual Energy 
Outlook, which is a source for our data on generation costs, indicates that new fossil units are 
required to meet the U.S. Environmental Protection Agency’s NOx emission standards. Because 
these standards are embodied in the model underlying the Outlook projections, the costs of 
compliance with the standards are internalized in generation costs for our combined-cycle gas 
turbine technologies.  

III. Data  

The data we use for our two regions over the period 2000–2020 are the generation costs 
for renewable and conventional energy technologies, the externalities associated with the energy 
technologies, total expenditures on electricity generation as a fraction of total personal 
consumption expenditures, and expectations about the values of all these inputs over the relevant 
time horizon. We estimate the model separately for two geographic regions as defined by the 
North American Electric Reliability Council: the Mid-Continent Area Power Pool (MAPP) and 
the California–Southern Nevada Power Pool (CNV). Figure 6 illustrates these regions. We chose 
these regions to highlight regional differences in resource endowments for power generation: 
CNV has resources for the production of all the renewable technologies in our study, and MAPP 
has resources for a subset of the technologies.  
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Figure 6. Electricity market module supply regions 
Source: EIA 

Description of the Technologies 

We consider combined-cycle gas turbines and five renewable energy technologies: 
utility-owned residential photovoltaics, parabolic trough solar thermal, hydrothermal binary 
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geothermal, horizontal axis wind farms, and direct-fired dedicated-feedstock biomass.14 In this 
section, we briefly describe each and our rationale for selecting them. Most of the information 
about the technologies is from the U.S. Department of Energy (DOE) and Electric Power 
Research Institute’s Renewable Energy Technology Characterizations (DOE/EPRI 1997) and the 
U.S. Department of Energy’s Annual Energy Outlook 2001 (DOE/EIA 2000a). We also highlight 
some information from the DOE forecast of future quantities of generation from each of the 
technologies, based on DOE’s National Energy Modeling System (NEMS) in DOE/EIA (2001) 
and additional unpublished information provided to us for our specific regions of interest.15 
Appendix 1 contains more details from the DOE forecast of future generation. 

Combined-cycle gas turbines (CCGT). In a conventional combined-cycle gas turbine, 
gas is injected into a chamber containing compressed air, which causes the gas to burn. The hot 
gases rise, turning a turbine wheel to generate electricity. The waste heat is pumped to a boiler to 
generate steam, which turns a second turbine. An advanced combined-cycle turbine is expected 
to be more efficient, have lower NOx emissions, and produce cheaper electricity than 
conventional CCGT technology. The Department of Energy’s program goals for advanced 
CCGT are for the technology to exceed 60% efficiency with NOx emissions of less than 9 parts 
per million, and to achieve a 10% reduction in the cost of electricity. The agency expects plants 
with these specifications to be deployed in 2002.16 

We chose natural gas CCGT as our defender technology because the majority of new 
generating capacity is expected to use this technology. According to DOE forecasts, natural gas 
is the fastest-growing energy source for electricity generation; 86% of the new generating 
capacity brought online between now and 2020 is expected to be natural gas. Currently, natural 

                                                 
14 Although the cost-of-energy data used in our model reflect the cost of these particular technologies, the data on 
quantity of generation in this report reflect the generation by fuel source rather than by technology. For example, the 
natural gas generation data include generation by combined-cycle gas plants as well as conventional gas plants. 
Likewise, the biomass data reflect generation from cofired biomass as well as dedicated biomass plants. It is the 
opinion of our coauthor and technology expert that most of the new generation capacity in each of these categories 
will be in the form of the technology we have selected.  
15 The unpublished information is from our conversation with Namovicz (2001). We are aware that NEMS has been 
criticized for its assumptions about market penetration, transmission constraints, costs, and other characteristics of 
its modeling and forecasting approach (e.g., see Osborn et al. 2001). However, we feel that the NEMS estimates are 
a good starting point for our model because our purpose is, in part, to illustrate its transparency to a wide variety of 
assumptions about market penetration and costs.   
16 “Tomorrow’s Turbines.” Available at http://www.fe.doe.gov/coal_power/turbines/index.shtml.  
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gas fuels about 12% of net U.S. electricity generation,17 including 1% of electricity generation in 
the MAPP region and 31% of electricity generation in CNV. DOE forecasts that natural gas will 
generate 33% of the nation’s electricity in 2020 and will represent 67% and 78% of new 
generation in 2001–2020 for CNV and MAPP, respectively.  

Photovoltaics (PV). The basic photovoltaic configuration consists of a DC photovoltaic 
panel, an AC converter, and connecting wires. We assume a configuration described in 
DOE/EPRI as consisting of many PV units on numerous residential rooftops and owned by a 
utility company.18 The net energy generated by the photovoltaic units would be transmitted back 
to the grid. The technology for the crystalline-silicon cells is not expected to improve 
dramatically, although thin-plate films in development could dramatically reduce costs through 
improved conversion efficiency and lower cost of fabrication. The DC-AC conversion efficiency 
is also expected to improve. DOE/EPRI expect the majority of cost reduction to come from 
improvements in standardization, lower installation costs, and improved manufacturing 
processes resulting from experience gained as the market grows. As of 2001, photovoltaics is 
used for 2 thousandths of 1% of power in the nation, and 0.02% of power in CNV. By 2020, it is 
expected to grow to 0.03% of power nationally, and 0.13% in CNV.  

Solar thermal (ST). In a parabolic trough solar thermal system, rows of parabolic solar 
collectors heat a heat transfer fluid, which generates steam. The steam turns a conventional 
turbine to produce electricity. These plants are expected to operate as solar-fossil hybrids through 
2005 and then switch to all-solar plants when thermal storage is added. Currently, solar thermal 
is used for 0.03% of power in the nation and is expected to remain at the same level through 
2020. In CNV, this technology is expected to shrink from 0.42% of generation today to 0.30% in 
2020. Solar thermal is not used in MAPP, nor is it expected for the future in this region.  

Geothermal (GT). In a hydrothermal geothermal binary plant, high-temperature 
geothermal water is pumped from wells into the plant and used to heat another fluid—the 
“working fluid”—that has a lower boiling temperature. Steam from the boiling working fluid 
turns a turbine that generates electricity. Binary plants can use medium-temperature geothermal 
resources, which are the most available. Several technological improvements are expected in the 

                                                 
17 We use “generation” to mean electricity produced by dedicated power plants only, and exclude power produced 
by cogenerators, which produce both electricity and usable heat.  
18 We acknowledge the “form value” applications of photovoltaics but do not consider them in this paper; however, 
our model can incorporate these applications.  
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coming years. The cost of well drilling is expected to decrease by 20% in 10 years because of 
drill bit improvement. Other improvements over the next 20 years will be conversion cycle 
design changes, operation and maintenance reductions, and streamlining of complex 
instrumentation. 

Geothermal is expected to grow nationally from 0.39% of current generation to 0.53% in 
2020. Its share of CNV generation will shrink, from 4.5% today to 2.7% in 2020. Geothermal is 
not forecasted to develop in MAPP, which lacks economical GT resources. 

Wind. A wind farm consists of any number of individual wind turbines and transmission 
lines sending the turbine power to a central station. The power-producing capability of wind 
varies by “wind class,” a designation relating wind speed at various heights to electricity 
production; our study addresses classes 4 and 6. Class 4 is a low-to-moderate power class (an 
average wind speed of 5.6 to 6.0 meters per second at a 10-meter height, producing about 1.14 
Gwh per year under standard loss assumptions), and class 6 is a higher power class (an average 
wind speed of 6.4 to 7.0 meters per second at a 10-meter height, producing 1.56 Gwh per year 
under standard assumptions). Future reductions in cost will be due to higher volume, advances in 
manufacturing resulting from R&D efforts, and other technology advances. R&D is expected to 
account for a 10% to 20% cost reduction by 2030, and production volume is anticipated to 
account for a 20% to 30% cost reduction. In 2001, wind generated 0.2% of power in the nation, 
0.7% of power in MAPP, and almost 2% of power in CNV. By 2020, it is expected to grow to 
0.3% of power nationally; in CNV and MAPP it will grow slightly but decline as a percentage of 
overall regional electricity generation. 

Biomass. In a direct-fired biomass plant, biomass feedstock is burned in a furnace to 
create heat, which generates steam in the boiler. The steam turns a turbine to generate electricity. 
Biomass plants require systems to store the feedstock and feed it through a screen into the 
furnace-boiler. Although today’s feedstock is mainly agricultural or forest product waste, we 
follow DOE/EPRI in assuming that the main fuel source in the future will be “dedicated” 
feedstock grown expressly for fuel. 

Biomass plant cost reductions are expected mainly from realization of economies of 
scale. Plant efficiency is expected to increase by 20% from 2000 to 2020 as larger-scale plants 
permit more severe turbine operating conditions. Advances in power station performance involve 
the incorporation of available commercial technology. R&D is expected to focus on developing 
fuel additives and boiler modifications.  
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Biomass is used for 0.4% of power in the nation, 0.3% of power in MAPP, and 1.1% of 
power in CNV. By 2020 it is expected to grow to 0.5% of power nationally, 0.4% in MAPP, and 
0.7% in CNV.  

Cost and Other Data 

Our data requirements and sources include the following: 

Generation costs, renewable energy technologies. We base our cost data on the 
levelized cost of energy reported in DOE/EPRI (1997), which describes the technical and 
economic status of renewable energy options for electricity supply through the year 2030. 
DOE/EPRI reports, in $1997, discounted after-tax cash flows levelized to an annual payment and 
divided by the annual energy output to yield a cost per kilowatt hour (kWh). The costs reflect 
DOE/EPRI assumptions about debt, equity, taxes, inflation, and a rate of return under their 
definition of a generating company ownership structure. Tax credits factored in include the 10% 
investment tax credit for solar and geothermal, but not the production tax credits for wind or 
closed-loop biomass that (at the time of the publication of the estimates) were set to expire in 
mid-1999.  

We use these data to represent the CNV region. We adjust the cost given for 
photovoltaics to reflect the lower solar flux in the MAPP region based on the national map of 
solar intensity in DOE/EPRI.19 In addition, we do not include solar thermal and geothermal 
technologies for the MAPP region, since it is generally agreed that this region lacks economic 
resources for these technologies. We also adjust the generation cost data from $1997 to $1999 
using the chained price index from the Bureau of Economic Analysis.  

Generation costs, conventional and advanced CCGT. We derive the costs of capital, 
operation and maintenance, and fuel from the Annual Energy Outlook 2001 (DOE/EIA 2000a). 
We adjust the capital and fuel costs for regional differences based on additional data given in the 
Outlook. The tax treatment of data on generation costs is comparable to that for renewable costs, 

                                                 
19 We use the isomorphs in the national map to estimate the ratio of average annual flux and power produced in the 
MAPP region. We assume that the costs given for photovoltaics are for the best solar resources, such as CNV, and 
then use this ratio as a multiplier to increase the costs for MAPP in direct proportion to the reduction of intensity of 
solar resources for MAPP. 
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and upstream tax provisions affecting fuel costs are assumed to be included in generation costs.20 
Appendix 2 describes our calculations in detail. The Outlook also includes projections of natural 
gas prices. For conventional CCGT, generation costs inclusive of fuel costs based on these low, 
reference, and high gas prices range from 4.38 to 4.44 cents/kWh in 2005 and from 3.33 to 4.84 
cents/kWh in 2020; for advanced CCGT these range from 4.16 to 4.23 cents/kWh in 2005 and 
from 3.27 to 4.63 cents/kWh in 2020. We compared these ranges with the parameterization of 
uncertainty in CCGT generation costs in the model. Our bounds for conventional CCGT in 2005 
range from 4.08 to 5.03 cents/kWh, and in 2020, from 2.56 to 5.08 cents/kWh. For advanced 
CCGT, the bounds range from 3.98 to 4.95 cents/kWh in 2005 to 2.51 to 4.97 cents/kWh in 
2020.21 In particular, we tested whether our assumed distribution covers this range to capture 
uncertainty about projected fuel costs, and we found that the bounds we assume indeed bracket 
the Outlook forecasts. We thus capture the range of uncertainty reflected in the forecasts.  

Externality costs. The value for the externality for carbon dioxide emissions from CCGT 
is from Krupnik and Burtraw (1996). The amount reflects estimated mean monetary values of 
impacts from environmental damages. Krupnick and Burtraw survey and assess monetary 
estimates from other authors’ large-scale models of the health and environmental damages from 
electricity in the United States and Europe. Their paper represents the most recent rigorous 
assessment of these studies.  

We estimate the value for thermal effluent from solar thermal, biomass, and CCGT by 
determining how much it would cost the power plant to avoid the externality entirely. Thermal 
pollution occurs largely through use and discharge of reject heat into streams and other water 
bodies. Small amounts of thermoelectric water also come from groundwater aquifers, whose 
degradation can therefore create an external cost. However, such groundwater is a negligible 
fraction of total thermoelectric water use in both our study regions and nationally (0.4% in 

                                                 
20Scott Sitzer, Energy Information Administration, telephone call November 20, 2001. Upstream provisions include, 
for example, expensing of exploration and development costs for gas; exemption from passive loss limitation for 
working interests in gas properties; and the excess percentage depletion over cost deductions for oil and gas 
producers.  
21 More precisely, our bounds represent the 5% and 95% intervals from our probability distributions for 
characterizing uncertainty; thus, the actual bounds are somewhat lower and higher at the lower and upper ends, 
respectively, of the distribution. 
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1995).22 Thus, we do not here consider aquifer drawdown for thermoelectric generation as a 
consequential externality phenomenon.  

A closed-loop, dry cooling tower would avoid water use and thermal discharge. 
However, it increases the cost of generation in a CCGT plant by 1.5% to 3%, based on an 
annualized capital cost increase. Advanced CCGT, with higher conversion efficiency, may 
translate into reduced cooling requirements and therefore less negative thermal effects than 
conventional CCGT. We do not have data to make this adjustment, but in effect, it would 
improve the performance of advanced CCGT in our model simulations for which we include this 
externality. 

Biomass and solar thermal are less efficient than CCGT and thus require more cooling 
per kWh produced. Data on the use of consumables and cooling water from DOE/EPRI indicate 
that solar thermal and biomass generation costs would increase by about 2% to 4% with the 
addition of a dry cooling system.  

Generation quantity for the period 2000 to 2020. Our data on generation quantities (in 
kWh) for total generation, CCGT generation, and renewables generation are from DOE/EIA 
(2000a, reference case forecast, supplemental data). In 2010 and 2015 we subtract nuclear 
generation (given in DOE/EIA) from total generation. Between these years, the retirement of 
nuclear plants affects the total generation data. No adjustments were made to the data on CCGT 
generation; for these data, we generally use new gas generation as inputs in our model. 

Renewable generation includes conventional hydropower, geothermal, municipal solid waste, 
biomass, solar thermal, solar photovoltaics, and wind.23 The generation data for individual 
renewable technologies are from personal communication with Christopher Namovicz (2001).24  

                                                 
22 See Solley et al. (1998, 51). 
23 CCGT generation and renewable generation do not sum to total generation because total generation also includes 
generation by coal, petroleum, nuclear except between 2010 and 2015, and other small-in-quantity fuel sources. 
24As we were completing our research, the data for 2002 were published on-line on the EIA website. The generation 
forecasts were significantly revised; the national natural gas generation forecast is smaller and renewables, nuclear, 
and coal generation are higher because of overall increases in electricity demand, a projected decrease in natural gas 
generation, and improvements in the cost and performance of nuclear energy. For CNV, the 2002 forecasts more 
than double the 2001 forecast of that region’s wind capacity by 2020 and also forecast a larger increase in 
geothermal capacity. MAPP generation forecasts change very little. We use the DOE/EIA data for 2001 largely as a 
starting point for our adoption scenarios, but we note that part of the usefulness of our model in addressing forecast 
variation is its formal incorporation of uncertainty.  
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To be consistent with the time period of our other data, we use changes in total 
generation for CCGT and our renewables in intervals (2000–2005, 2005–2010, 2010–2015, and 
2015–2020) as the base amount to which we apply adoption rates. Specifically, we construct two 
such base quantities. One is the DOE/EIA (2000a) forecast for CCGT. Our rationale in using this 
base is to investigate the consumer surplus that might arise from switching from CCGT to our 
renewable technologies for the quantities indicated by our assumed adoption rates. In other 
words, we create additional renewable generation by applying our adoption rate to each period’s 
new natural gas generation. Even after this quantity has been allocated to renewable generation, 
most new capacity still represents natural gas generation. In separate runs of the model, we also 
use a different base constructed as the sum of the DOE/EIA forecasts for new gas generation and 
new renewables generation. Because the latter is so small, our results differ very little with 
respect to our choice of base.  

For both of the base quantities, we test the model’s predictions of the fraction of 
renewable energy technology divided by total generation capability to see whether the ratio 
exceeds 15%. This 15% rule-of-thumb is consistent with the general assumption that incremental 
renewable energy use from photovoltaics, wind, and solar thermal will consist of intermittent 
rather than dispatchable, base load capacity. The 15% rule is never violated in our model runs.  

A final note on our data is that we use quantities that are generated in the region. That is, 
we include electricity generated that will be exported, but not electricity generated that is 
imported and consumed in the region. Imports and exports are often seasonal in nature, and the 
net electricity exchange for a region can be relatively small. For example, in MAPP in 1999, 
imports and exports were roughly the same (13% of generation). In CNV, however, electricity 
imports in 1999 amounted to about 1/3 of what was produced within the region, but exports were 
only 1/16 of within-region production. Both regions’ imports and exports decrease over time  
because of EIA’s expectation that natural gas plants, which make up most of the new capacity, 
will be built closer to consumers than coal and other large plants. MAPP imports decrease to 2% 
of regional generation in 2020, and exports decrease to 4%. CNV imports decrease to 7% of 
regional generation, and exports decrease to 1%.  

Personal consumption expenditure for 2000 to 2020. We created a historical (annual 
1989 to 1999) PCE dataset for each region. We forecast PCE to 2020 by regressing past PCE 
against time (1989 to 1999). Appendix 3 contains the calculations and the regression results. 
National and state personal income data and national personal consumption data are from the 
Bureau of Economic Analysis. We combine population data from the National Association of 
Counties with the NEMS map from the Energy Information Administration because our 
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electricity data are given by the NEMS electricity market module region, but there is no source 
for data on the corresponding populations of those regions. We used the chained price index 
from the Bureau of Economic Analysis to inflate the historical PCE to $1999. 

Expected market price of electricity for 2000 to 2020. The price data are from the Annual 
Energy Outlook 2001 (DOE/EIA 2000a, reference case forecast) in $1999. 

Data summary. Appendix 4 summarizes the data, including the median values and the 
probability distributions (described below).  

Uncertainty 

The time horizon of our study is 20 years, consistent with the time horizon in the 
Department of Energy modeling system. The NEMS documentation describes this duration as 
“the midterm period in which the structure of the economy and the nature of energy markets are 
sufficiently understood that it is possible to represent considerable structural and regional detail” 
(see DOE/EIA 2000a, assumptions to the Annual Energy Outlook 2001). DOE’s reported 
generation costs for all of our technologies decline over time, reflecting assumptions in the DOE 
model with respect to learning by doing, returns to scale, and technological innovation.25 Thus 
our costs decline over time, as forecast by DOE.  

Even with these explicit representations of technological change in our model, the actual 
extent to which costs are likely to change—either increasing or decreasing—over the next 20 
years is uncertain. In the case of renewable energy technologies from 1975 to 1995, McVeigh et 
al. (1999) find that cost declines indeed met expected goals. Additional recent research by Isoard 
and Soria (2001) on these costs over time in the case of photovoltaics and wind finds that future 
costs are likely to be highly sensitive to scale effects.26 They find evidence of learning effects 
that reduce costs, but these are offset at small scales of production by diseconomies of scale. 
They suggest that the diseconomies may, paradoxically, indicate that marginal costs could 

                                                 
25 Learning by doing represents learning effects of workers, managers, and their use of physical capital and 
production processes—improvements that tend to lower generation costs. Some researchers also include learning by 
adopters – the demand side—as a learning curve effect. Returns to scale may be increasing, constant, or decreasing, 
and may vary with the scale of production.   
26 See Isoard and Soria (2001) for recent research on these effects in renewable energy generation technology. For 
photovoltaics and wind, they find evidence of learning effects, which decrease costs, and diseconomies of scale at 
small scales of production, which increase costs.  
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increase if R&D activities lead to discovery of new applications that require further technical 
sophistication, increasing the unit cost of new technologies. At larger levels of output, they find 
economies of scale.  

Because future costs in any case are uncertain, we add uncertainty bounds to the cost 
data. We also note, however, that our assumed adoption rates could be interpreted as learning 
effects of adopters, and thus we acknowledge that sorting out the relative contribution of 
adoption effects that are implicit in the DOE estimates (and explicit in our model) is a subject for 
future research.  

We parameterize the point estimates for our data as location parameters of probability 
distributions. Because we do not have empirical bases for choosing one family of distributions 
over another, we use triangular distributions, which we believe appropriately characterize 
uncertainty and have a straightforward interpretation. We arbitrarily assign 10% of the location 
parameter as upper and lower bounds. In addition, we assume that uncertainty increases over 
time, following a standard normal distribution with mean zero and standard deviation 0.01 (1%). 
Uncertainty grows at about 1% each year. To illustrate some of the distributions, figure 7 shows 
the probability distribution we assume for CCGT and wind. Although the use of some arbitrary 
assumptions is unavoidable given the data and their limitations, the resulting model is very 
transparent, and alternative assumptions can easily be explored.  

 

Figure 7. Wind and CCGT generation costs 
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Market Assumptions 

Our data also reflect a specific market financial structure—that identified as a generating 
company, or GenCo. DOE describes this and various other financial structures, including 
independent power producer, municipal utility, and regulated investor-owned utility. The GenCo 
seems to us to be most representative of the future electricity market. According to DOE 
(DOE/EPRI 1997, 7-1 to 7-2),  

The GenCo takes a market-based rate of return approach to building, owning, and 
operating a power plant. The company uses balance-sheet or corporate finance, 
where debt and equity investors hold claim to a diversified pool of corporate 
assets. For this reason, GenCo debt and equity are less risky than for an 
independent power producer and therefore GenCos pay lower returns. 

Our choice is based on our assumption that over the next decade, economic regulation in 
the electricity industry will continue to evolve toward greater competition. By 2001, roughly half 
the states had committed to move from traditional cost-of-service based regulation, with prices 
set by a regulator, toward prices determined more by market forces. The summer 2001 
experience in California and its effects on deregulation are still being studied and debated, but 
many scholars have thus far concluded that it involved factors somewhat specific to California, 
such as retail price controls, and may not be a harbinger of a return to regulation (see, e.g., 
Brennan 2001 and Joskow and Kahn 2001). 

State and Local Regulatory Practices 

States and localities can implement regulations and policies that may markedly influence 
renewables use in the next 20 years. We did not include individual state and local effects on 
energy generation or use in our model (even though it can include such effects). For example, a 
major Minnesota utility is required, under a state statute, to commit around 550 megawatts (MW) 
of renewable generating capacity (425 MW of which is wind power) in the next few years. This 
obligation represents a quid pro quo under which the company’s continued accumulation of 
radioactive waste at its nuclear power plant (beyond a mandated state deadline) will be allowed. 
Though it seems doubtful that Minnesota—or other states contemplating obligatory renewables 
commitments—would impose technology whose cost is excessive, it may also be the case that 
economic analysis (with or without externality considerations) may play a secondary role in the 
setting of mandated renewables targets. Thus, projections and eventual ex post evidence of a 
growing renewables market share might point to a policy-driven outcome not necessarily or 
entirely governed by comparative cost calculations. Notwithstanding the trend toward 
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deregulation and competitive electricity markets noted in the preceding paragraph, this point 
serves as a qualifier to that assumption.     

IV. Results 

In this section we discuss our estimates of the cost index and the discounted present value 
of the benefits it predicts over the period 2000–2020. We make several assumptions about the 
rate of adoption of the technologies, whether external effects of carbon and water are included in 
generation costs, and the growth in electricity generation during this period. We combine these 
assumptions in different ways to create 17 scenarios for each of the two regions in our study. In 
all scenarios, we assume a 5% discount rate. 

Our goal in specifying and evaluating these scenarios is twofold. One aim is to 
demonstrate the use of the index, together with its capability in transparently incorporating 
assumptions and uncertainty, as a tool with which to evaluate the performance of competing 
technologies. A separate but related aim from a policy perspective is using existing data to 
estimate the present value of the future benefits from the availability of new technologies while 
also taking into account continued technical progress in the defending technology. 

In each scenario, we calculate indexes to compare each renewable technology with 
CCGT technology for the two regions. Since electricity generation costs constitute a small 
fraction of total personal consumption expenditures, the indexes are only slightly different from 
1. On a discounted present value basis for each of our regions, however, differences in the size of 
consumer benefits are quite large. 

Our Scenarios 

Table 1 defines our scenarios. The first eight scenarios (labeled 1-CNV to 8-CNV, and 1-
MAPP to 8-MAPP) involve different combinations of assumptions about adoption rates and 
externalities and use as a base for the quantity of new generation the DOE/EIA forecasts of 
CCGT generation, as described in our data section. The next four scenarios (9-CNV to 12-CNV) 
use a different base for the quantity of new generation, the DOE/EIA forecasts of CCGT plus 
renewables generation (again, see the data section). We carry out these scenarios only for the 
CNV region since the results suggest very little change compared with the scenarios that use the 
alternative base quantity (we could also carry out these scenarios for the MAPP region).  
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Those 12 scenarios each consist of pairwise comparisons of a renewable technology with 
the two variations of defending technology (conventional and advanced CCGT). In two 
additional scenarios (13-CNV and 13-MAPP, plus 14-CNV and 14-MAPP) we illustrate the 
possible use of the model to evaluate portfolios of technologies. We experiment by constructing 
different “renewable portfolios” that allocate some amount of future electricity generation among 
all the renewable technologies.  
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Table 1. Definitions of Scenarios 

Scenario 
and region 

Weibull 
parameters 
Lambda  Gamma 

External 
effects 
Water   Carbon  

Base quantity 
 

1-CNV 
1-MAPP 

 
.1 

 
3.5 

 
Yes 

 
Yes 

2-CNV 
2-MAPP 

 
.1 

 
3.5 

 
Yes 

 
No 

3-CNV 
3-MAPP 

 
.1 

 
3.5 

 
No 

 
Yes 

4-CNV 
4-MAPP 

 
.1 

 
3.5 

 
No 

 
No 

5-CNV 
5-MAPP 

 
.05 
 

 
3.5 

 
Yes 
 

 
Yes 
 

6-CNV 
6-MAPP 

 
.05 
 

 
3.5 
 

 
Yes 
 

 
No 
 

7-CNV 
7-MAPP 

 
.05 
 

 
3.5 
 

 
No 
 

 
Yes 
 

8-CNV 
8-MAPP 

 
.05 

 
3.5 

 
No 

 
No 

 
CCGT generation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

9-CNV 
10-CNV 
11-CNV 
12-CNV 

.1 

.1 

.1 

.1 

3.5 
3.5 
3.5 
3.5 

Yes 
Yes 
No 
No 

Yes 
No 
Yes 
No 

 
CCGT and renewables generation 
 
 
 

 
Portfolios: 

 
Equal weight 
13-CNV 
13-MAPP 

 
Variable weight 
14-CNV 
14-MAPP 

 
 
 
 
12 models as in 1-CNV to 12-CNV 
12 models as in 1-MAPP to 12-MAPP 
 
1 model as in 1-CNV 
1 model as in 1-MAPP 

 
 
CCGT generation 
 
 
 
 
 
 

Scenario 1: Here, we parameterize the Weibull distribution to describe a fast adoption 
rate. We also include both the carbon and the water externalities. We use the EIA forecast of 
future electricity generation by CCGT as the base for estimating the relative shares of generation 
by each renewable technology and CCGT. The results for this scenario are in table 2 for scenario 
1-CNV and 1-MAPP.  
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Table 2. Results: Scenarios 1–12 

 

SCENARIO 1:   Weibull: .1, 3.5 
  Externalities: Carbon, water 

  Base: EIA CCGT growth  
  Discounted present value, 2000–2020, $1999 billions 

Conventional CCGT Advanced CCGT                 Defending  
                    technology 
Innovating  
   technology (5%, median, 95%) (5%, median, 95%) 

 CNV 

Photovoltaics (-13.6, -10.8, -8.04) (-13.7, -10.9, -8.08) 
Solar thermal (-7.02, -5.38, -3.86) (-7.17, -5.57, -3.96) 
Geothermal (2.62, 3.47, 4.45) (2.51, 3.31, 4.26) 
Wind class 4 (2.10, 2.90, 3.77) (2.00, 2.73, 3.61) 
Wind class 6 (3.50, 4.60 ,5.80) (3.35, 4.44, 5.59) 
Biomass (-5.37, -3.99, -2.74) (-5.46, -4.17, -2.88) 
 MAPP 
Photovoltaics (-6.40, -4.62, -2.92) (-6.51, -4.70, -2.97) 
Solar thermal N/A N/A 
Geothermal N/A N/A 
Wind class 4 (0.79, 1.18, 1.65) (0.74, 1.09, 1.56) 
Wind class 6 (1.14, 1.75, 2.41) (1.13, 1.67, 2.31) 
Biomass (-1.61, -1.10, -0.64) (-1.75, -1.17, -0.69) 

SCENARIO 2:  Weibull: .1, 3.5 
  Externalities: Water 
  Base: EIA CCGT growth  
  Discounted present value, 2000–2020, $1999 billions 

             Defending  
                    technology 
Innovating  
   technology (5%, median, 95%) (5%, median, 95%) 

 CNV 

Photovoltaics (-14.3, -11.5, -8.69) (-14.5, -11.6, -8.73) 
Solar thermal (-7.71, -6.06, -4.51) (-7.88, -6.25, -4.62) 
Geothermal (2.01, 2.86, 3.82) (1.85, 2.67, 3.62) 
Wind class 4 (1.47, 2.26, 3.16) (1.35, 2.08, 2.98) 
Wind class 6 (2.88, 3.98, 5.18) (2.69, 3.81, 4.98) 
Biomass (-6.05, -4.65, -3.37) (-6.17, -4.84, -3.53) 
 MAPP 
Photovoltaics (-6.61, -4.81, -3.13) (-6.71, -4.91, -3.17) 
Solar thermal N/A N/A 
Geothermal N/A N/A 
Wind class 4 (0.60, 0.99, 1.46) (0.54, 0.90, 1.36) 
Wind class 6 (0.95, 1.56, 2.21) (0.93, 1.48, 2.11) 
Biomass (-1.82, -1.29, -0.84) (-1.96, -1.38, -0.88) 
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SCENARIO 3  Weibull: .1, 3.5 
  Externalities: Carbon 
  Base: EIA CCGT growth  
  Discounted present value, 2000–2020, $1999 billions 

Conventional CCGT Advanced CCGT                  Defending  
               technology 
Innovating  
   technology (5%, median, 95%) (5%, median, 95%) 

 CNV 

Photovoltaics (-13.9, -11.0, -8.16) (-14.0, -11.1, -8.22) 
Solar thermal (-6.96, -5.32, -3.78) (-7.09, -5.50, -3.90) 
Geothermal (2.50, 3.30, 4.23) (2.35, 3.14, 4.06) 
Wind class 4 (1.97, 2.72, 3.56) (1.86, 2.55, 3.39) 
Wind class 6 (3.33, 4.43, 5.57) (3.20, 4.27, 5.39) 
Biomass (-5.28, -3.90, -2.67) (-5.36, -4.09, -2.84) 
 MAPP 
Photovoltaics (-6.47, -4.68, -2.96) (-6.60, -4.77, -3.00) 
Solar thermal N/A N/A 
Geothermal N/A N/A 
Wind class 4 (0.75, 1.12, 1.56) (0.69, 1.03, 1.47) 
Wind class 6 (1.10, 1.70, 2.33) (1.08, 1.61, 2.23) 
Biomass (-1.59, -1.07, -0.62) (-1.72, -1.15, -0.66) 

 
SCENARIO 4  Weibull: .1, 3.5 
  Externalities: None 
  Base: EIA CCGT growth  
  Discounted present value, 2000–2020, $1999 billions 

Conventional CCGT Advanced CCGT                   Defending  
               technology 
Innovating  
   technology (5%, median, 95%) (5%, median, 95%) 

 CNV 

Photovoltaics (-14.6, -11.7, -8.87) (-14.7, -11.9, -8.91) 
Solar thermal (-7.65, -5.99, -4.45) (-7.79, -6.18, -4.57) 
Geothermal (1.86, 2.66, 3.59) (1.70, 2.48, 3.39) 
Wind class 4 (1.31, 2.08, 2.93) (1.20, 1.89, 2.76) 
Wind class 6 (2.74, 3.79, 4.94) (2.57, 3.62, 4.76) 
Biomass (-5.96, -4.58, -3.32) (-6.09, -4.78, -3.49) 
 MAPP 
Photovoltaics (-6.70, -4.88, -3.17) (-6.82, -4.98, -3.22) 
Solar thermal N/A N/A 
Geothermal N/A N/A 
Wind class 4 (0.56, 0.93, 1.38) (0.49, 0.83, 1.28) 
Wind class 6 (0.91, 1.50, 2.13) (0.88, 1.42, 2.03) 
Biomass (-1.80, -1.27, -0.82) (-1.93, -1.36, -0.87) 
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SCENARIO 5  Weibull: .05, 3.5 
  Externalities: Carbon, water 
  Base: EIA CCGT growth  
  Discounted present value, 2000–2020, $1999 billions 

Conventional CCGT Advanced CCGT                Defending  
                   technology 
Innovating  
technology (5%, median, 95%) (5%, median, 95%) 

 CNV 

Photovoltaics (-6.07, -4.69, -3.35) (-6.21, -4.80, -3.39) 
Solar thermal (-2.93, -2.18, -1.49) (-2.99, -2.24, -1.56) 
Geothermal (0.82, 1.10, 1.41) (0.78, 1.06, 1.36) 
Wind class 4 (0.68, 0.93, 1.21) (0.64, 0.89, 1.16) 
Wind class 6 (1.04, 1.40, 1.78) (1.01, 1.35, 1.72) 
Biomass (-2.08, -1.50, -0.99) (-2.16, -1.58, -1.05) 
 MAPP 
Photovoltaics (-3.39, -2.40, -1.47) (-3.49, -2.47, -1.50) 
Solar thermal N/A N/A 
Geothermal N/A N/A 
Wind class 4 (0.26, 0.40, 0.57) (0.25, 0.38, 0.54) 
Wind class 6 (0.35, 0.56, 0.77) (0.34, 0.54, 0.76) 
Biomass (-0.66, -0.43, -0.23) (-0.71, -0.47, -0.25) 
 
SCENARIO 6  Weibull: .05, 3.5 
  Externalities: Water 
  Base: EIA CCGT growth  
  Discounted present value, 2000–2020, $1999 billions 

Conventional CCGT Advanced CCGT                 Defending  
                technology 
Innovating  
technology (5%, median, 95%) (5%, median, 95%) 

 CNV 

Photovoltaics (-6.46, -5.09, -3.73) (-6.61, -5.20, -3.80) 
Solar thermal (-3.26, -2.49, -1.79) (-3.32, -2.57, -1.86) 
Geothermal (0.65, 0.92, 1.24) (0.60, 0.87, 1.18) 
Wind class 4 (0.49, 0.75, 1.03) (0.44, 0.69, 0.97) 
Wind class 6 (0.88, 1.24, 1.62) (0.83, 1.18, 1.55) 
Biomass (-2.41, -1.78, -1.26) (-2.49, -1.88, -1.33) 
 MAPP 
Photovoltaics (-3.54, -2.54, -1.62) (-3.66, -2.62, -1.64) 
Solar thermal N/A N/A 
Geothermal N/A N/A 
Wind class 4 (0.20, 0.35, 0.51) (0.19, 0.32, 0.48) 
Wind class 6 (0.30, 0.51, 0.72) (0.29, 0.49, 0.71) 
Biomass (-0.75, -0.52, -0.31) (-0.81, -0.56, -0.34) 
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SCENARIO 7  Weibull: .05, 3.5 
  Externalities: Carbon 
  Base: EIA CCGT growth  
  Discounted present value, 2000–2020, $1999 billions 

Conventional CCGT Advanced CCGT                 Defending  
                   technology 
Innovating  
technology (5%, median, 95%) (5%, median, 95%) 

 CNV 

Photovoltaics (-6.19, -4.79, -3.42) (-6.33, -4.90, -3.49) 
Solar thermal (-2.90, -2.14, -1.46) (-2.95, -2.22, -1.51) 
Geothermal (0.79, 1.05, 1.35) (0.74, 1.01, 1.29) 
Wind class 4 (0.63, 0.88, 1.15) (0.60, 0.83, 1.09) 
Wind class 6 (1.00, 1.35, 1.72) (0.97, 1.31, 1.66) 
Biomass (-2.06, -1.46, -0.95) (-2.11, -1.54, -1.03) 
 MAPP 
Photovoltaics (-3.47, -2.45, -1.50) (-3.57, -2.51, -1.52) 
Solar thermal N/A N/A 
Geothermal N/A N/A 
Wind class 4 (0.25, 0.39, 0.54) (0.24, 0.36, 0.51) 
Wind class 6 (0.34, 0.55, 0.75) (0.33, 0.52, 0.74) 
Biomass (-0.65, -0.42, -0.22) (-0.70, -0.45, -0.24) 
 
SCENARIO 8  Weibull: .05, 3.5 
  Externalities: None 
  Base: EIA CCGT growth  
  Discounted present value, 2000–2020, $1999 billions 

Conventional CCGT Advanced CCGT                 Defending  
                technology 
Innovating  
technology (5%, median, 95%) (5%, median, 95%) 

 CNV 

Photovoltaics (-6.62, -5.22, -3.82) (-6.76, -5.32, -3.90) 
Solar thermal (-3.23, -2.46, -1.77) (-3.28, -2.55, -1.83) 
Geothermal (0.60, 0.87, 1.17) (0.55, 0.81, 1.11) 
Wind class 4 (0.44, 0.69, 0.96) (0.40, 0.63, 0.90) 
Wind class 6 (0.84, 1.18, 1.55) (0.79, 1.13, 1.48) 
Biomass (-2.38, -1.76, -1.24) (-2.44, -1.85, -1.32) 
 MAPP 
Photovoltaics (-3.62, -2.59, -1.65) (-3.72, -2.67, -1.67) 
Solar thermal N/A N/A 
Geothermal N/A N/A 
Wind class 4 (0.19, 0.33, 0.48) (0.17, 0.30, 0.45) 
Wind class 6 (0.29, 0.49, 0.70) (0.28, 0.47, 0.68) 
Biomass (-0.75, -0.51, -0.31) (-0.80, -0.55, -0.34) 
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SCENARIO 9  Weibull: .1, 3.5 
  Externalities: Carbon, water 
  Base: EIA aggregate growth  
  Discounted present value, 2000–2020, $1999 billions 

Conventional CCGT Advanced CCGT                Defending  
                technology 
Innovating  
technology (5%, median, 95%) (5%, median, 95%) 

 CNV 

Photovoltaics (-14.6, -11.6, -8.68) (-14.9, -11.8, -8.90) 
Solar thermal (-7.39, -5.66, -4.10) (-7.57, -5.83, -4.28) 
Geothermal (2.72, 3.58, 4.53) (2.59, 3.40, 4.35) 
Wind class 4 (2.16, 2.97, 3.87) (2.04, 2.80, 3.69) 
Wind class 6 (3.58, 4.74, 5.94) (3.44, 4.57, 5.78) 
Biomass (-5.55, -4.16, -2.88) (-5.73, -4.33, -3.05) 
 
SCENARIO 10  Weibull: .1, 3.5 
  Externalities: Water 
  Base: EIA aggregate growth  
  Discounted present value, 2000–2020, $1999 billions 

Conventional CCGT Advanced CCGT                 Defending  
                technology 
Innovating  
technology (5%, median, 95%) (5%, median, 95%) 

 CNV 

Photovoltaics (-15.3, -12.4, -9.39) (-15.7, -12.6, -9.67) 
Solar thermal (-8.11, -6.35, -4.79) (-8.32, -6.55, -4.97) 
Geothermal (2.07, 2.93, 3.90) (1.91, 2.76, 3.69) 
Wind class 4 (1.53, 2.32, 3.23) (1.38, 2.13, 3.06) 
Wind class 6 (2.98, 4.10, 5.33) (2.79, 3.94, 5.14) 
Biomass (-6.26, -4.84, -3.55) (-6.42, -5.04, -3.74) 
 
SCENARIO 11  Weibull: .1, 3.5 
  Externalities: Carbon 
  Base: EIA aggregate growth  
  Discounted present value, 2000–2020, $1999 billions 

Conventional CCGT Advanced CCGT                Defending  
                 technology 
Innovating  
technology (5%, median, 95%) (5%, median, 95%) 

 CNV 

Photovoltaics (-14.9, -11.8, -8.84) (-15.2, -12.0, -9.07) 
Solar thermal (-7.29, -5.58, -4.04) (-7.48, -5.76, -4.18) 
Geothermal (2.58, 3.39, 4.30) (2.44, 3.22, 4.13) 
Wind class 4 (2.02, 2.79, 3.65) (1.90, 2.61, 3.46) 
Wind class 6 (3.47, 4.55, 5.72) (3.30, 4.39, 5.58) 
Biomass (-5.49, -4.08, -2.80) (-5.59, -4.25, -3.00) 



 

 

SCENARIO 12  Weibull: .1, 3.5 
  Externalities: None 
  Base: EIA aggregate growth  
  Discounted present value, 2000–2020, $1999 billions 

Conventional CCGT Advanced CCGT                Defending  
                  technology 
Innovating  
technology (5%, median, 95%) (5%, median, 95%) 

 CNV 

Photovoltaics (-15.6, -12.6, -9.57) (-16.0, -12.8, -9.88) 
Solar thermal (-8.03, -6.29, -4.74) (-8.21, -6.49, -4.91) 
Geothermal (1.91, 2.74, 3.64) (1.75, 2.55, 3.47) 
Wind class 4 (1.36, 2.13, 3.00) (1.23, 1.94, 2.84) 
Wind class 6 (2.83, 3.90, 5.07) (2.66, 3.73, 4.92) 
Biomass (-6.20, -4.78, -3.49) (-6.34, -4.96, -3.68) 

 

For CNV, the largest of the median discounted present values of benefits are $2.9 billion 
for wind class 4, $3.5 billion for geothermal, and $4.6 billion for wind class 6 when these 
technologies are compared with conventional CCGT. The median values are slightly smaller, 
ranging from $2.7 billion to $4.4 billion, compared with advanced CCGT. For the other 
renewable technologies—photovoltaics, solar thermal, and biomass—the median values range 
from –$4 billion to –$10.8 billion compared with conventional CCGT and are slightly larger 
(and still negative) compared with advanced CCGT, ranging from –$4.2 billion to –$10.9 billion. 
In the case of MAPP, the median values range from $1.2 billion for wind class 4 and $1.8 billion 
for wind class 6, to –$1.1 billion for biomass and –$4.6 billion for photovoltaics compared with 
conventional CCGT. Compared with advanced CCGT, the median values for MAPP range from 
$1.1 billion for wind class 4 and $1.7 billion for wind class 6 to –$1.2 billion for biomass and –
$4.7 billion for photovoltaics.  

The influence of the distributions we have specified to characterize uncertainty in our 
data is indicated by the 5% and 95% interval estimates. In the scenario for CNV, the benefits 
could be as large as $5.8 billion for wind class 6 compared with conventional CCGT (see the 
95% interval), and fall to –$13.7 billion for photovoltaics compared with advanced CCGT (see 
the 5% interval). For MAPP, the benefits could be as large as $2.4 billion for wind class 6 
compared with conventional CCGT (see the 95% interval), and losses could increase to –$6.5 
billion for photovoltaics compared with advanced CCGT (see the 5% interval). Figures 8 and 9 
further illustrate the time path and intervals for the cases of photovoltaics and wind class 6 for 
the discounted cumulative benefit for CNV. Figures 10 and 11 display the net benefits on five-
year intervals and also show the confidence regions.  
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Figure 8. The present value of benefits from 2000 to 2020 for PV from scenario 1 for CNV 
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Figure 9. The present value of benefits from 2000 to 2020 for Wind Class 6 from scenario 1 for CNV 
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Figure 10. Discounted incremental benefits from 2000 to 2020 for PV from scenario 1 for CNV 
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Figure 11. Discounted incremental net benefits from 2000 to 2020 for wind class 6 from scenario 1 for CNV 

 

Scenarios 2 and 3: In these scenarios we test the sensitivity of our results to assumptions 
about the carbon and water externalities. In scenario 2, we omit the carbon externality, and in 
scenario 3, we omit the water externality. The rest of our assumptions remain as in the first 
scenario.  

The results for these scenarios are in table 2 under scenario 2-CNV, scenario 3-CNV, 
scenario 2-MAPP, and scenario 3-MAPP. Because the omission of the carbon externality causes 
the social generation cost of CCGT to be less expensive, the estimated relative benefits from 
renewables decline in scenario 2 compared with scenario 1. For CNV, the largest median 
discounted present values of benefits are $2.3 billion for wind class 4, $2.9 billion for 
geothermal, and $3.9 billion for wind class 6 compared with conventional CCGT. The median 
values are slightly smaller when this set of renewables is compared with advanced CCGT. The 
values range from $2.1 billion to $3.8 billion. For the other renewable technologies the median 
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values range from –$4.7 billion to –$11.5 billion compared with conventional CCGT and –$4.8 
billion to –$11.6 billion compared with advanced CCGT. In the case of MAPP, the median 
values (in absolute value) follow a similar pattern with CNV in that they are smaller than in 
scenario 1, and smaller when the defending technology is conventional CCGT. The values range 
from $1 billion for wind class 4 and $1.6 billion for wind class 6 to −$1.3 billion for biomass and 
−$4.8 billion for photovoltaics compared with conventional CCGT. Compared with advanced 
CCGT, the median values for MAPP range from $0.9 billion for wind class 4 and $1.5 billion for 
wind class 6 to –$1.4 billion for biomass and –$4.9 billion for photovoltaics.  

Under our assumed distributions to characterize uncertainty in the data, the benefits in 
CNV under scenario 2 could be as large as $5.2 billion for wind class 6 compared with 
conventional CCGT and fall to –$14.5 billion for photovoltaics compared with advanced CCGT. 
For MAPP, the benefits could be as large as $2.2 billion for wind class 6 compared with 
conventional CCGT and losses as large as –$6.7 billion for photovoltaics compared with 
advanced CCGT.  

In scenario 3, the omission of the water externality associated with solar thermal, 
biomass, and both conventional and advanced CCGT technologies reduces the social generation 
costs of these technologies. Because this scenario does include the carbon externality associated 
with both CCGT technologies, however, the benefits conferred by renewables tend to increase 
compared with the benefits of CCGT. For CNV, the largest median discounted present values of 
benefits are $2.7 billion for wind class 4, $3.3 billion for geothermal, and $4.4 billion for wind 
class 6. These benefits are larger than those in scenario 2. The losses associated with other 
renewables are smaller than in scenario 2, ranging from –$3.9 billion for biomass to –$11 billion 
for photovoltaics. For MAPP, benefits range from $1.1 billion to $1.7 billion for the classes of 
wind and are around –$1.1 billion and –$4.7 billion for biomass and photovoltaics, respectively. 

Given our assumptions about uncertainty, the benefits in CNV in scenario 3 could be as 
large as $5.6 billion for wind class 6 compared with conventional CCGT and losses on the order 
of –$14 billion for photovoltaics compared with advanced CCGT. For MAPP, the benefits could 
be as large as $2.2 billion for wind class 6 compared with conventional CCGT and losses on the 
order of –$6.6 billion for photovoltaics compared with advanced CCGT.  

Scenario 4: Here we omit externalities in generation costs. External costs “penalize” 
both the defending technologies and several of the renewable technologies under our 
assumptions, but they penalize the defending technologies by a larger amount. For this reason, in 
the absence of external costs, consumer losses are likely to be larger and consumer gains are 
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likely to be smaller than in scenario 1 (where externalities are included). From table 2 for 
scenario 4-CNV, the median discounted present value for photovoltaics is on the order of –$11.7 
billion to –$11.9 billion. The values for wind are about $2 billion for wind class 4 and $3.6 
billion to $3.8 billion for wind class 6. Losses are about –$6 billion for solar thermal and –$4.6 
billion to –$4.8 billion for biomass. For scenario 4-MAPP, the value for photovoltaics is around 
–$4.9 billion. The values for wind are about $1.5 billion for wind class 6 and $0.9 billion for 
wind class 4. The value for biomass is about –$1.3 billion. The uncertainty bounds indicate that 
losses could be as large as –$6.8 billion for photovoltaics and benefits as large as $2.1 billion for 
wind class 6 in MAPP, with losses of –$14.7 billion for photovoltaics or benefits as large as $4.9 
billion for wind class 6 in CNV.  

External costs differ among renewables and in turn affect their relative performance. For 
example, comparing the results of this scenario with those of scenario 1 demonstrates that the 
losses under photovoltaics narrow relative to those of solar thermal when external costs 
associated with the latter technology are excluded. The relative difference is not large, 
however—on the order of 2% to 3%.  

Scenarios 5–8: In these scenarios we use a slower adoption rate than in the four 
preceding scenarios but maintain our other assumptions. For scenario 5, the other assumptions 
are identical to those in scenario 1; scenario 6 corresponds to scenario 2; scenario 7 corresponds 
to scenario 3; and scenario 8 corresponds to scenario 4.  

The overall effect of a slower adoption rate is to reduce substantially both the gains and 
the losses associated with renewables (see table 2, scenarios 5–8-CNV). The changes reduce the 
gains and losses by 50% to 70% in CNV and 40% to 65% in MAPP. In both regions, the 
reductions are slightly larger compared with conventional CGGT than with advanced CCGT, and 
are slightly larger for wind and biomass than for the other renewables. The relative differences in 
the value of the estimates at the median and 5% and 95% intervals are also smaller under slower 
adoption rates because uncertainty grows over time in the model.  

Scenarios 9–12: In these scenarios, which we model only for CNV, we change our 
measure of expected growth in generation capacity. We use the DOE (DOE/EIA 2000a) total 
forecasted increase in generation capacity for both CCGT and renewables as the basis to which 
we apply the adoption rate. Our other assumptions are as in scenarios 1–4. Because we assume 
that no individual renewable energy technology will comprise more than 15% of total new 
generation capacity, we checked the quantities that are forecasted using this alternative basis to 
make sure the capacity assumption was not violated. We use data in DOE/EIA (2000a) for 
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generation capacity from 2000 to 2020 for each region. The largest percentage share of 
renewables occurs in 2015, when the share is about 6% (see table 3).  

In these scenarios, because the quantity of renewable capacity that is added to the base is 
so small, the overall effect of the alternative base is to increase both the gains and the losses by 
less than 10% (largest in the case of photovoltaics) and typically on the order of 1% to 2% (see 
table 2, scenarios 9–12-CNV).   

 
 
Table 3. Percentage Share of Renewable Energy in Total Generation Capacity 
 
Base  2000–05 2005–10 2010–15 2015–20 
 
CCGT 
 CNV .04 .7 6.0 5.0 
 MAPP .0005 .8 6.0 3.0 
 
CCGT + Renew 
 CNV .1 .8 6.0 5.0 
 MAPP .008 .8 6.0 3.0 
 

Scenarios 13–14. In another exercise of the model we construct hypothetical renewable 
“portfolios.” We ask, “What surplus values are predicted by combining renewable 
technologies?” In scenarios 13-CNV and 13-MAPP we assume that an equal fraction of expected 
new generation will be supplied by each of the renewables. In scenarios 14-CNV and 14-MAPP 
we assign different fractions to the share of each renewable to obtain a positive consumer 
surplus. In the equal-weight renewable portfolio (EQWTRP), the fraction is 1/6. In the variable-
weight case (VARWTRP), the fractions for CNV and MAPP are as follows: 

 PV ST GT Wind 4 Wind 6 Biomass 
CNV:  .034 .083 .25 .25  .3  .083 
MAPP: .025 N/A N/A .475 .475 .025 

We use equal-weighted portfolios under each set of assumptions as in scenarios 1–12, 
generating 24 additional sets of results for both regions. Table 4 shows the results that give the 
largest surplus for both the equal- and variable-weight portfolios. Under equal weights, the 
surplus values are negative under all sets of assumptions. The negative values are smallest when 
adoption rates are slow and both externalities are included. In this case, the discounted surplus is 
about –$ 1.1 billion to –$1.2 billion for CNV and –$.7 billion to –$.8 billion for MAPP. It is 
smallest (in absolute value) in comparison with conventional CCGT. It might be expected that 
the more expensive renewables in the portfolio offset the cost advantages of less expensive 
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renewables to generate the negative value. It is less easy to predict, however, that the offset 
would be smaller when the adoption rate is slower since the same adoption rate applies to all 
renewables (even those that are less expensive than CCGT). The offset is also smaller when all 
externalities are included, even though some of the externalities increase the costs of some 
renewables relative to others and relative to CCGT.  

Under the variable weights that favor some renewables, a portfolio can generate positive 
surplus values. The largest surplus values under our assumptions are $0.68 billion to $0.84 
billion for CNV and $0.8 billion to $0.9 billion for MAPP. The assumptions that lead to these 
results requiring weighting wind heavily, fast adoption, and inclusion of both externalities.  

Our approach to applying the model to a portfolio of renewables is, at this stage in our 
research, limited to exogenous specifications of the weights in the portfolio. In future research 
we would like to make the allocation of the portfolio an endogenously specified solution to an 
optimization problem that maximizes consumer benefit. 

  
 

Table 4. Largest Surplus Gains under an Exogenously Specified “Portfolio” 
 

Discounted present value 2000–2020, $1999 billions 
Base: EIA CCGT growth 
 
 

CNV 
(5%, median, 95%) 
 

MAPP 
(5%, median, 95%) 
 

 
Assumptions 

 
EQWTRP 
 
  C-CCGT 
 
  A-CCGT 

 
 
 
(-1.54, -1.11, -0.72) 
 
(-1.63, -1.20, -0.77) 

 
 
 
(-1.07, -0.72, -0.42) 
 
(-1.13, -0.79, -0.78) 

 
Weibull: .05, 3.5 
External effects: Carbon, water 
 

 
VARWTRP 
 
 C-CCGT 
 
 A-CCGT 
 

 
 
 
(0.41, 0.84, 1.28) 
 
(0.22, 0.68, 1.11) 

 
 
 
(0.59, 0.92, 1.25) 
 
(0.56, 0.83, 1.17) 

 
Weibull: .1, 3.5 
External effects: Carbon, water 
 

 

Overview of Results 

In present-value terms we find that median consumer welfare gains over 20 years vary 
markedly among the renewable technologies, ranging from large negative values (welfare losses) 
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for some of the technologies to large positive values (welfare gains). The sizes of these effects, 
their sensitivity to adoption rates and inclusion of externalities, and their regional differences 
would be difficult to predict without the framework offered by our model. Our modeling 
assumptions, limits, and data, as described earlier, are an important context for our results, and 
these factors also serve as caveats in discussion of our results.  

In scenarios 1 through 8, the largest gains for both regions occur under scenario 1, under 
our assumptions of fast adoption and inclusion of external effects. For CNV, wind class 6 gives 
the largest gains, followed by geothermal and then wind class 4. For MAPP, the largest gains are 
wind class 6, and then wind class 4. Photovoltaics, solar thermal, and biomass technologies 
generate welfare losses under all assumptions, with the largest losses from scenario 4 in the case 
of photovoltaics, with fast adoption and no external costs. Losses are also large in scenario 2, 
which assumes fast adoption and adds no carbon externality to the generation costs of CCGT.  

Although the ranking of the renewable technologies based on our measure of consumer 
surplus might be consistent with what we would expect based on the sizes of their private and 
social generation costs, it is less easy to predict a priori the relative ranking of performance 
under different assumptions about externalities. For example, our results show that including a 
carbon and water externality can improve the relative performance of renewables; including a 
water externality but not a carbon externality gives results very similar to no externality at all; 
and including water but not carbon worsens the relative performance of solar thermal and 
biomass compared with CCGT, even though there is also a water externality associated with 
CCGT. We find this pattern of results whether we use estimates of new CCGT generation as a 
base from which to forecast renewables adoption, or whether we use estimates of new CCGT 
plus renewables generation as a base.  

Our results for portfolios of renewables suggest that equal portfolio weights (represented 
as adopted quantities) are likely to lead to consumer losses in our regions, regardless of the role 
of externalities. However, when the portfolio is weighted toward renewables that give positive 
surplus values in pairwise comparisons with conventional and advanced CCGT, consumer gains 
can be positive. But these portfolio gains are substantially smaller than under scenarios involving 
adoption only of renewable technologies that confer positive surpluses in pairwise comparisons 
with CCGT. The different allocations in the variable-weight portfolios for CNV and MAPP 
illustrate the usefulness of models that can be separately evaluated on a regional basis rather than 
nationally aggregated.  
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Our results also indicate the importance of considering technical innovation in the 
defending technology. Holding all other assumptions constant, we find that surplus values are 
overstated by around 5% when renewables do not contend with innovation in CCGT.  

The effect of uncertainty can lead to estimates that are 20% to 40% larger or smaller than 
median predicted values. These are rather large differences, even though our uncertainty bounds 
are rather small (plus or minus 10% of the reported data values). But the effects of uncertainty 
increase as the time period extends into the future. The importance of allowing for uncertainty 
suggests that frequently updated or improved data could improve understanding of the future 
relative performance of the technologies, particularly when uncertainty may arise because of data 
gaps (for example, in measures of the externalities). These results also suggest that comparing 
future scenarios without taking uncertainty into account could lead to misleading conclusions. 

On a per capita basis for the two regions, the discounted median present value of 
consumer surplus resulting in the largest potential gains is about $139 for CNV and $150 for 
MAPP (from scenario 1 in the case of wind class 6).  Multiplying our per capita surplus by 4 
(assuming four persons per household) gives a surplus per household of $556 in CNV and $600 
in MAPP. For rough comparison, annual household expenditures on electricity are about $388 in 
CNV and $378 in MAPP. The discounted, 20-year value of the surplus, then, is about 40% to 
50% more than one year’s electricity expenditure by a household. Or, as an alternative 
comparison, these amounts are roughly the average “tax rebate” given to U.S. households during 
summer 2001. For the small positive surplus under the variable-weight portfolio, the savings per 
household is about $111 in CNV and $300 in MAPP. 

V. Conclusions  

We seek to offer a conceptually sound but readily implemented approach to considering a 
dimension of evaluating public investment in energy generation innovation—that of measuring 
consumer surplus. We develop our approach using a cost index that is well grounded in demand 
theory and develop a simulation model to estimate the value of the index and the consumer 
surplus it predicts over the period 2000–2020, for two regions of the country. Where data are 
available, we explicitly incorporate the value of externalities that may be associated with our 
technologies. Because we forecast future consumer benefits, we also include model uncertainty 
by parameterizing inputs with probability distributions and using standard procedures for 
drawing randomly from these distributions in running the model. Although the usual demand 
elasticities are explicit in the cost index, we use hypothesized adoption rates, described by the 
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Weibull function, to characterize how future market demand will evolve during the 20-year 
period.  

Our approach has several limitations. From a conceptual perspective, the model does not 
allow power companies to optimize their choice of power generation technologies by choosing a 
mix of technologies based on costs or other factors (consumers’ desire to purchase green power, 
say); then allow consumers to respond to this mix; and then further adjust supply and demand to 
obtain a market equilibrium. Rather than this general equilibrium approach, our model involves 
more modest pairwise comparisons of conventional and new technologies. It has the virtue, by 
way of the cost index, of incorporating the elasticity parameters that are the key to a general 
equilibrium approach, but it does not allow iteration between demand and supply in 
endogenously reaching equilibrium. Our model’s structure does allow us exogenously to 
construct hypothetical portfolios of combinations of energy generation technologies (either 
proposed by government or reached by hypothesizing a general equilibrium) and then evaluate 
future consumer benefits. In this regard, the approach could also be a useful tool for informing 
discussion about energy portfolios. In a future extension of the model, we would like to allow for 
endogenous optimization of the portfolio. 

We would also like to extend the model to forecast other types of benefits, including 
those singled out in a recent National Research Council report (2001) on the costs and benefits of 
energy research. These other benefits include the extent to which research projects have 
commercialization potential (a benefit we have considered in previous applications of our model 
to other technological innovation (see Austin and Macauley 2000 and 2001) or lead to 
improvements in knowledge that in turn contribute to new products or services “spun off” from 
the original innovation. As the National Research Council study emphasizes, a broad array of 
benefits, taken together, can serve as a tool for measuring returns to a portfolio of individual 
energy R&D initiatives. In such a portfolio (used here in an investment sense, and thus with a 
different meaning than in the paragraph above), some projects may perform better than others, 
but collectively the portfolio may confer positive benefit.  

Our model is also limited by data about external effects associated with energy 
generation. The literature has advanced furthest in quantifying the social costs of carbon 
emissions from fossil-fuel electricity generation, and we rely heavily on this literature. The 
literature is less developed in discussion of other effects, such as thermal discharges associated 
with fossil-fuel and some renewable technologies. We make our best guess about the cost of this 
effect in our study. The literature is even less advanced in assessing the social costs of other 
externalities associated with renewables, although there is ample discussion of the possible 



Resources for the Future Macauley et al. 

 53  

physical effects of, say, wind turbines on bird populations, including in some cases scientific 
studies of the magnitude of these physical effects.  

With those caveats in mind, we believe that the model provides useful guidance for 
decisionmakers and researchers alike. Our results illustrate the usefulness of the framework to 
test assumptions and evaluate scenarios with respect to their implications for consumer surplus 
and indicate the extent to which different renewable technologies may be more or less promising 
in their contribution to surplus. In addition, the model complements proposals for assessing the 
“energy contribution potential” of renewable energy technologies by offering an assessment 
approach somewhat analogous to that taken for conventional energy supplies (i.e., the 
assessment of energy resources, accessible resources, and reserves; see Bath 1999). By adding 
the external effects of technologies, our model allows a more complete evaluation of overall 
welfare results of improving renewable technology performance.  

Finally, even though we measure only gross surplus, our estimates do shed some light on 
overall public net benefits. We do not subtract the cost of public R&D energy expenditures to 
date, nor do we include future public expenditures that could be necessary to bring about the 
adoption rates we posit. Over the 20 years 1978–98, in 1999 dollars, federal R&D spending on 
renewable energy (predominantly in electricity generation applications) totaled around $13 
billion, the largest proportion of which was allocated to solar photovoltaics (roughly $2.5 billion) 
and wind power ($1.5 billion).27 However, if our gross benefit estimates are in the ballpark, at 
least part of this spending could be recouped over the next 20 years by consumer surplus 
accruing to the regions we study. Whether that level of government expenditure was too much, 
too little, or just about right is a matter that deserves a close look but is well beyond the scope of 
this paper.  

                                                 
27U.S. General Accounting Office (1999). The numbers in the GAO report are in current dollars, converted here to 
constant dollars using the relationship of current-dollar and constant-dollar gross domestic product for the 20-year 
period. The GDP numbers appear in the Economic Report of the President 2001. 
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Appendix 1. Forecast Information from the Department of Energy 
 
Electricity generation from natural gas 

Natural 
gas 

Generation, 
billion kWh 

Percentage of region’s 
electricity 

Percentage of 
region’s new 
electricity 

Growth 

 2001 2020 2001 2020 2001–2020 2001–2020 
U.S. 412 1587 12% 33% 86% 285% 
CNV 62 161 31% 47% 67% 159% 
MAPP 1.8 39 1% 18% 78% 2102% 

 
Electricity generation from photovoltaics 

PV Generation, 
billion kWh 

Percentage of region’s 
electricity 

Percentage of 
region’s new 
electricity 

Growth 

 2001 2020 2001 2020 2001–2020 2001–2020 
U.S. 0.05 1.36 0.002% 0.03% 0.1% 2476% 
CNV 0.04 0.45 0.02% 0.13% 0.3% 974% 
MAPP 0 0 0 0 0 0 

 
Electricity generation from solar thermal 

ST Generation, 
billion kWh 

Percentage of region’s 
electricity 

Percentage of 
region’s new 
electricity 

Growth 

 2001 2020 2001 2020 2001–2020 2001–2020 
U.S. 0.89 1.37 0.03% 0.03% 0.04% 53% 
CNV 0.89 1.06 0.5% 0.3% 0.12% 19% 
MAPP 0 0 0 0 0 0 

 
Electricity generation from geothermal 

GT Generation, 
billion kWh 

Percentage of region’s 
electricity 

Percentage of 
region’s new 
electricity 

Growth 

 2001 2020 2001 2020 2001–2020 2001–2020 
U.S. 13.6 25.8 0.39% 0.53% 0.9% 90% 
CNV 8.97 9.08 4.5% 2.7% 0.06% 1% 
MAPP 0 0 0 0 0 0 

 
Electricity generation from wind 

Wind Generation, 
billion kWh 

Percentage of region’s 
electricity 

Percentage of new 
electricity 

Growth 

 2001 2020 2001 2020 2001–2020 2001–2020 
U.S. 6.6 13.1 0.2% 0.3% 0.5% 98% 
CNV 3.5 3.7 1.8% 1.1% 0.1% 5.6% 
MAPP 1.1 1.4 0.7% 0.6% 0.5% 22% 
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Electricity generation from biomass 
Biomass Generation, 

billion kWh 
Percentage of region’s 
electricity 

Percentage of 
region’s new 
electricity 

Growth 

 2001 2020 2001 2020 2001–2020 2001–2020 
U.S. 13.6 22.1 0.4% 0.5% 0.6% 63% 
CNV 2.25 2.25 1.1% 0.7% 0% 0% 
MAPP 0.43 0.92 0.3% 0.4% 1% 114% 

Appendix 2. Derivation of CCGT Generation Costs 

Our calculations are as follows: 

1. Capital costs. By working back from DOE/EIA (2000, Annual Energy Outlook 2001, 
advanced reference case numbers for 2005 and 2020, 78), we estimate a capital 
recovery factor of around 15% and an annual load factor of around 80%. For 
example, for conventional CCGT in 2005, the assumptions are a cost of 
($440/kw)(15%)/6950 hours = 0.95 cents/kWh. Other estimates are similarly derived. 
We multiply the capital costs by 1.004 for MAPP and 1.058 for CNV, which are the 
regional construction cost adjustments (for power plant construction labor and other 
cost differences) given in DOE/EIA (2000). 

2. Operation and maintenance (O&M) costs. For advanced CCGT, the reference case 
numbers published in DOE/EIA (2000, 75) of 0.19 cents/kWh are applied across all 
years. Conventional CCGT O&M is derived from DOE/EIA assumptions data (2000, 
69), which indicate no difference between conventional and advanced CCGT with 
respect to the variable component of O&M costs but show a slightly higher fixed cost 
for the conventional version. Fixed O&M represent approximately 73% of total O&M 
in the advanced case. Assuming the same ratio for conventional, we multiply the 
percentage increase (from advanced to conventional) in fixed O&M, by the 
percentage of fixed O&M to total O&M, by the 0.19 cents/kWh. This resulted in a 
0.20 cent/kWh estimate of conventional CCGT O&M. 

3. Fuel costs. We use the DOE/EIA (2000) advanced CCGT reference case numbers for 
2005 and 2020 ($0.0279/kWh and $0.0252/kWh, respectively). Intermediate years 
were interpolated linearly. We multiply the fuel costs by the regional natural gas price 
multipliers given in the DOE/EIA (2000) supplement to adjust for regional fuel cost 
differences. Note that the gas multipliers are given by census region. We matched 
census region WNC to EMM region MAPP and likewise Pacific to CNV. 
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Appendix 3. Estimates of Personal Consumption Expenditure 

For each year, for each state in a region, we calculate the product of state per capita 
personal income by the midyear population in that state, the percentage of the state’s population 
that lives within the regional boundaries, and the ratio of national personal consumption 
expenditures to national personal income for that year (which ranged from .65 to .67). Then we 
add each state’s contribution to obtain a regional PCE for each year. To forecast PCE for future 
years, we use the following regression results:  

Personal consumption expenditure regression results 
btaPCEt +=   

 t = 1989 to 1999 
 

CNV REGION:        
                                       The REG Procedure    
                                          Model: MODEL1    
                                    Dependent Variable: PCE    
        
                                      Analysis of Variance    
        
                                                    Sum of          Mean    
         Source                   DF       Squares         Square    F Value    Pr > F  
        
         Model                     1          21695          21695      53.36      <.0001  
         Error                       9     3659.03964      406.55996   
         Corrected Total     10          25354     
        
        
                      Root MSE                 20.16333    R-Square     0.8557   
                      Dependent Mean      558.70909   Adj R-Sq    0.8396  
                      Coeff Var                  3.60891     
        
        
                                      Parameter Estimates    
        
                                           Parameter       Standard    
              Variable     DF       Estimate          Error        t Value    Pr > |t|  
        
              Intercept      1      474.44727       13.03902      36.39      <.0001  
              year             1       14.04364        1.92250          7.30       <.0001  
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MAPP region       
 
                                        The REG Procedure    
                                          Model: MODEL1    
                                    Dependent Variable: pce    
        
                                      Analysis of Variance    
        
                                                     Sum of         Mean     
         Source                   DF        Squares         Square             F Value    Pr > F  
        
         Model                     1        4158.62290     4158.62290     275.60    <.0001 
         Error                       9        135.80365       15.08929    
         Corrected Total     10       4294.42655    
        
        
                      Root MSE                 3.88449       R-Square     0.9684   
                      Dependent Mean      181.91872   Adj R-Sq     0.9649  
                      Coeff Var                  2.13529     
        
        
                                      Parameter Estimates    
        
                                           Parameter       Standard    
              Variable     DF    Estimate          Error           t Value    Pr > |t|  
        
              Intercept     1      145.02694        2.51198      57.73      <.0001  
              year            1        6.14863          0.37037      16.60      <.0001  
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Appendix 4. Data Description 
Model Parameters 
 

Variables 
(units) 

Parameterization 
(CNV) 

Parameterization 
(MAPP) 

Gencosts00 
(c/kWh, 
$1999) 

Photovoltaic Triangular(27.47,30.52,33.57) 
Solar Thermal Triangular(10.91,12.13,13.34) 
Hydro/Geothermal  (Binary)  Triangular(3.33,3.7,4.07) 
Wind Class 4 Triangular(3.98,4.42,4.86) 
Wind Class 6 Triangular(3.14,3.49,3.84) 
Direct-fired Biomass Triangular(6.94,7.71,8.48) 
CCGT (conventional) Triangular(4.17,4.63,5.09) 
CCGT (advanced) Triangular(4.12,4.58,5.03) 

Photovoltaic Triangular(42.58,47.31,52.04) 
Solar Thermal NA 
Hydro/Geothermal  (Binary) NA 
Wind Class 4 Triangular(3.98,4.42,4.86) 
Wind Class 6 Triangular(3.14,3.49,3.84) 
Direct-fired Biomass Triangular(6.94,7.71,8.48) 
CCGT (conventional) Triangular(3.78,4.2,4.62) 
CCGT (advanced) Triangular(3.75,4.16,4.58) 

Gencosts05 
(c/kWh, 
$1999) 

Photovoltaic Triangular(21.6,24,26.4) 
Solar Thermal Triangular(8.97,9.97,10.97) 
Hydro/Geothermal  (Binary)   Triangular(3.01,3.34,3.67) 
Wind Class 4 Triangular(3.42,3.8,4.18) 
Wind Class 6 Triangular(2.73,3.03,3.33) 
Direct-fired Biomass Triangular(6.71,7.45,8.2) 
CCGT (conventional) Triangular(4.08,4.54,4.99) 
CCGT (advanced) Triangular(4.02,4.46,4.91) 

Photovoltaic Triangular(33.47,37.19,40.91) 
Solar Thermal NA 
Hydro/Geothermal  (Binary) NA  
Wind Class 4 Triangular(3.42,3.8,4.18) 
Wind Class 6 Triangular(2.73,3.03,3.33) 
Direct-fired Biomass Triangular(6.71,7.45,8.2) 
CCGT (conventional) Triangular(3.82,4.24,4.66) 
CCGT (advanced) Triangular(3.76,4.17,4.59) 

Gencosts10 
(c/kWh, 
$1999) 

Photovoltaic Triangular(15.72,17.47,19.22) 
Solar Thermal Triangular(7.03,7.81,8.59) 
Hydro/Geothermal  (Binary) Triangular(2.68,2.98,3.28) 
Wind Class 4 Triangular(2.87,3.19,3.5) 
Wind Class 6 Triangular(2.31,2.57,2.83) 
Direct-fired Biomass Triangular(6.47,7.19,7.91) 
CCGT (conventional) Triangular(3.6,4,4.4) 
CCGT (advanced) Triangular(3.55,3.94,4.34) 

Photovoltaic Triangular(24.37,27.08,29.79) 
Solar Thermal NA 
Hydro/Geothermal  (Binary) NA 
Wind Class 4 Triangular(2.87,3.19,3.5) 
Wind Class 6 Triangular(2.31,2.57,2.83) 
Direct-fired Biomass Triangular(6.47,7.19,7.91) 
CCGT (conventional) Triangular(3.71,4.12,4.54) 
CCGT (advanced) Triangular(3.64,4.04,4.45) 

Gencosts15 
(c/kWh, 
$1999) 

Photovoltaic Triangular(12.58,13.98,15.37) 
Solar Thermal Triangular(6.84,7.60,8.37) 
Hydro/Geothermal  (Binary) Triangular(2.59,2.88,3.17) 
Wind Class 4 Triangular(2.77,3.08,3.39) 
Wind Class 6 Triangular(2.27,2.52,2.77) 
Direct-fired Biomass Triangular(5.92,6.58,7.23) 
CCGT (conventional) Triangular(3.52,3.91,4.31) 
CCGT (advanced) Triangular(3.45,3.84,4.22) 

Photovoltaic Triangular(19.5,21.66,23.83) 
Solar Thermal NA 
Hydro/Geothermal  (Binary) NA 
Wind Class 4 Triangular(2.77,3.08,3.39) 
Wind Class 6 Triangular(2.27,2.52,2.77) 
Direct-fired Biomass Triangular(5.92,6.58,7.23) 
CCGT (conventional) Triangular(3.87,4.3,4.73) 
CCGT (advanced) Triangular(3.75,4.17,4.59) 

Gencosts20 
(c/kWh, 
$1999) 

Photovoltaic Triangular(9.43,10.48,11.53) 
Solar Thermal Triangular(6.66,7.4,8.14) 
Hydro/Geothermal  (Binary) Triangular(2.5,2.77,3.05) 
Wind Class 4 Triangular(2.68,2.98,3.28) 
Wind Class 6 Triangular(2.22,2.47,2.71) 
Direct-fired Biomass Triangular(5.36,5.96,6.56) 
CCGT (conventional)              Triangular(3.45,3.83,4.21) 
CCGT (advanced) Triangular(3.36,3.73,4.1) 

Photovoltaic Triangular(14.62,16.25,17.87) 
Solar Thermal NA 
Hydro/Geothermal  (Binary) NA 
Wind Class 4 Triangular(2.68,2.98,3.28) 
Wind Class 6 Triangular(2.22,2.47,2.71) 
Direct-fired Biomass Triangular(5.36,5.96,6.56) 
CCGT (conventional) Triangular(3.78,4.2,4.62) 
CCGT (advanced) Triangular(3.65,4.05,4.46) 

    Tfactor 
(% per year) 

Normal(0.0, 0.01)  Normal(0.0, 0.01) 

Water 
externality 

(%) 

Photovoltaic 0.00 
Solar Thermal Triangular(2,3,4)/100 
Hydro/Geothermal  (Binary)   0.00 
Wind Class 4 0.00 
Wind Class 6 0.00 
Direct-fired Biomass Triangular(2,3,4)/100 
CCGT (conventional) Triangular(1.5,2.25,3)/100 
CCGT (advanced) Triangular(1.5,2.25,3)/100 

Photovoltaic 0.00 
Solar Thermal Triangular(2,3,4)/100 
Hydro/Geothermal  (Binary) 0.00 
Wind Class 4 0.00 
Wind Class 6 0.00 
Direct-fired Biomass Triangular(2,3,4)/100 
CCGT (conventional) Triangular(1.5,2.25,3)/100 
CCGT (advanced) Triangular(1.5,2.25,3)/100 

Fossil 
emissions 
cost 
(mills/kWH) 

Photovoltaic 0.00 
Solar Thermal 0.00 
Hydro/Geothermal  (Binary)   0.00 
Wind Class 4 0.00 
Wind Class 6 0.00 
Direct-fired Biomass 0.00 

Photovoltaic 0.00 
Solar Thermal 0.00 
Hydro/Geothermal  (Binary) 0.00 
Wind Class 4 0.00 
Wind Class 6 0.00 
Direct-fired Biomass 0.00 
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CCGT (conventional) Triangular(2.7,3,3.3) 
CCGT (advanced) Triangular(2.7,3,3.3) 

CCGT (conventional) Triangular(2.7,3,3.3) 
CCGT (advanced) Triangular(2.7,3,3.3) 

Pricetime 
(cents/kWh) 
 

2000                                     10.36 *(1+Tfactor*time) 
2005                                       8.35 *(1+Tfactor*time) 
2010                                       6.91 *(1+Tfactor*time) 
2015                                       6.99 *(1+Tfactor*time) 
2020                                       7.16 *(1+Tfactor*time) 

2000                                     5.60 *(1+Tfactor*time) 
2005                                     5.22 *(1+Tfactor*time) 
2010                                     5.22 *(1+Tfactor*time) 
2015                                     5.21 *(1+Tfactor*time) 
2020                                     5.13 *(1+Tfactor*time) 

Ccgtgenincr 
(billion 
kWh) 

2000            0 
2005             Triangular(((65.52-62.25)*0.9),(65.52-62.25),((65.52-62.25)*1.1)) 
2010          Triangular(((73.39-65.52)*0.9),(73.39-65.52),((73.39-65.52)*1.1)) 
2015 Triangular(((119.5-73.39)*0.9),(119.5-73.39),((119.5-73.39)*1.1)) 
2020 Triangular(((161-119.5)*0.9),(161-119.5),((161-119.5)*1.1)) 

2000                0 
2005         Triangular(((1.81-1.8)*0.9),(1.81-1.8),((1.81-1.8)*1.1)) 
2010         Triangular(((5.52-1.81)*0.9),(5.52-1.81),((5.52-1.81)*1.1)) 
2015         Triangular(((27.31-5.52)*0.9),(27.31-5.52),((27.31-5.52)*1.1)) 
2020         Triangular(((39.46-27.31)*0.9),(39.46-27.31),((39.46-27.31)*1.1)) 

Totgencap4
cast 

(billion kWh) 

2000                 Triangular((197.6*0.9),197.6,(197.6*1.1)) 
2005        Triangular((208.3*0.9),208.3,(208.3*1.1)) 
2010                Triangular((254.5*0.9),254.5,(254.5*1.1)) 
2015         Triangular((300.7*0.9),300.7,(300.7*1.1)) 
2020         Triangular((342.6*0.9),342.6,(342.6*1.1)) 

2000           Triangular((162.9*0.9),162.9,(162.9*1.1)) 
2005           Triangular((185*0.9),185,(185*1.1)) 
2010           Triangular((193.8*0.9),193.8,(193.8*1.1)) 
2015           Triangular((219.0*0.9),219.0,(219.0*1.1))** 
2020           Triangular((231.5*0.9),231.5,(231.5*1.1))** 

Renewbase4
cast 

(billion kWh) 

2000        Triangular((53.64*0.9),53.64,(53.64*1.1)) 
2005        Triangular((59.42*0.9),59.42,(59.42*1.1)) 
2010        Triangular((59.87*0.9),59.87,(59.87*1.1)) 
2015        Triangular((59.96*0.9),59.96,(59.96*1.1)) 
2020        Triangular((60.1*0.9),60.1,(60.1*1.1)) 

2000           Triangular((17.18*0.9),17.18,(17.18*1.1)) 
2005           Triangular((18.77*0.9),18.77,(18.77*1.1)) 
2010           Triangular((18.73*0.9),18.73,(18.73*1.1)) 
2015           Triangular((18.7*0.9),18.7,(18.7*1.1)) 
2020           Triangular((18.67*0.9),18.67,(18.67*1.1)) 

Ccgtbase4c
ast 

(billion kWh) 

2000        Triangular((62.25*0.9),62.25,(62.25*1.1)) 
2005        Triangular((65.52*0.9),65.52,(65.52*1.1)) 
2010        Triangular((73.39*0.9),73.39,(73.39*1.1)) 
2015        Triangular((119.5*0.9),119.5,(119.5*1.1)) 
2020        Triangular((161*0.9),161,(161*1.1)) 

2000           Triangular((1.8*0.9),1.8,(1.8*1.1)) 
2005           Triangular((1.81*0.9),1.81,(1.81*1.1)) 
2010           Triangular((5.52*0.9),5.52,(5.52*1.1)) 
2015           Triangular((27.31*0.9),27.31,(27.31*1.1)) 
2020           Triangular((39.46*0.9),39.46,(39.46*1.1)) 

Basepce1 
(billion 
$1999) 

2000                 Normal(6.429e+011,2.017e+010) 
2005               Normal(7.131e+011,5.803e+010) 
2010        Normal(7.833e+011,1.029e+011) 
2015        Normal(8.535e+011,1.548e+011) 
2020        Normal(9.237e+011,2.137e+011) 

2000           Normal(2.188e+011,3.880e+009) 
2005           Normal(2.496e+011,1.691e+010) 
2010           Normal(2.803e+011,3.301e+010) 
2015           Normal(3.111e+011,5.218e+010) 
2020           Normal(3.418e+011,7.443e+010) 

 
 
 


