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Modeling Yield Risk Under Technological 
Change: Dynamic Yield Distributions 
and the U.S. Crop Insurance Program 

 

Ying Zhu, Barry K. Goodwin, and Sujit K. Ghosh 
 

The objective of this study is to evaluate the risk associated with major agricultural 
commodity yields in the United States. We are particularly concerned with the non-
stationary nature of the yield distribution, which arises primarily as a result of techno-
logical progress and changing environmental conditions over time. In contrast to common 
two-stage methods, we propose an alternative parametric model that allows the moments 
of yield distributions to change with time. Several model selection techniques suggest the 
proposed time-varying model outperforms more conventional models in terms of in-
sample goodness-of-fit, out-of-sample predictive power, and the prediction accuracy of 
insurance premium rates. 
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Introduction 
 
The Federal Crop Insurance program represents an important component of U.S. agricultural 
policy and is intended to protect farmers from yield and revenue risk. Accurate modeling of 
crop yield distributions is essential for the proper design of crop insurance contracts and to 
the maintenance of an actuarially-sound insurance program. Historical agricultural yield data 
suggest a strong upward trend in crop yields [see figure 1(a)]. Advances in technology, germ- 
plasm, breeding techniques, the development of new hybrids, and changes in environmental 
factors may significantly affect the distributions of crop yields. These changes can complicate 
efforts to accurately model yield distributions using data observed over time. 
 Many studies have attempted to determine the distributional model and estimation methods 
that best characterize crop yield distributions. Modeling approaches in the current literature 
range from nonparametric (Goodwin and Ker, 1998) to parametric methods (Day, 1965; Nelson 
and Preckel, 1989; Taylor, 1990; Ramirez, 1997; Ramirez, Misra, and Field, 2003; Just and 
Weninger, 1999; Chen and Miranda, 2004; Sherrick et al., 2004, among others) based on the 
assumption that crop yields are independently and identically distributed. The parametric 
approach of modeling yields usually involves selection and specification of candidate distri-
bution families, parameter estimation, and goodness-of-fit assessments. Among others, the 
Beta distribution is popularly used in practice because of its flexibility and ability to represent 
the skewness typically associated with crop yield distributions. The concept of a conditional 
Beta distribution for yields was introduced by Nelson and Preckel (1989). Other popular 
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candidates used in the literature include the lognormal distribution (Day, 1965), the normal 
distribution (Just and Weninger, 1999), the normal distribution with spatial effects (Ozaki et 
al., 2008). the Weibull distribution (Chen and Miranda, 2004), and the logistic distribution 
(Sherrick et al., 2004). Evidence of nonnormal yields has been presented by a number of 
authors, including Taylor (1990), Ramirez (1997), and Ramirez, Misra, and Field (2003). 
 In many cases, agricultural yields display a strong upward trend over time, and the deviations 
from trend (residuals) frequently display heteroskedasticity [see figure 1(a)], violating the 
assumption that yields are identically distributed. A common approach to modeling yield risk 
using time-series data has been to first detrend the time-series data and then estimate the yield 
distribution using the detrended yield data, treating the estimated, detrended yields as “observed” 
data. These approaches are often referred to as “two-stage” methods; the first stage fits a trend 
model to the data, while the second stage uses the detrended data to model the distribution. 
Examples of such two-stage detrending procedures can be found in Miranda and Glauber 
(1997), Swinton and King (1991), and Atwood, Shaik, and Watts (2003), among others. 
 In this two-stage method, it is crucial to determine the correct functional form of the 
regression that represents trend in the first stage and then to establish the correct distributional 
properties of the detrended data, including such characteristics as skewness, kurtosis, and 
heteroskedasticity. Yet, it has been recognized that the resulting estimated residuals, represent- 
ing the detrended yields, are subject to the estimation uncertainty associated with sampling 
variability in the first-stage estimates of trend, and thus may not necessarily provide an 
accurate representation of the actual yield distribution. Any biases induced at the first stage 
asymptotically approach zero when the correct functional form is used in the regression and 
errors are homoskedastic. However, the uncertainty introduced at the first stage, if not 
accounted for in second-stage estimates of the yield distribution, will lead to inaccurate esti-
mation of variance in the final estimates. The magnitude of this effect can be large especially 
when the errors are heteroskedastic (Robinson, 1987) and can potentially introduce significant 
adverse selection into an insurance program if ignored. 
 This standard two-stage method is among the most popular approaches to removing time 
trends and modeling the distribution of crop yields. A similar two-stage method is used to rate 
the Group Risk (GRP) and Gross Revenue Insurance (GRIP) programs, though this method 
does address the potential for heteroskedasticity. However, it is possible to account for the 
uncertainties associated with the first-stage estimates and adequately represent characteristics 
of the yield distribution (such as deterministic trends and heteroskedasticity) by applying an 
alternative simultaneous estimation method. We propose a likelihood-based estimation method 
that simultaneously estimates the trend (conditional mean) and higher order conditional 
moments of the yield density by using a flexible class of parametric distributions. We also pro-
vide a set of model validation tools for enabling a researcher to test the validity of the proposed 
class of distributions in approximating the true underlying data-generation mechanism. 
 This method, along with the validation measures proposed here, allows one to measure 
conditional yield risk in a dynamic setting and thereby calculate premium rates for crop insur-
ance contracts in a more accurate and systematic way. Our method essentially models the first 
four conditional moments of the distribution simultaneously by allowing location, scale, skew-
ness, and kutosis parameters of the specific distributional family to evolve over time.The more 
common two-stage method usually allows one to model only the location (conditional mean) 
and sometimes the scale (conditional variance) to reflect changes over time. A more complete 
and coherent picture of technological progress and the consequential changes in yield risk can 
be provided by simultaneously modeling the time trend and the distributional parameters. 
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                                     Corn Yield Trend Soybean Yield Trend 

 

(a) Yield trend of different crops (1970–2007) 
 
 
 
 
 
 

 

(b) Residual plot of annual corn yield, Adair County, Iowa 
 
 
 
 
 

Figure 1. Scatter plot and residual analysis 
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A Conventional Two-Stage Estimation Framework 
 
In most empirical analyses, a deterministic trend is used to capture the dynamics of the 
expected yields, and thus to represent the variation of yields around this expected level.1 The 
trend component is usually controlled for prior to assessing the distribution of yields—
generally using a homoskedastic parametric or nonparametric regression model. Popular 
regression models include a log-linear specification based on polynomials, kernel regression, 
smoothing splines, and partial linear models (Gyorfi et al., 2002). We illustrate this idea by 
using a quadratic trend as well as a nonparametric trend model.2 
 Consider the following trend model: 

(1) ( ) ,t t ty m x    

where yt is the observed crop yield in year t, (t = 1, . . . , T); m(x) denotes the regression 
function E(Yt | Xt = x); xt signifies linear or nonlinear time indexes representing trend; and 
εt represents residuals that are assumed to be independently distributed with mean zero. 
The regression function m(·) can be estimated nonparametrically using kernel methods or 
smoothing spline methods. Alternatively, if we assume a parametric functional form for m(·), 
then the regression coefficients can be obtained using ordinary least squares (OLS).3 In either 
case, the residuals are obtained as ˆ ˆ ( ).t t ty m x    We considered both quadratic and non-
parametric trend models. The Kolmogorov-Smirnov (K-S) two-sample goodness-of-fit (GOF) 
test suggests that the two residual distributions are not significantly different between the 
nonparametric and parametric models based on the data in this study. On the basis of this test, 
the quadratic detrending method is used as a benchmark. 
 The empirical analyses presented in this paper are based on applications to the USDA’s 
National Agricultural Statistics Service (NASS) county-level average yields.4 Figure 1(b) 
presents the nonparametric residual plot of annual corn yields in Iowa, which shows that the 
deviations from trend tend to be proportional to the level of the yields. To account for this 
temporal heteroskedasticity effect, a rescaled form of the deviations from a trend-based, 
forecasting equation is often suggested. This approach, though ad hoc, is commonly used in 
practice (see, e.g., Miranda and Glauber, 1997; Atwood, Shaik, and Watts, 2003). By dividing 
each error by its associated forecast, the residuals can be scaled to the year T equivalent 
predicted yield. 
 We use a goodness-of-fit (GOF) specification test to determine the appropriate distribution 
for the detrended yield .ty  A Q-Q plot based on the residuals t  [figure 1(b)] indicates the 
residuals are more negatively skewed than what would be implied by the normal distribution, 
which suggests that a Beta distribution may be a viable candidate. A GOF test for the Beta 
distribution (based on a χ2 statistic) confirms that a Beta distribution provides a reasonable fit 
for the normalized county-level yields typically applied in this two-stage approach. For 

                                                 
1 The main justification for using a deterministic component is that if crop yield variables evolve slowly through time, then 

approximation of a deterministic component may be sufficient to model the yield distribution (Just and Weninger, 1999). 
2 The selection of these two trend models is intended to provide a benchmark for comparison purposes. There are other 

detrending methods such as log-linear regression. Since the focus of this study is to compare the two-stage approach and the time-
varying method proposed here as an alternative, we use representative methods to illustrate the concepts. A comprehensive survey 
of all possible detrending methods is beyond the scope of this study. 

3 We assume that m (x t )  = m 0 (x t ,  β), where m 0 is a known functional form up to some finite dimensional regression coefficient 
vector β. 

4 The data are available at the NASS website (http://www.nass.usda.gov). 
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example, the GOF test of Iowa all-practice corn yields produces a p-value of 0.51 for Kossuth 
County and 0.62 for Adair County. We use Beta(α, β, θ, δ) to denote a Beta distribution with 
shape parameters α, β > 0, location parameter θ ≥ 0, and scale parameter δ > 0.5 This implies 
the yields follow a Beta distribution with constant shape parameters and time-varying 
location and scale parameters; specifically, yt :  Beta (α, β, , ),t t    with ˆ ˆ, ,t t t t          and 
ˆ ˆ ˆ/ .t t Ty y  The log-likelihood function of a general Beta distribution based on the detrended 

data 
ty  with two shape parameters α and β, location θ, and scale parameters δ is given by: 

(2) 

 

1 1

1 1

( , , , | , 1, , )
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where log(B(α, β)) = log (Γ(α)) + log (Γ(β)) – log (Γ(α + β)), and log (a+) = log (a) if a > 0 
and log (a+) = 0 otherwise, which ensures that ,ty t      for any θ, δ > 0. 
 We obtain the parameter estimates ˆ ˆ ˆˆ( , , , )     by maximizing the LLF (α, β, θ, δ) based on 
the normalized values of .ty  The results are presented in table 1. The predicted mean yield 
can be calculated from the detrended model as: 

(3) 
ˆˆ ˆ ( )ˆ ˆ ˆ ˆˆ .

ˆˆ ˆ ( ) ˆ
T T

t t
t t

y m x
y y

y m x

 
         

  

As previously noted, using a first-stage estimation to detrend yield data and then treating the 
resulting detrended yields as if they were observed without error may not be appropriate 
because the first-stage estimation error is ignored [i.e., ,ˆ st  are assumed to be known for the 
LLF in equation (2)]. A more systematic inferential method may be needed to accurately 
capture trend effects and model conditional yield risk. 
 

A Time-Varying Yield Distribution Model 
 
In this section, a flexible class of parametric models is proposed, which allows us to simul-
taneously and coherently specify the first four moments using suitable polynomials of time. 
The coefficients of the polynomials are estimated simultaneously by maximizing the resulting 
likelihood function. Several alternative models are examined to measure conditional yield 
risk. For instance, instead of using polynomials to model the first four moments of the pro-
posed distribution, one may use knot-based splines. In contrast to typical methods, the time-
varying model accounts for parameter uncertainty by maximizing the time-varying likelihood 
function, which includes time-trend parameters and the distributional parameters in one step. 
The results of this proposed model are compared to those based on the conventional two-stage 
approach described in the previous section for several important crops and counties drawn 
from U.S. county-level data.  

                                                 
5 In other words, ( ) / : ( , ),ty Beta    where Beta(α, β) represents a standard Beta distribution defined on (0, 1) with shape 

parameters α, β > 0. 
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Table 1. Maximum-Likelihood Parameter Estimates and Summary Statistics for Two-
Stage Model and Time-Varying Models: Example for Adair County Corn Yields 

PANEL A. TWO-STAGE MODEL BASED ON DETRENDED YIELD DATA 

Four-Parameter Beta (LLF = −378.69) Three-Parameter Beta (LLF = −380.67) 

  Parameter Estimate Std. Error   Parameter Estimate Std. Error 

  Shape 1 (α) 5.99 0.21*   Shape 1 (α) 5.99 0.19* 

  Shape 2 (β) 2.10 0.23*   Shape 2 (β) 2.07 0.23* 

  Location (θ) 0.97 7.85        — — — 

  Scale (δ) 203.43 1.04*   Scale (δ) 204.13 1.07* 

PANEL B. TIME-VARYING MODELS BASED ON ACTUAL YIELD DATA 

Linear Trend Structure a (LLF = −328.68) Quadratic Trend Structure b (LLF = −326.62) 

Parameter Estimate Std. Error Parameter Estimate Std. Error 

b1  2.38 0.32* b1  2.55 0.10* 

b2  0.43 0.75 b2  0.16 0.40 

b3  — — b3  −0.29 0.50 

b4  4.02 0.32* b4  2.95 0.10* 

b5  −2.71 1.29* b5  −1.63 0.30* 

b6  — — b6  −2.61 4.80 

b7  7.47 14.99 b7  12.26 117.70 

b8  −7.50 18.14 b8  −15.27 138.15 

b9  — — b9  −13.72 90.03 

Time-Varying Models: LLF(L): L1 = −328.68,  L2  = −326.62 

LRT Statistics:  −2(L1 – L2) = 4.12,  2
[4],   p-Value = 0.39 

Notes: An asterisk (*) denotes statistical significance at the α = 0.05 or smaller level. Examples for other crops and 
counties are available from the authors upon request. 
a The time-varying beta model with a linear trend structure is defined as: ~ ( , , 0, ),t t t ty       
where 

1 2 4 5 7 8exp( ), exp( ), and exp( ).t t tb b t b b t b b t            
b The time-varying beta model with a quadratic trend structure is defined as: ~ ( , , 0, ),t t t ty       
where 2 2 2

1 2 3 4 5 6 7 8 9exp( ), exp( ), and exp( ).t t tb b t b t b b t b t b b t b t                  

 
 The basic assumption of the time-varying model is that the parameters of the distribution 
follow a specific temporal pattern, whereby temporal changes of the yield distribution can be 
captured by the time-varying shape and scale parameters. The resulting parameter estimates 
are consistently estimated if the likelihood function is appropriately specified. 
 These time varying parameters evolve according to an exponential form. This particular 
functional form ensures that the Beta shape, scale, and location parameters are positive at 
every observation. We evaluated two different time trend structures for the parameters of the 
yield distributions—a standard linear trend and a quadratic trend model. However, our 
method is not restricted to these chosen functional forms.6 The log-likelihood function of the 

                                                 
6 Of course, other functional forms—including quadratic specifications—could be used to ensure positive parameters. For 

instance, we can model any of these Beta parameters generally as 1exp{ ( ) },J
j jj t b  where the ψj

 (·)’s may represent members of 

collection of J basis functions [e.g., choosing 1( ) ,j
j t t    we obtain polynomials, while choosing 3( ) ( ) ,j jt t t     we obtain 

cubic polynomials with knots t j ’s]. Alternatively, one may also specify functional form using the first four moments of the Beta 

distribution, which may require a constrained optimization of the likelihood function. 
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time-varying Beta distribution is identical to that of the constant Beta distribution [equation 
(2)] with the notable exception that the shape and scale parameters are allowed to vary with 
time and thus appear as α t , β t , δ t , and θ t . 
 Because the quadratic specification nests the linear trend, a standard likelihood-ratio test 
can be used to evaluate the statistical significance of the quadratic terms, and thus to select 
the optimal trend specification. Note that the Beta distribution is characterized by four 
parameters (α, β, θ, and δ). For simplicity and numerical stability of the maximum-likelihood 
approach, we fix the minimum possible yield to be equal to zero in each case (i.e., we set 
θ t = 0 for all t). Each parameter of the Beta distribution is allowed to vary over time through 
a functional relationship of the form (e.g., α = exp ( f (b, t)), where f (·) is a linear or quadratic 
function of time]. This specification allows us to use an unconstrained maximization of the 
likelihood function. The quadratic terms were not found to be statistically significant for the 
data sets we have analyzed, and therefore our final representation of the conditional moments 
uses a standard linear trend. 

 The predicted value ˆty  from the time-varying model is given by: 

(4) 
ˆˆˆ ,

ˆˆ
t

t t
t t

y


 
  

 

where ( , ), ( , ), and ( , ).t t tt t t       b b b  

 

Empirical Application 

The time-varying model not only addresses the dynamic characteristics of yield distributions, 
but also provides a more flexible specification of heteroskedasticity and higher order moments 
(e.g., skewness and kurtosis). We implement the time-varying model by applying the methods 
to the top 10 counties in the major producing states for corn, soybeans, and cotton. These 
county/crop combinations include the following: Iowa all-practice corn from Kossuth, Sioux, 
Pottawattamie, Plymouth, Webster, Pocohontas, Hardin, Franklin, Clinton, and Woodbury 
counties; Iowa soybeans from Kossuth, Sioux, Pattawattamie, Plymouth, Webster, Woodbury, 
Benton, Grundy, Crawford, and Tama counties; and Texas upland cotton from Gaines, 
Lubbock, Hockley, Lynn, Dawson, Hale, Terry, Crosby, Floyd, and Martin counties.7 It is 
widely recognized that the rate of technological progress varies considerably across different 
crops. Our results (presented in figure 2) demonstrate that Iowa corn and soybean yields are 
skewed, kurtotic, and exhibit strong time trend effects and varying degrees of hetero-
skedasticity through time. In contrast, Texas cotton yields appear to have a more modest time 
trend, although strong evidence of temporal heteroskedasticity is exhibited. 
 Table 1 reports the maximum-likelihood estimates (MLEs) of this time-varying Beta distri-
bution with a linear time trend in the exponent and a quadratic time trend structure. A 
likelihood-ratio test statistic (Wilks, 1938) of the two alternative models has a value of 4.12, 
which does not reject the null hypothesis that the quadratic trend parameters are equal to zero 
and thus supports the adequacy of the linear specification.  

                                                 
7 Although our choice of counties encompasses a significant proportion of the overall production of each crop in the relevant 

states (and further reflects a significant amount of the GRP crop insurance liability and premium), we also considered analysis for a 
much wider range of all counties (for which data existed) in each state evaluated. The results were very consistent with what is 
presented below. In order to conserve space, we only present results for the top 10 counties in prominent states for each crop. 
However, detailed results for other counties are available from the authors on request. In addition, analysis of shorter series of yield 
data were also considered and found to yield similar conclusions. These results are also available on request. 



Zhu, Goodwin, and Ghosh Dynamic Yield Distributions Under Technological Change   199 

 
 

 
 (a)  Corn yield distribution of 2006:  

  Detrended beta vs. time-varying beta 
 (d) Ten-year overlay beta density plot 

 for corn 
 

 

 
 (b)  Soybean yield distribution of 2007:  

  Detrended beta vs. time-varying beta 
 (e) Five-year overlay beta density plot 

 for soybeans 
 

 

 
 (c)  Cotton yield distribution of 2007:  

  Detrended beta vs. time-varying beta 
 (f ) Five-year overlay beta density plot 

 for cotton 
 

 
 

Figure 2. Estimated time-varying beta densities, major U.S. crop yields 
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Table 2. Model Comparison Using In-Sample Goodness-of-Fit Test and Nonnested Vuong’s 
Test for Major Agricultural Yields 

PANEL A. DETRENDING MODEL—MODEL I 

County K LLF AIC /ΔAIC BIC / ΔBIC 

Iowa All-Practice Corn:   

 Kossuth 6 −386.9 785.8 / 129.2 785.3 / 129.2 

 Sioux 6 −398.1 808.2 / 143.6 807.7 / 143.6 

 Pottawattamie 6 −406.3 824.5 / 125.1 824.0 / 125.0 

 Plymouth 6 −406.5 824.9 / 133.4 824.4 / 133.4 

 Webster 6 −400.6 813.3 / 130.3 812.7 / 130.3 

 Pocohontas 6 −401.2 814.4 / 125.8 813.9 / 125.8 

 Hardin 6 −379.2 770.4 / 102.2 769.9 / 102.2 

 Franklin 6 −381.4 774.8 / 108.0 774.3 / 108.0 

 Clinton 6 −364.7 741.4 / 94.0 740.9 / 94.0 

 Woodbury 6 −401.2 814.5 / 133.3 813.9 / 133.3 

Iowa Soybeans:   

 Kossuth 5 −267.2 544.4 / 102.1 544.0 / 102.2 

 Sioux 5 −345.7 701.3 / 233.9 700.9 / 234.0 

 Pottawattamie 5 −300.2 610.3 / 126.2 609.9 / 126.3 

 Plymouth 5 −302.1 614.3 / 136.7 613.8 / 136.8 

 Webster 5 −271.3 552.5 / 88.2 552.1 / 88.3 

 Woodbury 5 −244.8 499.5 / 73.3 499.1 / 73.4 

 Benton 5 −251.3 512.6 / 73.0 512.2 / 73.1 

 Grundy 5 −244.8 499.5 / 73.3 499.1 / 73.4 

 Crawford 5 −285.5 581.0 / 118.1 580.6 / 118.2 

 Tama 5 −257.4 524.8 / 89.4 524.3 / 89.5 

Texas Upland Cotton:  

 Gaines 6 −268.2 548.5 / 27.4 548.0 / 27.4 

 Lubbock 6 −269.6 551.1 / 38.2 550.6 / 38.2 

 Hockley 6 −270.9 553.7 / 50.1 553.2 / 50.1 

 Lynn 6 −261.6 535.1 / 29.6 534.6 / 29.6 

 Dawson 6 −264.9 541.7 / 32.7 541.2 / 32.7 

 Hale 6 −279.7 571.3 / 77.9 570.8 / 77.9 

 Terry 6 −264.9 541.9 / 40.3 541.4 / 40.3 

 Crosby 6 −261.6 535.1 / 35.9 534.6 / 35.9 

 Floyd 6 −268.9 549.8 / 37.3 549.3 / 37.3 

 Martin 6 −260.1 532.2 / 8.9 531.6 / 8.9 

Notes: An asterisk (*) denotes statistical significance at the α = 0.05 or smaller level. K is the number of parameters in a 
model, LLF is log-likelihood function, and v is Vuong’s test statistic for time-varying model vs. detrending model.  

( extended . . . → ) 
 

 The MLEs can be used to evaluate the time-varying Beta density for any given year. Figures 
2(d), (e), and (f) illustrate the dynamic evolution of the densities that are estimated by each 
time-varying model for corn, soybean, and cotton yields, respectively. Various moments of the 
distributions appear to evolve over time. The density plots of these estimated time-varying distri- 
butions suggest different means, skewness coefficients, and maximum values of corn yields for 
each year. Figures 2(a), (b), and (c) present estimated densities for both the time-varying model 
and the more conventional detrended model. In every case, the time-varying densities show a 
smaller degree of leptokurtosis than is the case for standard, two-stage detrended yield data.
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Table 2. Extended 

PANEL B. TIME-VARYING MODEL—MODEL II 

County K LLF AIC BIC v 

Iowa All-Practice Corn:    

 Kossuth 6 −322.3 656.6 656.1 11.4* 

 Sioux 6 −326.3 664.6 664.0 7.9* 

 Pottawattamie 6 −343.7 699.4 699.0 12.6* 

 Plymouth 6 −339.8 691.5 691.0 14.0* 

 Webster 6 −335.5 683.0 690.9 13.2* 

 Pocohontas 6 −338.3 688.6 688.1 12.9* 

 Hardin 6 −328.1 688.2 667.6 10.8* 

 Franklin 6 −327.4 666.8 666.2 8.6* 

 Clinton 6 −317.7 647.4 646.8 9.0* 

 Woodbury 6 −334.6 681.1 680.6 14.8* 

Iowa Soybeans:    

 Kossuth 6 −215.2 442.4 441.9 8.7* 

 Sioux 6 −227.7 467.4 466.9 5.4* 

 Pottawattamie 6 −236.1 484.1 483.6 8.3* 

 Plymouth 6 −232.8 477.5 477.0 8.7* 

 Webster 6 −226.2 464.4 463.9 8.8* 

 Woodbury 6 −207.1 426.3 425.7 9.0* 

 Benton 6 −213.8 439.6 439.1 9.6* 

 Grundy 6 −207.1 426.3 425.7 9.0* 

 Crawford 6 −225.5 463.0 462.4 6.1* 

 Tama 6 −211.7 435.3 434.8 9.8* 

Texas Upland Cotton:   

 Gaines 6 −254.5 521.1 520.6 1.8 

 Lubbock 6 −250.5 512.9 512.4 5.1* 

 Hockley 6 −245.8 503.6 503.1 8.7* 

 Lynn 6 −246.8 505.5 505.0 6.7* 

 Dawson 6 −248.5 509.0 508.5 8.5* 

 Hale 6 −240.7 493.4 492.9 2.3* 

 Terry 6 −244.8 501.6 501.1 1.4 

 Crosby 6 −243.6 499.2 498.7 1.3 

 Floyd 6 −250.3 512.6 512.1 1.3 

 Martin 6 −255.7 523.3 522.8 2.0* 

 
 
 Table 2 reports log-likelihood values for the two alternative models for a number of 
counties. In almost every case, the time-varying model provides a superior fit to the data when 
compared to the conventional model, even after adjustments (within the context of alternative 
information criteria) for the number of parameters. These findings are also illustrated in figure 
3, which contains a side-by-side bar plot of the LLF values for all major county/crop 
combinations considered in our analysis.8   

                                                 
8 MLEs for these other counties are available from the authors upon request. 
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(a) LLF comparison: Iowa corn yields 

 

 
(b) LLF comparison: Iowa soybean yields 

 

 
(c) LLF comparison: Texas cotton yields 

 

 Figure 3. In-sample goodness-of-fit comparison of the two competing 
 models: Log likelihood function  
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Model Performance and Specification Tests 
 
We considered a number of specification tests and evaluations of forecasting performance of 
the alternative models. Vuong’s (1989) nonnested specification test is a likelihood-based test 
for model selection. Vuong’s test statistic is given by: 

(5) 
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The test statistic v is approximately distributed as a standard normal random variable. As 
specified, if v > c, where c is the critical value,9 we reject the null hypothesis that the models are 
the same in favor of the alternative time-varying model Fθ. Alternatively, if v ≤ −c, we would 
reject the null in favor of the detrended model Gθ. Vuong’s test statistics (v) are presented in 
table 2, and in a majority of cases (87%) they support the time-varying specification. 
 Table 2 also presents goodness-of-fit comparisons for conventional models (model I) and 
time-varying models (model II) based on the Akaike (1974) information criterion (AIC) and 
Schwarz’s (1978) Bayesian information criterion (BIC). Smaller values of the AIC or BIC 
indicate a better fit. Both figure 3 and table 2 show that the time-varying Beta has the 
lowest AIC and BIC for most or all counties, which confirms it is the most parsimonious 
and optimal model we have considered. Moreover, ΔAIC (ΔAIC = AIC – min(AIC)) and 
ΔBIC (ΔBIC = BIC – min(BIC)) in table 2 are significantly large for the conventional detrended 
Beta model,10 which also offers evidence in support of the time-varying model (see Burnham 
and Anderson, 2003). 
 Table 3 presents the results of comparisons of 10-year, out-of-sample forecasts, two-step-
ahead forecasts, and a cross-validation (leave-one-out) test. The out-of-sample forecast method 
essentially evaluates which method is better at forecasting the first moment of yields. This, of 
course, has direct relevance for the estimation of crop yield distributions and the subsequent 
rating of crop insurance contracts. However, these tests only compare models in one aspect of 
the yield distribution—the first moment (the mean). Thus, likelihood-based specification tests 
may provide more information about goodness of fit for the entire distribution. 
 The cross-validation method ranks competing models based on their out-of-sample fore-
casting performance with some observations being randomly left out. For example, the “leave- 
one-out cross-validation test” is conducted for all counties considered for Iowa all-practice 
corn for the 82 years of county-level annual yields from 1926 to 2007. We drop each observa-
tion from the sample, fit the model, and use the estimates to forecast the omitted observation. 
The predicted and actual yields are compared to obtain the cross-validation root mean squared 
error (RMSE) in each period:  

                                                 
9 We can choose a critical value c from the standard normal distribution that corresponds to the desired level of significance 

[e.g., for c = 1.96; Pr(z ≥ | ± c | ) = 0.05]. 
10 As an example, ΔAIC = 88.2 and ΔBIC = 88.3 for the detrended model for Webster County soybean yields in Iowa. Also, 

because ΔAIC and ΔBIC are all zeros for the time-varying model, they are not reported in panel B of extended table 2. 
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Table 3. Out-of-Sample Performance 

 DETRENDING MODEL—MODEL I TIME-VARYING MODEL—MODEL II 

County RMSE  RMSE2   RMSE10  RMSE  RMSE2   RMSE10 

Iowa All-Practice Corn:   

 Kossuth 14.54 22.21 22.62 14.52 † 14.72 † 10.26 † 

 Sioux 13.52 † 16.02 23.55 13.74 15.27 † 14.56 † 

 Pottawattamie 16.44 22.45 15.28 † 16.05 † 21.85 † 19.13 

 Plymouth 15.57 19.45 † 19.54 † 15.56 † 22.25 19.67 

 Webster 19.49 20.73 12.66 15.89 † 17.72 † 11.86 † 

 Pocohontas 16.52 † 22.13 † 26.32 † 16.58 22.19 29.18 

 Hardin 15.09 21.62 20.12 14.87 † 19.13 † 16.41 † 

 Franklin 14.95 23.48 † 18.51 14.50 † 23.68 10.95 † 

 Clinton 15.86 19.31 † 24.17 † 15.51 † 19.57 26.63 

 Woodbury 14.76 † 22.97 27.81 14.79 18.51 † 16.12 † 

Iowa Soybeans:   

 Kossuth 4.12 † 7.47 7.63 4.14 7.44 † 7.60 † 

 Sioux 4.18 5.13 5.67 † 4.13 † 4.82 † 6.37 

 Pottawattamie 4.75 6.28 6.09 † 4.73 † 5.95 † 6.27 

 Plymouth 4.74 4.73 5.06 † 4.64 † 4.06 † 6.43 

 Webster 4.38 6.53 † 6.36 † 4.36 † 6.61 6.92 

 Woodbury 3.74 6.09 5.82 3.69 † 5.98 † 5.71 † 

 Benton 4.38 6.82 6.47 4.07 † 5.61 † 6.23 † 

 Grundy 3.74 6.09 5.82 3.69 † 5.98 † 5.71 † 

 Crawford 4.60 6.29 6.32 4.50 † 6.12 † 6.23 † 

 Tama 3.99 6.67 6.20 3.96 † 6.56 † 6.18 † 

Texas Upland Cotton:   

 Gaines 130.72 † 217.85 307.04 † 130.90 217.23 † 307.96 

 Lubbock 143.34 157.72 185.53 † 128.04 † 182.61 † 196.43 

 Hockley 116.39 143.07 † 194.23 100.13 † 159.50 192.15 † 

 Lynn 118.05 153.87 180.65 116.46 † 136.78 † 171.73 † 

 Dawson 105.05 † 96.13 84.69 † 108.61 84.38 † 163.53 

 Hale 155.32 187.42 239.46 113.24 † 130.92 † 116.32 † 

 Terry 112.48 † 174.85 277.63 129.23 133.25 † 150.56 † 

 Crosby 127.25 144.48 † 153.71 † 114.38 † 165.91 161.32 

 Floyd 181.32 187.05 234.51 130.37 † 158.82 † 150.56 † 

 Martin 146.23 † 163.43 150.37 † 148.57 153.27 † 155.54 

Note:  † denotes a smaller out-of-sample predicted error in the two competing models. 

 

(7)  2( )
1

1 ˆ ,
n

i i
i

RMSE Y Y
n 

   

where ( )
ˆ

iY  is the prediction for Yi obtained by fitting the model with observation i omitted. 
 We sum the cross-validation errors and obtain the RMSE for the two competing models. 
As observed from table 3, the time-varying Beta distribution model outperforms the constant 
Beta model in most of the major agricultural production counties. Specifically, eight of the 
ten top Iowa corn production counties, nine of ten Iowa top soybean production counties, and 
six of seven Texas top cotton production counties exhibit a better cross-validation performance 



Zhu, Goodwin, and Ghosh Dynamic Yield Distributions Under Technological Change   205 

 

in the time-varying model. The resulting RMSEs of the time-varying model for these yield 
data are smaller than those of the conventional model. The differences in the RMSE between 
the two competing models are larger for corn and cotton than soybeans. This finding is 
consistent with what we have observed in the practice of genetic improvement and bio-
technological progress in agriculture. There have been fewer biotech innovations for soy-
beans than for corn and cotton, and therefore the yield distribution of soybeans is less 
affected. As a result, the two competing methods are not markedly different in their out-of-
sample predictive power for soybean yields. In addition to computing RMSEs, one may also 
compute the Spearman’s correlation between the Yi’s and Ŷ(i)’s, or generate a Q-Q plot to 
check other distributional characteristics between the observed and (leave-one-out) predicted 
values. 
 In the current group risk crop insurance programs in the United States, yields are forecast 
two years into the future. These forecasts are then used to establish insurance guarantees. 
Accordingly, we considered an additional out-of-sample forecast evaluation, which was 
intended to provide an analog to the forecasts used in these area-wide programs. In this 
approach, models are ranked based on their out-of-sample forecasting performance for a 
series of two-year-ahead and 10-year-ahead forward forecasts. For example, to predict 1993’s 
yield, the estimates are based on the sample from 1926 to 1991; to predict 1994’s yield, the 
estimates are based on the sample from 1926 to 1992, etc. Another out-of-sample test is 
conducted by partitioning the entire sample into two parts and estimating parameters based on 
the first part of the data for the period 1926 to 1997 (the first 72 observations); then the 
estimated parameters are used to compute the expected (mean) yields for the out-of-sample 
period spanning 1998 to 2007 (the second part of the data). The mean of the squared differ-
ence between the predicted value and the actual yield value is calculated as a “leave-10-out” 
forecast error (RMSE10). 
 The out-of-sample measures are computed for selected major crop/county combinations in 
the United States, and such predictive measures again provide comprehensive evidence that 
the time-varying approach represents an improvement across all criteria considered. Table 3 
shows that time-varying model has smaller values of both RMSE2 and RMSE10 in most cases. 
Having noted this, we must point out that the out-of-sample comparison test is only based on 
the accuracy of first-moment mean prediction, which is not an overall evaluation of the entire 
yield distribution. Since the time-varying model is an alternative to the conventional two-
stage model for estimating the yield distribution and forecasting the mean, these two models 
may display different out-of-sample performance based on different yield data with respect to 
mean prediction. Recall that strong evidence, as presented in table 2, supports the time-
varying model’s performance in estimating the entire yield distribution in terms of likelihood-
based tests and nonnested model distribution tests. 
 Table 4 presents alternative methods for comparing the two competing models. By using a 
regression method, we can consider which model’s predicted values better explain the 
variation of the actual yields. To this end, we regress actual yields on each of the alternative 
predictions. The results indicate that only the coefficient on predicted yields from the time-
varying model is significantly different from zero, which suggests the time-varying model 
yields a better prediction of the actual yield. Further, the intercept term is also not signifi-
cantly different from zero, indicating the chosen model has no systematic bias. Likewise, the 
coefficient on the time-varying model prediction is not significantly different from one, 
revealing that the chosen model has no scale bias.  



206   April 2011 Journal of Agricultural and Resource Economics 
 
 
  Table 4. Other Model Comparison Methods 

 PANEL A. COMPARED BY REGRESSION METHOD  

  
Variable 

Parameter 
Estimate 

 
p-Value 

 

 Intercept −0.125 0.970  

 γ1 :  Coeff. of predictive value of detrended Beta −0.065 0.890  

 γ2 :  Coeff. of predictive value of time-varying Beta 1.068 0.034*  

 PANEL B. RATE CROSS-VALIDATION    

  
Description 

Conventional 
Model 

Time-Varying 
Model 

 

 Mean of True Rates 0.0189 0.0058  

 Root Mean Squared Error (RMSE) 0.098 0.093  

 Mean Percentage Error (MPE) 1.66 0.45  

 Note: An asterisk (*) denotes statistical significance at the α = 0.10 or smaller level.  

 
 

Simulation of a Group Risk Insurance Program 
 
Yield-based insurance policies in the federal crop insurance program include the individual, 
farm-level multiple peril crop insurance (MPCI) and the county-level Group Risk Plan (GRP), 
which is based upon county-average yields from NASS. An important policy parameter in the 
GRP program is the premium rate, which is based on the county-average yield distribution. In 
this section, we evaluate the economic impacts of adopting rates based on the time-varying 
distribution methods. If the yield distributions change over time, premium rates should be 
adjusted accordingly. The premium rates from the proposed time-varying approach are 
illustrated with simulated data, and a rate cross-validation test is conducted to compare the 
predictive accuracy of the premium rates from the time-varying approach with those of the 
conventional two-stage approach (table 4). Standard crop yield insurance pays an indemnity 
at a predetermined price to replace yield losses. Under the GRP, insured farmers collect an 
indemnity if the county average yield falls beneath a guarantee, regardless of the farmers’ 
actual yields. Loss probabilities correspond to the likelihood that yields y below some threshold 
will be observed, which is given by the area under the density curve to the left of the 
guaranteed yield. 
 Consider an insurance contract that insures some proportion (λ  (0, 1)) of the expected 
crop yield (ye) . If y < λye, the insurer will pay (λye – y)p as an indemnity, where p is a 
predetermined price. An actuarially fair premium is defined by the expected loss of this 
contract, which takes the following form: 

(8) ( ) ( ) ( ) ( ) ,e e eE Loss E y y I y y p E y y p               

where a+ = max (0, a) for a number a  . In the preceding discussion, y denotes the observed 
annual county-level yield, and ye represents the predicted (guaranteed) yield. Calculation of 
expected loss requires estimation of the distribution of yields. We compare the conventional 
two-stage estimation method to the proposed time-varying distribution in terms of expected 
loss and premium rates.  
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 Figure 4. Premium rates (75% coverage-level crop insurance contract) 
 for time-varying model and detrended model (1985–2006) 
 

 In our simulation, one million yields are generated from the time-varying Beta distributions. 
The probability of yield loss, the expected yield loss, and the actuarially fair premium rate 
associated with a contract that guarantees 75% of the expected yield is calculated for each 
year. As shown in figure 4, the premium rates range from 0.83% in 1985 to 0.36% in 2006 for 
the case in which the yields are from the time-varying model. The rates change as the 
moments of the time-varying distribution evolve. In contrast, the premium rates calculated 
from a conventional two-stage Beta distribution model (model I) indicate a constant premium 
rate around 1.88% from 1927 to 2006. For crop insurance in 2006, the premium rate from the 
detrended Beta model is 1.52 percentage points higher than the premium from the time-
varying Beta model (0.36% versus 1.88%). Thus, the conventional model tends to signifi-
cantly overprice the same level of coverage. 
 Rate cross-validation is proposed to measure the predictive accuracy of premium rates of 
one model when the alternative model is true. Rate cross-validation can be tested as follows: 

■ STEP 1. Assume one of the alternative yield distribution models (denoted by j) is true, 
and simulate a set of actuarially fair premium rates (denoted as rtrue  j, t). 

■ STEP 2. Simulate 1,000 sets of 80 pseudo-observations of corn yields from the corres-
ponding true yield distribution. 

■ STEP 3. Obtain 1,000 sets of MLEs based on these pseudo-observations; then calculate 
the “pseudo” actuarially fair premium rates (denoted as rj ′ , t) based on the MLEs.  
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We can then compare the pseudo-premium rates with the true rates and obtain the mean 
percentage error (MPE) and the root mean squared error (RMSE). 
 Cross-validation demonstrates a smaller MPE and RMSE for the time-varying model. As is 
shown in table 4 (panel B), when the true rate is derived from the conventional model (with 
an average rate equal to 0.0189), the root mean squared error (RMSE) of predicted rates of 
the time-varying model is 0.093. This RMSE of predicted rates is 5.10% lower than the 
RMSE (0.098) obtained from the conventional model when the alternative (the average 
premium rate implied by the time-varying model is 0.0058) is true. In addition, the MPE is 
0.45 for the time-varying model and 1.66 for the detrended model. Smaller MPE and RMSE 
values confirm that the time-varying model is more accurate, flexible, and robust in terms of 
premium rate prediction. This prediction error can also be expressed in economic terms. For 
example, for a crop insurance contract with $1,000 liability per acre, the rate cross-validation 
error of the premium is $8.68 for the time-varying model. The rate cross-validation error of 
the premium is $9.60 for the conventional model. Therefore, the predicted premium error of 
the time-varying model is $0.92 less than the detrended model per unit of insurance ($1,000 
of total liability in this example). In light of the fact that the total premium in the federal 
crop insurance program in 2009 was nearly $80 billion, pricing errors can result in substantial 
aggregate losses. Consequently, the accuracy of insurance rates is improved by applying the 
time-varying yield distribution model. 
 

Conclusions 
 
This study has examined the accuracy of alternative methods for measuring conditional yield 
risk under technological change. We propose a method for incorporating trends in the yield 
distribution that may offer a more accurate and consistent method for estimating the distribu-
tion of crop yields than other approaches commonly used in the literature. Because this 
method involves simultaneously estimating the time trend effects and the parameters of the 
yield distribution, it therefore overcomes possible shortcomings associated with the more 
common approach of treating the detrended yields as “observed” data rather than data 
estimated from a previous detrending model. Several model selection tools are used to compare 
the in-sample goodness of fit and out-of-sample predictive power of the alternative models. 
The results show that the proposed time-varying model is superior to the conventional two-
stage model in terms of providing a better fit (i.e., lower AIC and BIC criteria) and stronger 
out-of-sample predictive power for most of the major county/crop combinations. The results 
of out-of-sample prediction tests are consistent with prior expectations based on technological 
progress and biotechnology. In particular, multiple biotech traits and genetic improvements 
have emerged for corn and, to a lesser degree, for cotton. Many biotech innovations for soy-
beans have involved herbicide tolerance. The proposed time-varying method therefore appears 
to offer greater improvement for corn and cotton than is the case for soybeans.11 
 In a rate simulation exercise, the premium rate derived from the time-varying model 
showed significantly decreasing premium rates (from 0.83% in 1985 to 0.36% in 2006) over 
time, while the conventional model implied a constant rate (1.88%). A method of “rate cross- 

                                                 
11 A referee has astutely pointed out that the time-varying model may have advantages when applied to such a long span of data 

(1927–2009) because of its greater flexibility. GRP and GRIP insurance contracts are based on a much shorter series of data 
(typically dating from 1958). We repeated the analysis using shorter series (1958–2009 and 1973–2009) and reached very similar 
conclusions, which supported the advantages of the time-varying approach. These results are available from the authors upon 
request. 
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validation” demonstrated that the time-varying distribution model may offer significant 
advantages, even when the underlying yield trend process is misspecified. Overall, this 
analysis reveals a dynamic evolution of yield distributions under technological change for 
major U.S. crop yields. In our data, which represent county-level yields for important crops 
in major growing areas, we find that the time-varying model provides a superior fit to the 
data. 
 This study has policy implications that relate to improving the accuracy of assessing yield 
distributions in cases where parameters of the distribution evolve over time. When distri-
butions change, premium rates can be adjusted to represent the most recent information. This 
offers the potential to improve the accuracy of models used in rating crop insurance contracts 
and may improve risk-management mechanisms to protect producers from risk. The improved 
time-varying method has practical implications for the GRP and GRIP programs as well as 
the design of other insurance contracts. Our applications assume a Beta distribution for each 
year. Future research may benefit from relaxing this assumption by using more flexible 
models such as a mixture of Beta distributions and nonparametric methods. 

[Received November 2009; final revision received December 2010.] 
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