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The Economics of Commonly Owned 
Groundwater When User Demand 

Is Perfectly Inelastic 
 

Chenggang Wang and Eduardo Segarra 

 
This paper provides a theoretical analysis of the common-pool resource dilemma in 
extracting nonrenewable groundwater resources when water demand is perfectly inelastic. 
It complements the existing theory of groundwater use, which assumes away the possibility 
of demand perfect inelasticity. Under perfectly inelastic water demand, the common-pool 
resource dilemma is by-passed if groundwater users are equally productive in water use. 
If they are not, a new type of inefficiency can arise due to the lack of a rationing mech-
anism on the basis of productivity. Our analysis suggests that groundwater management 
research should pay more attention to water demand elasticity and productivity hetero-
geneity. 
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Introduction 
 
Economists have long viewed groundwater as a classic example of a common-pool resource 
(CPR), where competitive or open-access exploitation is inefficient. Although land ownership 
precludes free entry to a groundwater basin, it is difficult to establish property rights to 
groundwater units. Stock externalities arise because one groundwater user’s withdrawal 
increases the pumping lift of all other users. Individual users’ failure to account for negative 
stock externalities leads to overexploitation, and the total economic value of the resource 
cannot be fully realized. In other words, individual rationality leads to an outcome that is not 
rational to the group—a behavioral outcome known as the CPR dilemma (Ostrom, Gardner, 
and Walker, 1994). 
 Multiple models have been developed to understand the mechanisms of welfare loss 
caused by stock externalities, the simplest of which assumes a type of myopic behavior by 
groundwater users. In this scenario, each user determines the rate of extraction by maximizing 
his or her own current benefits, taking no account of that decision’s impact on the future 
pumping costs of all users, including his or her own (e.g., Allen and Gisser, 1984; Feinerman 
and Knapp, 1983; Gisser and Sanchez, 1980; Nieswiadomy, 1985; Worthington, Burt, and 
Brustkern, 1985). 
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 Another class of models considers the problem as a dynamic game played by groundwater 
users. Two distinct equilibrium concepts have emerged in the literature to solve the game. In 
Nash equilibrium, each groundwater user decides at the beginning of the game the entire path 
of extraction that maximizes the discounted present value of the benefits derived from 
extracted groundwater, in the belief others will behave similarly. Unlike the myopic strategy, 
the Nash strategy postulates that groundwater users take into account stock externalities, but it 
also assumes groundwater users will commit to that strategy once the optimal path of 
extraction is determined. This assumption has been criticized as strong and unstable. Dixon 
(1988), Negri (1989), and Provencher and Burt (1993) propose an alternative equilibrium, the 
Markov-Nash, which replaces the optimal path of extraction in the Nash equilibrium with an 
optimal decision rule that depends only on the present resource stock. Based on findings 
reported by Provencher and Burt, the myopic strategy leads to an outcome that is farthest 
away from the socially optimal outcome, and between the two outcomes lie the Nash and 
Markov-Nash strategies. 
 Together with the growth of the theoretical literature, an empirical literature has developed 
which aims to quantitatively compute welfare losses arising from competitive extraction. 
Gisser and colleagues (Allen and Gisser, 1984; Gisser and Sanchez, 1980) find that socially 
optimal extraction offers negligible gains over the competitive myopic strategy in the Pecos 
Basin of New Mexico. Research conducted by Gisser and his colleagues inspired a number of 
similar studies on other groundwater basins, some of which relaxed restrictive assumptions in 
the Gisser and Sanchez model. Koundouri (2004a, b) provides a comprehensive and insightful 
review of this literature, concluding that the magnitude of the welfare loss caused by competi-
tive exploitation varies from one basin to another, depending on a variety of economic, 
hydrologic, and agronomic factors. The loss is particularly sensitive to the slope of water 
demand and moderately sensitive to aquifer storage capacity. Specifically, the loss tends to be 
small when the slope of the water demand curve is close to infinity (meaning demand is highly 
irresponsive to price changes) or when aquifer storage capacity is large. Additionally, welfare 
loss may be large in the presence of large heterogeneity in groundwater users’ productivity. 
 Implicit in the groundwater extraction models reviewed above is a downward-sloping, non-
vertical water demand curve; i.e., demand will always respond to price changes. This assump-
tion is directly imposed in models built on a water demand function. Models that start with a 
production function often impose strict concavity on that function, which leads, under profit-
maximization behavior, to a downward-sloping, nonvertical input demand. Demand perfect 
inelasticity is assumed away as a matter of convenience: It warrants the existence of an 
interior smooth solution path that is amenable to comparative dynamic analysis. However, 
neither theoretical reasoning nor empirical evidence justifies the exclusion of perfect 
inelasticity as an anomaly rarely occurring in the real world. Crop scientists and irrigation 
engineers have found a linear relationship between evapotranspiration and yield for most crops 
(Doorenbos and Kassam, 1979). If we assume yield will stop responding to water after reaching 
the plant’s varietal potential or other agronomic factors become limiting, as indicated by the 
law of the minimum (Paris, 1992), the linear water-yield relation implies a profit-maximizing 
irrigator’s water demand is perfectly inelastic.1 
 Empirical evidence abounds that water demand is highly inelastic, especially at low price 
levels (Berbel and Gómez-Limón, 2000; Gardner and Young, 1984; Gisser et al., 1979; Heady 

                                                 
1 A more detailed discussion of the technological structure underlying a perfectly inelastic water demand is provided in the next 

section. 
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et al., 1973; Moore and Hedges, 1963; Scheierling, Young, and Cardon, 2004). Using data from 
an extensive survey of irrigation farmers in the western United States, Moore, Gollehon, and 
Carey (1994) examine the water demands of major crops in four western U.S. regions. Their 
results show the price elasticity of water demand is significantly different from zero at the 
10% level only for one of the 20 region-crop combinations examined, though a significant 
long-run water use response is found through changes in cropping patterns. 
 Inelastic water demand is also corroborated by the failure of water pricing policies. The 
notion of using water pricing as a policy instrument to improve irrigation efficiency and con-
sumptive water use has been around for decades, but the impact of water charges on water use 
has been elusive (Bosworth et al., 2002; Garrido, 2002). Molle and Berkoff (2007) provide a 
narrative of the frustration policy makers have experienced with using water pricing as a tool 
for managing water development projects, and of their acknowledgement after years of on-
the-ground experience that a large gap exists between water pricing theory and reality. 
 Thus, one should not conclude that water demand perfect inelasticity is unlikely to occur in 
the real world. In the short run, the farmer’s water demand is likely to be fixed by water 
availability, the plant’s varietal potential, and the established irrigation practice. In the long 
run, irrigation technology and crop choice, and consequently water demand, can change in 
response to changes in water price. However, many real-world situations may come to mind 
where the short run is too long to be ignored. For example, farmers in developed countries 
who have already adopted sophisticated center pivot or drip irrigation systems have little 
room for further efficiency improvements. Poor farmers in developing countries often find 
themselves in a poverty trap, where income remains low precisely because they cannot afford 
to upgrade irrigation technologies and introduce water-saving varieties. Crop choice may be 
limited by climatic and hydrologic factors. In the Texas High Plains, where groundwater 
supply and rainfall are barely able to sustain water-intensive crops such as corn, cotton 
remains the best crop to grow even in the face of declining cotton prices and rising corn 
prices. 
 By assuming away water demand perfect inelasticity, the existing economic theory of 
groundwater use is unable to offer useful policy guidance for these situations, leaving many 
challenging questions unanswered. In the face of a perfectly inelastic water demand, for 
example, what are the optimal extraction strategies for competitive groundwater users when 
they behave myopically or strategically in the Nash and Nash-Markov senses? Can the CPR 
dilemma be avoided when water demand is perfectly inelastic? How does heterogeneity affect 
efficiency of groundwater use? 
 The purpose of this study is to fill this gap. Our analysis complements the existing theory 
of groundwater use in irrigated agriculture by providing a comprehensive treatment of the 
CPR dilemma when water demand is perfectly inelastic. We develop a model of non-
renewable groundwater extraction with two farms, which differ in productivity of utilizing 
groundwater to generate profits. When water demand is perfectly inelastic, and in the absence 
of productivity heterogeneity, we find competitive exploitation leads to a socially optimal 
outcome and the CPR dilemma is bypassed, regardless of whether users behave myopically or 
strategically. In the presence of heterogeneity, however, a suboptimal outcome arises under 
competitive extraction. The cause of this inefficient outcome is not the stock externalities 
highlighted in most groundwater models; rather, inefficiency arises because without well-
defined, tradable property rights to groundwater units, a coordinating mechanism is lacking to 
allocate resources on the basis of productivity—resulting in overuse by less productive users 
and underuse by more productive users.  
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 Our analysis also sheds light on some predictions of previous models. While simulation 
studies have found the welfare loss arising in competitive extraction can be nontrivial in the 
presence of heterogeneous users (Koundouri, 2000; Laukkanen and Koundouri, 2006; 
Worthington, Burt, and Brustkern, 1985), the mechanism of such an effect has not been well 
understood, due to the analytical difficulty of separating heterogeneity-induced externalities 
from stock externalities. With stock externalities being purged out by the demand perfect 
inelasticity assumption, our model permits a clear understanding of the heterogeneity-induced 
CPR problem. Further, Gisser and Sanchez (1980) have found that welfare loss arising in 
competitive exploitation of groundwater resources tends to be small for aquifers with large 
storage capacity. Our analysis reveals this prediction is valid only if groundwater users are 
equally productive. When they are not, an opposite effect can arise, because larger storage 
capacity implies more economic value is at stake if groundwater is not efficiently allocated on 
the basis of productivity. 
 

Water Demand and Model Assumptions 
 
Most dynamic groundwater use models comprise two interconnected systems, one depicting 
groundwater users’ consumption behavior and another illustrating aquifer system dynamics. 
Two different approaches have been followed to set up the economic subsystem. One 
approach directly incorporates a water demand function in the model and assumes cost-
minimization behavior (e.g., Gisser and Sanchez, 1980). The other starts with a production or 
benefit function and assumes profit-maximization behavior (e.g., Provencher and Burt, 1993). 
Here, we take the second approach, because given the practical difficulty of estimating water 
demand due to the lack of water consumption and price data, it is useful to characterize the 
possible biological, agronomic, and hydrologic constraints underlying a particular type of 
demand behavior—in our case, perfect inelasticity. 
 Crop scientists generally believe the relationship between crop yields and essential nutrients 
and water is governed by von Liebig’s law of the minimum (Havlin et al., 1999), which posits 
that crop yield is determined by the most deficient production factor, and not by the relatively 
abundant ones. In particular, crop yields can be increased only by increasing the most 
deficient factor until some other factor becomes limiting. The key notion in von Liebig’s law 
is the nonsubstitutability of essential inputs for crop growth (Paris, 1992). In a single-factor 
model, the law is mathematically represented by the Liebig-Paris function: 

min{ ( ), },y f x M  

where y is crop yield in the given field, f(x) is an increasing function of input x, and M is a 
constant representing the yield plateau determined by other growth factors such as soil 
quality, climate conditions, and the varietal potential. A special case of the Liebig-Paris 
function is the linear response and plateau (LRP) function, where f(x) is linear. The LRP 
model is particularly appropriate for describing yield-water relationships, as a linear relation-
ship has generally been found between evapotranspiration and yield for most crops under a 
wide range of growing conditions (Doorenbos and Kassam, 1979). Formally, we assume the 
technology is of the following form: 

(1) 
for [0, ),

( )
for [ , ),

a bw w W
F w

a bW w W

 
    
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where w is the amount of water consumed by the crop, a is crop yield corresponding to 
nonirrigated or dryland farming, b represents the marginal physical product of applied water, 
and W > 0 is the minimal amount of water needed for yield to reach the plateau. In appendix 
A, we show that the LRP model can be derived from the water-yield response model widely 
used in the crop irrigation literature and detailed in Doorenbos and Kassam (1979).2 
 Let ε  (0, 1) denote irrigation efficiency; i.e., one unit of water pumped out of the aquifer 
amounts to only ε units of water consumed by the crop. Production function (1) thus can be 
expressed in terms of the amount of water pumped from the aquifer x: 

(2) 
for 0 / ,

( )
for / .

a b x x W
G x

a bW x W

    
    

 

 In addition to the restriction of the yield plateau, limited groundwater availability can be a 
binding constraint to water consumption. In each crop season, groundwater is available only 
up to the well yield capacity, X, which is determined by certain properties of the aquifer, i.e., 
0 ≤ x ≤ X. Denoting by p the price or marginal pumping cost of groundwater normalized by 
crop price, a profit-maximizing farm’s water demand is the solution to the following problem: 

0
max ( ) .

x X
G x px

 
  

It is straightforward to show that the farm’s water demand is: 

(3) 

min{ , / } if ,

[0,min{ , / }] if ,

0 if .

X W p b

x X W p b

p b

  
   
  

 

Water demand is perfectly inelastic everywhere except when price is equal to bε (to avoid 
mathematical technicalities, we assume demand is zero when p = bε in the remainder of the 
paper). When price is below this threshold, groundwater demand is the maximal amount 
allowed by the binding constraints. When price equals or exceeds the threshold, quantity 
demanded of groundwater becomes zero and dryland farming is adopted. 
 

The Representative-Farm Model 
 
A groundwater user behaves myopically if he or she maximizes her own current-period profits 
and takes no account of future profits. Under myopic, competitive behavior, by maximizing 
individual profits, groundwater users maximize their collective profits; thus, replacing indi-
vidual users’ profit-maximization problems with those of a representative user generates no 
aggregation bias. The representative-user model has been widely used in economic analysis 
as a shortcut to solving static multi-user problems under perfect competition. The cost of that 
simplification is losing sight of the effects of heterogeneity (e.g., Gisser and Sanchez, 1980). 
The optimal control strategy maximizes the discounted present value of all benefits that can 
be derived from extracted groundwater, representing the most efficient way to manage the 
common-pool resource by a benevolent social planner.  

                                                 
2 The LRP technology assumes away the possibility that overirrigation can reduce yield. This assumption is innocuous in our 

analysis because a rational irrigator will never overirrigate—overuse of a non-free resource without further increasing output is a 
suboptimal choice.  
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 Let ands s  represent the elevations of the farmland surface and water table in the aquifer, 
respectively. Pumping costs are assumed to be linear in pumping lift, ;s s  that is: 

(4) ( , ) ( ) ,P s x s s x    

where γ is the cost of pumping per unit of water per unit of lift, a constant determined by the 
pump’s properties and energy price. Other operating costs are assumed away as they are 
tangential to the dynamic decision of groundwater extraction. 
 The dynamics of the water table are governed by the differential equation: 

(5) 0( ) ( ), (0) ,s t x t s s    

where κ is a parameter that depends negatively on the storativity S and covered area A of the 
aquifer, i.e., κ = 1/SA. Storativity represents the volumetric fraction of the aquifer which is 
occupied with water. As denoted by equation (5), every inch of water pumped out of the 
aquifer lowers the water table by κ inches. Note that implicit in equation (5) is a zero recharge 
rate, so we are dealing with a nonrenewable resource.3 
 Under myopic behavior, the instantaneous water consumption as a function of the water 
table can be obtained by substituting unitary pumping cost ( )s s   for water price p in (3): 

(6) 
min{ , / } if / ,

0 if / ,

X W s s b
x

s s b

    
     

 

where /s b    is the threshold water level where the marginal pumping cost and the 
marginal product value equalize, and where dryland farming and irrigated farming are equally 
profitable. The threshold water level /s b    can be viewed as an index for the representa-
tive farm’s productivity when using groundwater to generate profits. It summarizes the 
technological and hydrological conditions facing a farm, including the elevation of farm-
land surface ,s  marginal product value of groundwater b, irrigation efficiency ε, and 
unitary pumping cost γ. A lower value of this index means the aquifer can sustain irrigation 
for a longer period. For example, the index is lower for a farm that grows a higher-value 
crop, for a farm with a more efficient irrigation system, and for a “valley farm” than for a 
“hill farm.” 
 If the initial water table is above the threshold (i.e., 0 / ),s s b     a myopic representative 
farm will pump at a constant rate equal to the maximal amount allowed by the binding con-
straints, until the water table declines to the threshold level at which irrigation is abandoned 
permanently. The path of the water table can be obtained by integrating equation (5): 

(7) 
0 min{ , / } if ,

/ if ,

s t X W t T
s

s b t T

     
   

 

where 

(8) 
0 ( / )

min{ , / }

s s b
T

X W

   

 

 

is the aquifer’s usable life for irrigation, which is the time needed for the water table to 
decline from initial level s0 to threshold level /s b    at a constant rate of min{ , / }.X W   
If the initial water table is below the threshold (i.e., 0 / ),s s b    then irrigated farming is 

                                                 
3 Recharge includes both natural recharge and return flow from irrigation. 
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less profitable than dryland farming and the latter will be adopted throughout. This implies 
the groundwater resource is of no value to the farm. 
 The social planner’s problem is to maximize the discounted present value of the farm’s 
profits over an infinite horizon: 

(9)     
0

( ) ( ), ( ) ,rte G x t P s t x t dt
    

subject to equations (2), (4), and (5) and the hydrological constraint: 

(10) 0 ( ) ,x t X   

where r is the interest rate. 
 An inspection of the planner’s problem reveals that extracting more than W /ε units of 
water at any point in time generates no extra revenue but raises pumping costs in the future. 
An optimal path of extraction, therefore, is necessarily bounded above by W /ε . With this in 
mind, the social planner’s problem can be rewritten as: 

(P.1)   
0

( )
max ( ) ( )rt

x
e a b s s t x t dt

          


  

    s.t.:  
0

( ) ( ),

(0) ,

0 ( ) min{ , / }.

s t x t

s s

x t X W

  



  

  

This is a linear optimal control problem with a compact control set, the solution to which is the 
well-known “bang-bang” solution. The optimal path of extraction must necessarily maximize 
the current-value Hamiltonian: 

(11)  ( ) ,H a b s s x         

subject to the constraint 0 ≤ x ≤ min{X ,  W /ε}, and must satisfy the canonical equations (5) 
and 

(12) ( ) ( ) ( ),t r t x t      

as well as the transversality condition: 

(13) lim ( ) 0.rt

t
e H t


  

Variable λ is the current-value shadow price of the groundwater stock. 
 Finally, a state-control pair (s(t), x(t)) satisfying the above necessary conditions is the 
solution to (P.1) if it also satisfies the Mangasarian sufficient condition (Caputo, 2005, theorem 
14.4)—i.e., for any admissible pair ( ( ), ( )) :s t x t   

(14)  lim ( ) ( ) ( ) 0.rt

t
e t s t s t


    

 A widely used strategy for solving the bang-bang type of problem is to identify the switch 
times when the control variable jumps from one state to another (e.g., Caputo, 2005, chap. 3). 
To begin, we solve the maximization of the linear Hamiltonian to obtain: 

(15) 
min{ , / } if ( ( )) ( ) ,

( )
0 if ( ( )) ( ) .

X W s s t t b
x t

s s t t b

      
       
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We define an auxiliary variable as: 

(16) ( ) ,c s s      

where , ( ), andc s s    are the marginal (total) economic cost, marginal pumping cost, and 
marginal user cost of extracted groundwater, respectively. By control path (15), the optimal 
rate of extraction is the smaller of the agronomic and hydrological constraint if marginal 
revenue, bε, exceeds marginal economic cost, c, and is zero otherwise. 
 Given control path (15), the state path, s(t), is easily understood. Whenever irrigated 
farming is practiced, the water table declines at a constant rate of min{ , / };X W  otherwise, 
it remains constant. The key to solving (P.1) now becomes understanding the dynamic 
behavior of the costate variable λ(t). As shown in appendix B, λ(t) is nonnegative, i.e., 
λ(t) ≥ 0,  t ≥ 0. This makes economic sense in that the price of a freely disposable good 
should always be nonnegative. 
 Differentiating equation (16) with respect to time and substituting from equations (5) and 
(12) yields .c r    The above lemma therefore implies that marginal economic cost c(t) is 
nondecreasing in time. Intuitively, this is because the water table can never rise with a zero 
recharge rate, and therefore pumping costs will never decrease. Further, we can rule out the 
case in which c(t) < bε for all t ≥ 0, because if that is the case, x(t) = min{X, W/ε} > 0 for all 
t ≥ 0, which implies the pumping cost will keep increasing as time goes on. Specifically,  

lim ( ) ,
t

c t


   

a contradiction to c(t) < bε for all t ≥ 0. 
 Now we are left with only two possibilities regarding the path of the marginal economic 
cost: either c(t) ≥ bε for all t ≥ 0 or c(0) < bε and c(t) ≥ bε for some t  (0, +∞). In the former 
case, the rate of extraction is zero throughout by control path (15). In the latter case, the 
farmer starts by pumping as much groundwater as the binding constraints allow until the 
water table declines in finite time to a threshold level at which c(t) = bε. Because marginal 
economic cost c(t) is nondecreasing in time, the farmer will never reverse back to irrigated 
farming. Hence, we can rewrite control path (15) as: 

(17) 
min{ , / } if .

( )
0 if ,

X W t T
x t

t T

 
  

 

where T  [0, +∞). If T = 0, we have c(t) ≥ bε for all t ≥ 0; it T > 0, c(t) ≥ bε for t  [T, +∞) 
and c(t) < bε for all t  [0, T). 
 Next we show that λ(t) = 0 for t ≥ T, which will give us the terminal condition for λ(t): 
λ(T) = 0. Equations (5) and (17) imply that s(t) = s(T) < +∞ for all t ≥ T. That is, after 
irrigation is abandoned, the water table will remain unchanged. Thus, there exists at least one 
admissible pair ( ( ), ( ))s t x t   such that 

lim ( ) ( ) 0.
t

s t s t


   

For example, let ( )s t  be a state path associated with a control path in the form of (17) with 
the switch time T ′ = T + δ, where δ is an arbitrarily small positive number; evidently, 

lim ( ) ( ) ( ) ( ) 0.
t

s t s t s T s T


       
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Therefore, in order for the sufficient transversality condition (14) to hold, we must have 

lim ( ) 0,rt

t
e t


   

which, because ( )t = rλ(t) for all t ≥ T, implies λ(t) = 0 for t ≥ T. 
 With the terminal condition for the costate variable determined and the initial condition for 
the state variable given, we can solve canonical equations (5) and (12) in terms of switch 
time, T :  

(18) 
0

0

min{ , / } for ,
( )

min{ , / } for ;

s t X W t T
s t

s T X W t T

     
   

 

(19) 
( )(1 )min{ , / } for ,

( )
0 for .

r T te X W t T
t r

t T

      
 

 

 Substituting s(T) and λ(T) from equations (18) and (19) into the cost equation (16) yields 
c(T) = 0( min{ , / }).s s T X W      If T = 0, we have 0( ) ( ),c T s s   which, given equation 
(15) and λ(T) = 0, implies 0( ) .s s b    This means irrigated farming is no more profitable 
than dryland farming at the initial period, and the latter will be practiced throughout. If T > 0, 
we have c(T) = bε, i.e., 

0 ( / )
.

min{ , / }

s s b
T

X W

   

 

 

Thus, the switch time function can be written in the following compact form: 

(20) 
0 ( / )

max 0, .
min{ , / }

s s b
T

X W

          
 

 Using Gisser and Sanchez’s (1980) results, Koundouri (2004b) points out that when the 
slope of inverse water demand is close to infinity, myopic competitive extraction leads to an 
outcome which is close to the socially optimal. An inspection of equations (17), (18), and (20) 
against equations (6), (7), and (8) shows this result can be extended to the limiting case where 
the slope is infinity. Myopic competitive extraction leads exactly to the socially optimal 
outcome. This result can be better understood with a closer look at the path of the costate 
variable, λ(t). The marginal user cost, κλ, represents the externalities that individual resource 
users fail to account for and which constitute the driving force for the welfare loss arising 
from competitive extraction. In the case of perfectly inelastic demand, however, it does not 
matter whether or not this variable is taken into consideration. Specifically, equation (15) 
implies that so long as extraction is profitable, the rate of extraction is fixed at a level 
determined solely by the binding constraint and independent of the value of the marginal user 
cost. Although the equation suggests marginal user cost may affect the extraction path at the 
switch time, it becomes zero at that moment because the groundwater stock is no longer of 
value, i.e., λ(T) = 0 (see figure 1). 
 Since the model we present here is different from most existing groundwater models 
in the mathematical structure, it is instructive to conduct a comparative dynamics analysis 
of the solution path. Specifically, we examine how the extraction path and value of the 
groundwater resource will change in response to changes in a number of exogenous vari-
ables, including irrigation efficiency ε, marginal physical product b, unitary pumping cost γ,
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 Figure 1. The control, stock, and shadow price paths in the representative- 
 farm model 
 
hydrologic parameter κ, agronomic constraint W, well yield capacity X, and farmland surface 
elevation .s  
 Inspection of the switch time function (20) suggests irrigation efficiency improvements 
prolong the aquifer’s usable life for irrigation (when 0 / ),s s b    or may induce a switch 
from dryland to irrigated farming (when 0 / ).s s b    The value of the groundwater resource 
therefore increases with irrigation efficiency if irrigated farming is ever an economical choice 
(see appendix B). 
 Similarly, any biotechnical progress that improves the marginal productivity of applied 
water, b, permits profitable irrigation at lower groundwater levels, prolonging the resource 
stock’s usable life and boosting its total economic value. Additionally, the same can be said 
for an increase in crop price because it behaves in the model identically to b. Better farm 
management strategies or varietal improvements that relax biological constraint W can trigger 
more intensive irrigation and therefore shorten the usable life of the aquifer. This amounts to 
selling the groundwater at a faster rate, which, because of the positive discount rate, will 
increase the total value of the resource stock. Well yield capacity X behaves the same as does 
the agronomic constraint. If it is a binding constraint, then the higher it is, the more intensive 
will be the irrigation observed—and the more valuable the groundwater resource will be. 
 The longer the distance, 0,s s  between the land surface elevation and the initial level of 
water table, the higher the pumping cost to begin with, the shorter the aquifer’s usable life, 
and the lower its total economic value. An aquifer with higher storativity or larger covered area, 
which is negatively related to κ, is more valuable to the groundwater user because higher 
storativity allows the water table to decline and the pumping cost to increase more slowly. 
Finally, more efficient pumps or lower energy price (both lower the value of γ) permit profitable 
irrigation at a deeper water table, and thus increase the value of the groundwater stock. 
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The Two-Farm Model 
 
The representative farm model is appropriate only when groundwater users are short-sighted, 
as if they are completely unaware of the commonality of the groundwater resource. Addition-
ally, by way of aggregation, it precludes an understanding of productivity heterogeneity’s 
effect on resource use efficiency. To overcome these limitations, we consider a model of two 
farms that may differ in water use productivity and that may take strategic actions in view of 
the dynamic interactions between them. We preserve the notation in the previous section and 
distinguish between the two farms by subscript i = 1, 2. The dynamics of the water table 
become: 

(21) 
2

1

( ) ( ),i
i

s t x t


   

where xi is farm i’s rate of extraction. The drawdown rate of the water table is linear in the 
sum of the two farms’ extraction rates. 
 For generality, parameters a, b, and W in the production function, irrigation efficiency ε, 
elevation of the farmland surface ,s  and well-yield capacity X are each allowed to vary 
between the two farms, but unit pumping cost γ is assumed to be the same between them. 
This is a fairly innocuous assumption, as pumping costs are determined by energy price and 
the engineering properties of the pump, which tend to be similar for farms within a ground-
water basin. 
 
Competitive Extraction 
 
Consider first the two farms’ Nash equilibrium extraction paths. Specifically, we assume each 
farm chooses the optimal path of extraction in order to maximize the discounted present value 
of profits with respect to the other’s optimal extraction path. Formally, the two farms’ extraction 
problem can be expressed as: 

(P.2.1)  
0

( )
max ( ) ( )

i

r t
i i i i i

x
e a b s s t x t dt

          


 

    
2

1

0

s.t.: ( ) ( ),

(0) ,

0 ( ) min{ , / },

1, 2.

i
i

i i i i i

s t x t

s s

x t Z X W

i


  



   



  

The current-value Hamiltonian is written as: 

(22) ( ) ,

, 1, 2, and ,

i i i i i i i i jH a b s s x x

i j i j

           
 

 

where the costate variable, λ i , represents the shadow price of the groundwater resource to 
farm i. 
 Maximization of equation (22) with respect to the constraint set 0 ≤ xi ≤ Zi yields the 
necessary condition:  
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(23) 
if ,

( ) 1, 2,
0 if ,

i i i i
i

i i i

Z c b
x t i

c b

 
   

 

where ( )i i ic s s      is the marginal economic cost, which comprises the marginal pump-
ing cost ( )is s   and the marginal user cost κλ i . The canonical equations are (21) and 

(24) ( ) ( ) ( ).i i i it r t x t      

 The necessary and sufficient transversality conditions are omitted here. As in the represent-
ative-farm model, they guarantee that the maximum of the Hamiltonian (23) can be written as: 

(25) 
for ,

( )
0 for ,

i i
i

i

Z t T
x t

t T


  

 

and ( ) 0,i it t T     for i = 1, 2. Further, one can show that [0, )iT    is determined by the 
following complementary slackness condition: 

(26) 

 
 

0,

( ) 0,

( ) 0,

1, 2.

i

i i i

i i i i i

T

s s T b

T s s T b

i



    

      


 

When Ti > 0, we have ( ( )) 0.i i is s T b      Since water level s(t) is nonincreasing in time, 
this implies ( ( )) 0i i is s t b      for all t < Ti . That is, farm i practices irrigated farming until 
the water table declines to the threshold level where irrigated farming becomes equally as 
profitable as dryland farming. When the marginal pumping cost exceeds the marginal revenue 
of applied water at the initial state, i.e., 0( ) ,i is s b     then dryland farming is always more 
profitable than irrigated farming, and thus is adopted throughout, i.e., Ti = 0. 
 For ease of notation, let 

1 1 1 1 2 2 2 2/ and / .h s b h s b         Assume, without loss of 
generality, h1 ≥ h2; that is, farm 1 is less than or equally as productive as farm 2. As discussed 
earlier, in the representative-farm model, the productivity difference is due to differences in 
technological and hydrological conditions facing the two farms. It follows immediately from 
this assumption and (26) that s(T1) ≥ s(T2); that is, the less productive farm stops irrigation at 
a higher water level than does the more productive farm. Specifically, the former stops 
irrigation earlier than does the latter (T1 ≤ T2). Integrating equation (21) and substituting from 
equation (25) yields the path of the water table: 

(27) 

0
1 2 1

0
1 1 2 1 2

0
1 1 2 2 2

( ) for [0, ),

( ) for [ , ),

for [ , ).

s t Z Z t T

s t s T Z tZ t T T

s T Z T Z t T

    
     


     

 

 Given the terminal condition λ i(Ti) = 0, the current-value shadow price can also be solved 
in terms of the switch times: 

(28) 
( )(1 ) for [0, ),

( ) 1, 2.
0 for [ , ),

ir T t
i i

i

i

Z e t T
t ir

t T

     
     
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 It remains to solve for the Nash equilibrium switch times for the two farms. Substituting 
for s(Ti) from (27) into (26), we obtain: 

(29) max{0, }, 1, 2,i iT i    

where 

(30) 
0

1
1

1 2

,
( )

s h

Z Z


 

 
 

(31) 
0

1 1 2
2

2

.
s Z h

Z

  
 


 

Rearranging terms in (30) and (31) and subtracting (30) from (31) yields the difference 
between the two farms’ switch times: 

(32) 1 2
2 1

2

.
h h

Z


   


 

 Equations (27) and (30) indicate that farm 1 abandons irrigation when the water table 
declines to its threshold level, s(τ1) = h1, and that the switch time is the amount of time needed 
for the water table to decline from the initial level, s0, to the critical level, h1, at a constant rate, 
κ(Z1 + Z2). From equation (32), after farm 1 abandons irrigation, farm 2 will continue irrigation 
at the constant rate of Z2 until the water table reaches its threshold level h2. 
 The above description of the Nash equilibrium extraction paths sounds much like the 
behavior of two myopic farmers. To verify, all we need to do is exclude the marginal user 
cost from the total economic cost, precisely in light of the definition of myopic behavior. 
Specifically, we let ( )i ic s s    instead of ( )i i ic s s      in equation (23). The dropped 
term (κλ i) is the marginal user cost of extracted groundwater, representing the externalities 
that the myopic farmers fail to consider in their decision making. Equation (23) implies the 
two farms will continue to pump water from the aquifer so long as the marginal pumping cost 
ci remains below the marginal benefits of extraction. If irrigated farming is more profitable 
than dryland farming in the initial state, both farms will maintain their respective fixed 
pumping rates given in equation (23). Therefore, the water table will decline at the same rate 
as in the Nash equilibrium. The switch time for farm 1 is when the groundwater level reaches 
the threshold h1, and for farm 2 threshold h2, exactly as described in equations (30) and (31). 
 The coincidence of the myopic and Nash equilibrium paths again can be best understood 
by an examination of the behavior of the marginal user cost, κλ i . In the Nash equilibrium, the 
marginal user cost, κλ i , is positive when farm i’s extraction rate is anchored by the binding 
constraints and becomes zero at the very moment the farm abandons irrigation. Although in a 
Nash equilibrium the farmers do take into account the intertemporal stock externality, no 
change can be made to accommodate that externality due to the binding constraint on the rate 
of extraction. In other words, even if the farmers recognize the interdependence between their 
water use decisions and between today’s action and tomorrow’s choice, their choice is fixed 
by the binding constraints. Thus, the best they can do is to behave as if they are unaware of 
the externalities. 
 The same pumping behavior described above will be observed in a Markov-Nash equilib-
rium. Unlike the myopic equilibrium, the Markov-Nash strategy does take full account of the 
intertemporal and inter-agent externalities. Unlike the Nash equilibrium in which the farms 
determine their respective paths of extraction at the beginning of the game, it assumes their 
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extraction decisions are made solely based on the current state of the resource. As a matter of 
convenience, the decision rule usually is assumed to be stationary or invariant over time (e.g., 
Provencher and Burt, 1993). The Markov-Nash strategy implies that the Hamiltonian (22) 
should be written slightly differently: xj is replaced with xj(s). The change reflects the 
assumption that each farm believes the other’s decision is made on the basis of the current 
state of the resource, s. This change, however, will not alter the necessary conditions (21), 
(23), and (24). Obviously, it will not change the state equation (21). Condition (23) will 
remain unaltered because the Hamiltonian is linear and its slope is independent of xj(s). The 
costate equation (24) is derived from the general formula: ( ) ( ) / .i i it r t H s       This 
necessary condition holds everywhere except for the points of discontinuities of xi(t) (see 
Caputo, 2005, theorem 14.3). An inspection of equation (23) shows that the optimal rate of 
extraction is independent of the state of the groundwater except for the switch point, 
indicating / 0iH s    everywhere except for the switch time. Thus, equation (23) is also the 
costate equation in the Markov-Nash equilibrium. To complete the proof, the Markov-Nash 
equilibrium is the closed-loop form of the open-loop solution (25): 

if ,
( ) 1, 2.

0 if ,
i i

i
i

Z s h
x s i

s h


  

 

 The coincidence of the Nash and Markov-Nash equilibriums is a direct result of demand 
perfect inelasticity. The Markov-Nash equilibrium concept emphasizes a type of “strategic 
interaction” between groundwater users (Provencher and Burt, 1993). Since they know their 
extraction decisions depend on the resource stock, which can be affected by their individual 
extraction decisions, one user may in principle change the other’s action to his or her own 
advantage by altering the rate of extraction. In our model, however, a change in the ground-
water stock does not affect the farms’ extraction rates because of the binding constraints. In 
other words, the chain of strategic interactions is broken by water demand-prefect inelasticity. 
 As shown by the above analysis, when water demand is perfectly inelastic due to binding 
technical or hydrologic constraints, a simple strategy of “pumping as much as is possible with- 
out wasting” is optimal relative to myopic, Nash, and Markov-Nash equilibrium concepts. 
This certainly is a helpful property, since the behavioral assumptions associated with those 
equilibrium concepts are difficult, if not impossible, to test empirically. 
 
The Optimal 

Socially optimal paths of extraction can be derived from a straight optimal control problem in 
which two farms jointly determine rates of extraction to maximize present value of total 
profits over an infinite horizon: 

(P.2.2)  
1,2

2

0{ ( )} 1

max ( ) ( )
i i
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i i i i i

x i
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 


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 The current-value Hamiltonian is: 

(33)  
2

1

( ) ,i i i i
i

H a b s s x


         

where λ is the costate variable representing the social shadow price of the groundwater stock. 
 Maximization of the Hamiltonian subject to the constraint sets 0 i ix Z   yields: 

(34) 
if ,

( ) 1, 2,
0 if ,

i i i i
i

i i i

Z c b
x t i

c b

 
   

 

where ( )i ic s s      is the marginal economic cost, comprising marginal pumping cost, 
( ),s s   and marginal user cost, κλ. Note that equation (34) differs from equation (25) in 

that marginal user cost in cooperative model κλ is different from (and presumably larger 
than) those in non-cooperative model κλ i . The canonical equations are (21) and 

(35) 
2

1

( ) ( ) ( ).i
i

t r t x t


       

 We use a star notation to distinguish the solution paths of the state, costate, and control 
variables in the current model from those in the competitive extraction model. As before, the 
transversality conditions permit us to rewrite the maximum of the Hamiltonian as: 

(36) 
*

*
*

for ,
( ) 1, 2,

0 for ,

i i
i

i

Z t T
x t i

t T

  


 

where *
iT  is determined by the following complementary slackness condition: 

(37)  

 
 

*

* *

* * *

0,

( ) ( ) 0,

( ) ( ) 0,

1, 2.

i
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s s T T b

T s s T T b

i



      

        


 

 Farm 1 is assumed to be less productive than farm 2, whereby the former’s threshold water 
table is higher than the latter’s, i.e., h1 ≥ h2. As in competitive extraction, we can show that 
the farm with less favorable irrigation conditions will abandon irrigation earlier, i.e., * *

1 2.T T  
Similarly, one can arrive at *

2( ) 0,t t T     through the sufficient transversality condition. 
With the terminal condition λ(T2) = 0, costate equation (35) can be solved in terms of switch 
times. Integrating equation (35) and substituting for *( )ix t  from equation (36) into equation 
(35), we obtain the path of the social shadow price: 

(38) 

*

*
2

2
( ) *

1
1

( )* * *
2 1 2

*
2

(1 ) for [0, ),

( ) (1 ) for [ , ),

0 for [ , ).

ir T t
i

i

r T t

Z e t T
r

t Z e t T T
r

t T

 



 

 
 


    



 




  



110   April 2011 Journal of Agricultural and Resource Economics 
 
 

 Canonical equation (21) can be solved with respect to switch times *
iT  as: 

(39) 

0 *
1 2 1

* 0 * * *
1 1 2 1 2

0 * * *
1 1 2 2 2
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     

 

 Finally, substitute * * **( ) and ( ),i iT s T  respectively, from equation (38) and equation (39) 
into equation (37) to obtain the optimal switch times: 

(40) * *max{0, }, 1, 2,i iT i    

where the following two equations are solved by *:i  

(41) 

* *
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(42) 
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 
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Rearranging terms in (41) and (42) and subtracting the former from the latter yields: 

(43) 
* *
2 1( )

* * 1 2
2 1

2

1
.

rh h e

Z r

   
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 One can verify in equation (43) that the socially optimal switch times of the two farms 
equalize if and only if they are equally productive; that is, * *

1 2    if and only if h1 = h2. 
Identical farms are sufficient but not necessary for this condition to hold. 
 The control and state paths (36) and (39) in the cooperative model look almost identical to 
their respective counterparts (25) and (27) in the competitive model. The only difference lies 
in the different switch times of the two farms, as can be seen by contrasting (30) with (41) 
and (31) with (42). Specifically, the difference for farm 1 is: 

(44) 
* *
2 1( )*

* 1 2
1 1

1 2 1 2

( ) (1 )
0,

( ) ( )

rT Z e

Z Z r Z Z

   
     

  
 

where the equality holds when irrigation is simultaneously abandoned by the two farms  
( * *

1 2)    or, equivalently, when the two farms are equally productive (h1 = h2). The differ-
ence in switch time for farm 2 is easily obtained by subtracting equation (42) from equation 
(31): 

(45) 
* *
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rZ e

r Z Z

  
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where the equality holds when * *
1 2 1 2or .h h     

 Unless the two farms face equally favorable irrigation conditions (h1 = h2), competitive 
extraction leads the less productive farm to extract groundwater for a longer period than is 
socially optimal. Consequently, the more productive farm is left with an amount that is less 
than optimal. When the two farms are equally productive (h1 = h2), * *

1 2 1 2;        that is,
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Figure 2. Shadow price paths and switch times in the two-farm model 
 

competitive farms pump as much as their respective hydrological and technological constraints 
allow, then switch to dryland farming simultaneously. However, this is exactly the best they 
could do if they had cooperated—the CPR dilemma is avoided when water demand is perfectly 
inelastic and when groundwater users are equally productive. 
 Inspecting the path of the costate variables can help us better understand these results. 
Figure 2 illustrates the competitive and social shadow price paths and switch times in the 
presence of heterogeneity (h1 > h2). It shows that the social and private difference in the 
switch time of each farm emanates from the discrepancy between the social and private 
shadow values of the groundwater resource. Under competitive extraction, farm 1 stops 
irrigation only when the groundwater resource is of no value to itself (λ1(T1) = 0); therefore, 
the marginal economic cost consists only of the marginal pumping cost at that switch time. 
This finding implies farm 1 abandons irrigation when the marginal pumping cost equals the 
marginal product value 

1 1 1 1( ( ( )) 0).s s T b      In the case of cooperative extraction, the social 
shadow value of the resource is zero only if farm 2 quits irrigation 

*
2( ( ) 0),T   and is positive 

when farm 1 quits irrigation *
1( ( ) 0).T   A social planner would force farm 1 to quit irrigation 

whenever the marginal economic cost (composed of the pumping and user costs) equals the 
marginal product value 

* *
1 1 1 1 1( ( ( )) ( ) 0).s s T T b        Because of the positive marginal 

user cost, 
*
1( ),T  we have *

1 1.T T  
 More importantly, 

*
1( )T  measures the extra benefit that slightly more extraction by farm 2 

can generate at time *
1T  when farm 1 stops irrigation, which is the opportunity cost of slightly 

more extraction by farm 1 at time *
1.T  We can rewrite the equation for farm 1’s switch time 

as: 

(46)  * *
1 1 1 1 1( ) ( ) .T b s s T       

The right-hand side of the equation is the extra benefit of a slightly further extraction by farm 
1, and the left-hand side is the opportunity cost of this extra unit of extraction. Thus, the 
equation provides a familiar arbitrage interpretation. The optimal switch time for the less 
productive farm is when a slightly further extraction by either farm generates the same amount
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   Figure 3. Differences in switch time and welfare loss each increase with 
   the degree of heterogeneity in the two-farm model 
 

of extra benefits and no reallocation of groundwater between the two can further improve 
their total welfare. The inefficiency caused by heterogeneity falls into the category of assign-
ment problems in Ostrom, Gardner, and Walker’s (1994) taxonomy of CPR problems. In the 
absence of well-defined, tradable property rights to groundwater units, assignment problems 
arise because a coordinating mechanism is lacking to allocate the resource in accordance with 
productivity. Simulation analyses have found that heterogeneity tends to exacerbate the CPR 
problem (Laukkanen and Koundouri, 2006; Worthington, Burt, and Brustkern, 1985). The 
mechanisms of such an effect remain unclear, however, because of the difficulty in separating 
it from the stock externalities in those simulation models. Here, the assumption of water 
demand perfect inelasticity serves as a filter to purge out stock externalities whereby a clear 
understanding of the problem becomes possible. 
 Next, we examine the relationship between the degree of heterogeneity, h1 − h2, and 
welfare loss, ΔV = V* − V, where V* is the value function in the cooperative model (P.2.2), 
and V is the summation of the two farms’ value functions in the competitive model (P.2.1). In 
appendix D, we show that: 

(47) 
*
1

1
1

0,
r rV e e

Z
h r

    
  


 

(48) 

**
2 2

2
2

0.
r rV e e

Z
h r

    
  


 

That is, efficiency loss, ΔV, increases when the productivity of less productive farm 1 
decreases or when the productivity of more productive farm 2 increases. Thus, efficiency loss 
increases in the degree of heterogeneity, h1 − h2. Figures 3a and 3b illustrate this property. As 
shown in figure 3a, the larger the difference in productivity, the larger the gap between the 
optimal and competitive inter-agent difference in switch time. This implies the presence of a 
more serious assignment problem as evidenced by greater efficiency loss shown in figure 3b.
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  Figure 4. Increased storativity augments the magnitude of heterogeneity-induced 
  welfare loss in the two-farm model 
 
In particular, in the absence of productivity differences, the two farms’ competitive switch times 
equalize, which is socially optimal. 
 We now analyze the influences of some exogenous parameters on the magnitude of the 
heterogeneity-induced efficiency loss. Gisser and Sanchez (1980) have found that efficiency 
loss under myopic, competitive extraction tends to be small for aquifers with large storativity 
and covered area. In our model, aquifer storativity (S) and area (A) are negatively associated 
with parameter κ. An inspection of equations (32), (44), and (47) reveals that a reduction in 
κ, namely an increase in storage capacity, SA, will increase * *

1 1 2 2and .       An increase 
in *

1 1,    in turn, will increase dΔV/dh1, and an increase in *
2 2    will decrease dΔV/dh2 

(since the exponential function e−x is monotonically decreasing). Overall, an increase in aquifer 
storage capacity augments the efficiency loss induced by heterogeneity. Figure 4 provides 
an illustration of this effect. In an aquifer with larger storativity, a given degree of hetero-
geneity leads to a larger gap between the optimal and competitive inter-agent difference in 
switch time, and thus greater efficiency loss, than in an aquifer with smaller storativity. 
 The efficiency effect of storage capacity in our model contrasts with that predicted by 
Gisser and Sanchez (1980). Their model assumes that symmetric groundwater users with 
myopic behavior maximize own current benefits, taking no account of the present extraction’s 
influences on future pumping costs. For illustrative purposes, we break down the stock 
externality into two stages. The first stage is when a change in the current extraction rate 
causes a change in the pumping lift. The second stage is when a change in the pumping lift 
results in a change in the future extraction rate because of higher pumping costs. When 
aquifer storage capacity (SA) is large relative to extraction rate, the resulting decline of water 
table and increase in pumping lift tend to be insignificant. This means the first stage of 
the stock externality is weak. When the demand is inelastic, the future extraction rate is 
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irresponsive to changes in pumping lift, indicating the second stage of the stock externality is 
weak. Since the difference between the socially optimal and competitive extraction paths is 
determined by whether the stock externality is taken into consideration, that difference tends 
to be small when the stock externality is weak, either because of high storage capacity or 
because of water demand inelasticity. In particular, when demand is perfectly inelastic, the 
second stage of the stock externality is completely broken and there is no stock externality at 
all. This explains why the competitive extraction is optimal in the case of demand perfect 
inelasticity and homogeneous users. 
 As described earlier, the CPR problem in our model is an assignment problem caused by 
heterogeneity in productivity, which is measured by the difference in the threshold water 
level, h1 − h2. This is because of the lack of a water-rationing scheme that assigns ground-
water on the basis of user productivity. At a given level of productivity difference, h1 − h2, 
higher storage capacity means that more economic value is at stake when groundwater is not 
allocated in accordance with productivity. It might be intuitively useful to consider storage 
capacity as a measure of the “quality” of the groundwater resource, while the “quantity” is 
measured by the thickness of the aquifer. For a given quantity of a resource, misallocation 
will incur greater loss if the quality of that resource is higher.4 
 

Conclusions and Policy Implications 
 
In this study, we have examined the common-pool resource problems in using a nonrenewable 
groundwater resource for agricultural irrigation when water demand is perfectly inelastic. Our 
analysis complements the existing groundwater use theory in several ways. Water demand 
perfect inelasticity has traditionally been treated as a special case with little empirical 
relevance. The accumulated evidence that water demand is generally inelastic, and sometimes 
perfectly inelastic, calls for a careful treatment of this extreme case. Many real-world situa-
tions likely exhibit water demand inelasticity. Examples include situations where ground-
water supplies are in deficit because of limited well yield, where groundwater is abundant but 
yield has tapped into a plateau in the presence of some other limiting factor, where irrigation 
efficiency improvements are difficult either because the existing system is already close to 
perfectly efficient or because farmers cannot afford more efficient and expensive systems, 
and when crop choices are limited by climatic and soil factors. Our analysis provides a 
comprehensive treatment of the CPR dilemma in these situations and sheds light on some 
predictions of previous models. By examining the limiting case of water demand perfect 
inelasticity, our analysis reveals why welfare losses caused by stock externalities tend to be 
small when water demand is inelastic. This limiting assumption also serves as a filter to 
remove the stock externality so that the heterogeneity effect can be analyzed. 
 Our analysis leads us to predict that the optimal competitive extraction strategy is one of 
pumping as much as possible without wasting, regardless of whether groundwater users 
behave myopically or strategically in the Nash and Markov-Nash senses. We also predict that 
competitive extraction creates no welfare loss at all when groundwater users are symmetric, 

                                                 
4 Most of the results in our nonrenewable groundwater extraction model can be extended to the case in which the aquifer 

receives positive recharge but the recharge rate is slower than the extraction rate. In that case, the optimal private extraction path is 
to extract as much as possible, and then switch to deficit irrigation where the rate of extraction equals the rate of recharge. This 
slight change in the steady state of the extraction path does not affect our results on the private and social efficiency comparisons. 
There is no reason to study the economics of groundwater extraction when the recharge rate is above the extraction rate, because no 
scarcity problem arises in such a case. 
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confirming that predictions by Gisser and Sanchez (1980) can be extended to the limiting case 
of demand perfect inelasticity. Further, symmetry is a sufficient but unnecessary condition for 
the above statement to hold—welfare loss will not occur as long as resource users are equally 
productive in using the groundwater resource to generate profits. We further predict that 
welfare loss arises in the presence of productivity heterogeneity and increases with the degree 
of heterogeneity. Cooperative extraction can eliminate that loss by creating incentives for the 
less productive user to stop extraction earlier than he or she would under competitive extrac-
tion; the problem is caused by the lack of a rationing scheme for allocating the resource on 
the basis of productivity. Finally, we predict that the magnitude of the heterogeneity-induced 
welfare loss is greater for aquifers with larger storage capacity, in stark contrast to the welfare 
effect of storage capacity driven by the stock externality (Gisser and Sanchez). 
 These results suggest more attention should be paid to water demand elasticity and user 
heterogeneity in groundwater management. Given the abundant evidence on water demand 
inelasticity and given the different types of CPR problems under elastic and perfectly inelastic 
water demand, an important point of departure for policy analysis should be an unambiguous 
test for the hypothesis of demand perfect inelasticity. When water demand is found to be 
inelastic, such that the stock externality is negligible, the focus of the research should be 
shifted to estimation of the degree of user heterogeneity in resource use efficiency. In regions 
where productivity levels are largely homogeneous, it is doubtful that a centralized, optimal 
control approach can improve producer welfare, and conservation measures proposed on the 
basis of the CRP dilemma are not justified. In regions where productivity varies among 
irrigators, welfare loss may arise, but the cause of that loss is not stock externality—rather, it 
is a misallocation of the resource among users with varying degrees of productivity. 
 A useful conceptual framework for solving such misallocation problems is the renowned 
Coase theorem. In particular, when water rights are well established and tradable, and irri-
gators are well informed about their productivity differences and the economic implications, 
bargaining and trading water rights could lead to an efficient outcome. For instance, more 
efficient users could pay less efficient users to abandon irrigation earlier than they would 
otherwise, so that purchased water could be used to generate more benefits than the payment. 
In that case, policy efforts should be aimed at establishing a functioning market for water 
rights and at supporting research which will improve public understanding of aquifer 
hydrology and economic benefits of trading water rights. 
 The model analyzed here has its own limitations, which require mention for future research 
in this area. Many empirical studies have found that producers may change cropping patterns 
and irrigation technologies in response to changes in water price. Like the majority of existing 
groundwater extraction models, ours assumes away crop choices for simplicity. Although our 
model considers the transition from irrigated to dryland farming, irrigation efficiency is taken 
as exogenously given. Also, for the purpose of comparison, we follow the “bathtub aquifer” 
assumption in the majority of groundwater use models, i.e., the aquifer’s transmissivity is 
infinite. Recent work has begun to relax this unrealistic assumption to examine the CPR 
problem under finite transmissivity (e.g., Brozovic, Sunding, and Zilberman, 2003; Saak and 
Peterson, 2007). Future research will extend the current model to accommodate these choices 
and events. 
 
 

[Received March 2010; final revision received December 2010.]  



116   April 2011 Journal of Agricultural and Resource Economics 
 
 

References 
 
Allen, R. C., and M. Gisser. “Competition versus Optimal Control in Groundwater Pumping When Demand 

Is Nonlinear.” Water Resour. Res. 20(1984):752–756. 

Berbel, J., and J. A. Gómez-Limón. “The Impact of Water-Pricing Policy in Spain: An Analysis of Three 
Irrigated Areas.” Agr. Water Mgmt. 43(2000):219–238. 

Bosworth, B., G. Cornish, C. Perry, and F. van Steenbergen. “Water Charging in Irrigated Agriculture: 
Lessons from the Literature.” Report No. OD 145, HR Wallingford, Wallingford, UK, 2002. 

Brozovic, D., D. Sunding, and D. Zilberman. “Optimal Management of Groundwater over Space and Time.” 
In Frontiers in Water Resource Economics, eds., D. Berga and R. Goetz, pp. 109–135. New York: Kluwer 
Academic Publishers, 2003. 

Caputo, M. R. Foundations of Dynamic Economic Analysis: Optimal Control Theory and Applications, 1st 
ed. Cambridge, UK: Cambridge University Press, 2005. 

Dixon, L. S. “Models of Groundwater Extraction with an Examination of Agricultural Water Use in Kern 
County.” Unpub. Ph.D. diss., University of California, 1988. 

Doorenbos, J., and A. Kassam. “Yield Response to Water.” Food and Agriculture Organization, Rome, Italy, 
1979. 

Feinerman, E., and K. C. Knapp. “Benefits from Groundwater Management: Magnitude, Sensitivity, and 
Distribution.” Amer. J. Agr. Econ. 65(November 1983):703–710. 

Gardner, R. L., and R. A. Young. “The Effects of Elasticity Rates and Rate Structures on Pump Irrigation: An 
Eastern Colorado Case Study.” Land Econ. 60(November 1984):352–359. 

Garrido, A. “Transition to Full-Cost Pricing of Irrigation Water for Agriculture in OECD Countries.” Organi-
zation for Economic Cooperation and Development, Environment Directorate, Paris, France, 2002. 

Gisser, M., R. Lansford, W. D. Gorman, B. J. Creel, and M. Evans. “Water Trade-off Between Electric 
Energy and Agriculture in the Four Corners Area.” Water Resour. Res. 15,3(June 1979):529–538. 

Gisser, M., and D. A. Sanchez. “Competition versus Optimal Control in Groundwater Pumping.” Water 
Resour. Res. 16,4(August 1980):638–642. 

Havlin, J. L., J. D. Beaton, S. L. Tisdale, and W. L. Nelson. Soil Fertility and Fertilizers: An Introduction to 
Nutrient Management, 7th ed. Upper Saddle River, NJ: Prentice-Hall, Inc., 1999. 

Heady, E. O., H. C. Madsen, K. J. Nicol, and S. H. Hargrove. “National and Interregional Models of Water 
Demand, Land Use, and Agricultural Policies.” Water Resour. Res. 9,4(1973):777–791. 

Koundouri, P. “Three Approaches to Measuring Natural Resource Scarcity: Theory and Application to 
Groundwater.” Unpub. Ph.D. diss., Dept. of Econ., University of Cambridge, 2000. 

———. “Current Issues in the Economics of Groundwater Resource Management.” J. Econ. Surveys 
18,5(2004a):703–740. 

———. “Potential for Groundwater Management: Gisser-Sanchez Effect Reconsidered.” Water Resour. Res. 
40,6(2004b):1–13. 

Laukkanen, M., and P. Koundouri. “Competition versus Cooperation in Groundwater Extraction: A Stochastic 
Framework with Heterogeneous Agents.” In Water Management in Arid and Semi-Arid Regions: Inter-
disciplinary Perspectives, eds., P. Koundouri, K. Karousakis, D. Assimacopoulos, P. Jeffrey, and M. A. 
Lange, chap. 7. Cheltenham, UK: Edward Elgar Publishing, 2006. 

Molle, F., and J. Berkoff. “Water Pricing in Irrigation: The Lifetime of an Idea.” In Irrigation Water Pricing: 
The Gap Between Theory and Practice, eds., F. Molle and J. Berkoff, pp. 1–19. UK: Center for Agricul-
tural Biology International, 2007. 

Moore, C. V., and T. R. Hedges. “A Method for Estimating the Demand for Irrigation Water.” Agr. Econ. 
Res. 15,4(1963):131–153. 

Moore, M., N. Gollehon, and M. Carey. “Multicrop Production Decisions in Western Irrigated Agriculture: 
The Role of Water Price.” Amer. J. Agr. Econ. 76,4(November 1994):859–874. 

Negri, D. H. “The Common Property Aquifer as a Differential Game.” Water Resour. Res. 25,1(1989):9–15. 

Nieswiadomy, M. “The Demand for Irrigation Water in the High Plains of Texas, 1957–80.” Amer. J. Agr. 
Econ. 67,3(August 1985):619–626.  



Wang and Segarra Economics of Commonly Owned Groundwater   117 

 
Ostrom, E., R. Gardner, and J. Walker. Rules, Games, and Common-Pool Resources, 1st ed. Ann Arbor, MI: 

University of Michigan Press, 1994. 
Paris, Q. “The Von Liebig Hypothesis.” Amer. J. Agr. Econ. 74(November 1992):1019–1028. 
Provencher, B., and O. R. Burt. “The Externalities Associated with the Common Property Exploitation of 

Groundwater.” J. Environ. Econ. Mgmt. 24(March 1993):139–158. 
Saak, A. E., and J. M. Peterson. “Groundwater Use Under Incomplete Information.” J. Environ. Econ. Mgmt. 

54,2(September 2007):214–228. 
Scheierling, S. M., R. A. Young, and G. E. Cardon. “Determining the Price-Responsiveness of Demands for 

Irrigation Water Deliveries vs. Consumptive Use.” J. Agr. and Resour. Econ. 29,2(2004):328–345. 
Worthington, V. E., O. R. Burt, and R. L. Brustkern. “Optimal Management of a Confined Aquifer System.” 

J. Environ. Econ. Mgmt. 12(September 1985):229–245. 
 
 

Appendix A: The LRP Technology 
 
For most crops, a linear relationship exists between relative yield loss and relative water deficit (Doorenbos 
and Kassam, 1979), such that: 

(A1) 1 1 ,a a
y

m m

Y ET
k

Y ET

   
        

   
 

where 

 Ya =  actual harvested yield, 
 Ym =  maximal harvested yield, 
 ky =  yield response factor, 
 ETa =  actual evapotranspiration, and 
 ETm =  maximal evapotranspiration. 
 
By rearranging terms, actual harvested yield, Ya ,  can be expressed as a linear function of actual evapotrans-
piration, ETa :  

(A2) (1 ) .m
a y m y a

m

Y
Y k Y k ET

ET
    

Maximal harvested yield Ym , yield response factor k y ,  and maximal evapotranspiration ETa are determined 
by soil quality, climate conditions, and genetic factors. Once the seed has been planted, the producer has no 
control over these factors—i.e., they are the parameters of the crop production function. Letting 

 (1 ) and ,m
y m y

m

Y
a k Y b k

ET
    

equation (A2) can be rewritten as: 

(A3) .a aY a bET   

Since maximum yield is determined by the plant’s varietal potential, the actual yield cannot exceed that 
maximum, i.e., Ya ≤ Ym .  Adding this constraint to equation (A3) gives the linear response and plateau produc- 
tion function (1) in the text.    □ 
 

Appendix B: Nonnegative Shadow Price 
 
We assume that λ(t) < 0 for some t = τ ≥ 0 and then derive a contradiction from the assumption. Because the 
rate of extraction, x, from equation (15) is nonnegative, an inspection of equation (12) suggests that λ(τ) < 0 
implies λ(t) < 0 for all t ≥ τ. Differentiating equation (16) with respect to time yields c r    and 

( ).c r r r x         It follows that ( ) 0 and ( ) 0 for .c t c t t     This implies that 

 lim ( ) ,
t

c t b


   
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which, because of equation (15), leads to: 

 lim ( ) min{ , / } 0.
t

x t X W


    

Because the water table is bounded above, 

 lim ( ) 0.rt

t
e s t


  

Hence, the necessary transversality condition (13) reduces to: 

 lim ( ) 0.rt

t
e t


   

Since equation (12) can be written as 

[ ( )]
( ) ,

rt
rtd e t

x t e
dt




    

e− r tλ( t) is nonincreasing in time. Since λ(t) < 0 for all t ≥ τ, we have 

 lim ( ) 0,rt

t
e t


   

a contradiction.    □ 
 

Appendix C: 
Comparative Dynamics in the Representative-Farm Model 

 
This appendix provides the partial derivatives of the value function of problem (P.1) to support the discussion 
in the text on how the value of the groundwater resource changes in response to a change in exogenous 
variables. First, write the Lagrangean corresponding to the Hamiltonian: 

(A4) 1 2 3( ) ( ) ( / ) ,L a b s s x X x W x x                  

where μ1,  μ2,  μ3 ≥  0 are the Lagrangean multipliers associated with the constraints x ≤ X, x ≤ W/ε , and 
x ≥ 0, respectively. 
 Integrating the maximized Lagrangean, the value function of problem (P.1) is: 

(A5) 1 2 30 0
( ) ( ) ( ) ( / ) .

T rt rtV b s s x X x W x xe dt ae dt
                   

 We first examine the response of the value function to irrigation efficiency improvements. By the envelope 
principle (Caputo, 2005, theorem 9.1): 
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If X < W /ε , μ2 = 0, and therefore 

 ( ) 0,
dV

d



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where the equality holds when T = 0. If X > W /ε , we need to solve for μ2 > 0 to determine the sign of equa-
tion (A6). Differentiating the Lagrangean (A4) with respect to x to obtain the optimizing condition for μ2:  
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Substituting from (A7) into (A6) yields: 
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where the equality holds when T = 0.  
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 If X = W /ε , any increase in ε will lead to μ2 = 0, and then to 

 ( ) 0.
dV

d



  

Denoting by 

 ( )
dV

d 
  

the directional derivative of V with respect to an increase in ε, we have: 
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where the equality holds when T = 0. That is, the value of the groundwater resource appreciates with irrigation 
efficiency, if irrigation is ever economically feasible. 
 Similarly, one can show: 
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These results are interpreted in the text.    □ 
 

Appendix D: 
Comparative Dynamics in the Two-Farm Model 

 
This appendix provides the formal derivation of the effects of the degree of productivity heterogeneity on the 
magnitude of the welfare loss caused by heterogeneity in the two-farm model. Specifically, we derive the 
marginal values of the productivity index, 

 
*

1 1

and ,
dV dV

dh dh
 

under cooperative and competitive extraction. The sign of the difference between these two derivatives, i.e., 

 
*

1 1 1

,
d V dV dV

dh dh dh


   

tells whether efficiency loss arising in competitive extraction expands or shrinks with an increase in h1. 
Similarly, one can evaluate the efficiency effects of a reduction in h2.  
 The value function *( )V   for problem (P.2.2) represents the maximal benefits the two farms can jointly 
obtain from groundwater use. In order to take derivatives with respect to h1 and h2, we need to first rewrite 
the value function in terms of these indices as: 

    
* *
1 2

*
1

2
1 2*

2 20
1

( ) ( ) ( ) .rt rt
i i

i

a a
V e s t h Z dt e s t h Z dt

r

  





          
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Invoking the envelope theorem, we have: 

(A16) 

*
1*

1
1

1
( ) ,

rV e
Z

h r

  
  


  

(A17) 
*
2*

2
2

1
( ) .

rV e
Z

h r

  
  


  

 Similarly, the value function for problem (P.2.1) can be written as the sum of the two farms’ respective 
value functions: 

    1 2

1

2
1 2*

1 2 20
1

( ) ( ) ( ) .rt rt
i

i

a a
V e s t h Z dt e s t h Z dt

r

  





         

Applying the envelope theorem, its derivatives with respect to h1 and h2 are: 

(A18) 
1

1
1

1
( ) ,

rV e
Z

h r

  
  


  

(A19) 
2

2
2

1
( ) .

rV e
Z

h r

  
  


  

Subtracting (A18) from (A16) yields: 

 

*
1 1*

*
1 1 1

1 1 1

0 (since ).
r rV V V e e

Z
h h h r

      
       

  
 

In other words, when h2 is held constant, the welfare loss increases with h1. Likewise, we can subtract (A19) 
from (A17) to obtain: 

 

*
2 2*

*
2 2 2

2 2 2

0 (since ).
r rV V V e e

Z
h h h r

      
       

  
 

When h1 is held unchanged, the welfare loss increases when h2 decreases. Overall, welfare loss, ΔV, increases 
with the degree of heterogeneity, h1 – h2.     □  
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